
Algorithmic 
Problem Solving

Le 2 – Data Structures

Fredrik Heintz
Dept of Computer and Information Science

Linköping University



2Outline

 Basic data structures (UVA 10107, UVA 902)
 Union-Find (lab 1.4)
 Fenwick Trees (lab 1.5)
 Segment Trees (UVA 11402)



3Time Limits and Computational Complexity

n Worst AC Complexity Comments

≤ [10..11] O(n!), O(n6) Enumerating permutations

≤ [15..18] O(2n × n2) DP TSP

≤ [18..22] O(2n × n) DP with bitmask technique

≤ 100 O(n4) DP with 3 dimensions and O(n) loop

≤ 450 O(n3) Floyd Warshall’s (APSP)

≤ 2K O(n2 log2 n) 2-nested loops + tree search

≤ 10K O(n2) Bubble/Selection/Insertion sort

≤ 1M O(n log2 n) Merge Sort, Binary search

≤ 100M O(n), O(log2), O(1) Simulation, find average

 The normal time limit for a program is a few seconds.
 You may assume that your program can do about 100M 

operations within this time limit.



4Basic Data Structures
 Linear data structures

 Pair, tuple (C++11)

 static array

 vector (ArrayList or Vector)

 bitset (BitSet)

 stack (Stack)

 queue (Queue)

 deque (Deque)

 Linked list data structures

 list (LinkedList)

 Tree-like data structures

 priority queue (PriorityQueue)

 C++ max heap, Java min heap

 set (TreeSet), multiset

 map (TreeMap), multimap

 unordered_map (HashMap/HashSet/HashTable), unordered_multimap (C++11)



5Example Problem: UVA 10107 and 902

 UVA 10107: Compute the median of n integers
 vector<int> that is extended and sorted allows to take out the median in 

O(1) time, O(n log n) => 1M elements
 Linked list, insert in the right place to keep sorted (basically insertion

sort)
 Balanced tree, keep sorted (basically heap sort), find median element 

using binary search

 UVA 902: Find the most frequent string of length n in a text t
 Create a map<string, id> counting the frequency of each substring of

length n, O(t log tn) => 1M elements



6Union-Find Disjoint Sets

 Union-Find Disjoint Sets is a data structure for storing a set of 
disjoint sets where it is very efficient (~O(1)) to find which set 
an element belongs to and to merge two sets.

 The disjoint sets are represented by a forest of trees, where the 
root of a tree is the representative element for that set.

 To improve the performance use the union-by-rank and path-
compression heuristics.

 Example usage: Finding connected components in an 
undirected graph or Kruskal’s algorithm for finding a 
Minimum Spanning Tree.

 In Lab 1.5 you will implement this data structure
 In Almost Union-Find (Session 1) you implemented an 

extended version of the data structure which also supports 
delete and move.



7Fenwick Tree
 A Fenwick Tree is an efficient data structure for computing range 

sum queries with updates, both in O(log n).
 An example range sum is cumulative frequencies, in which case n is the 

highest value in the data.

 If the data is static then the range sums can be precomputed in O(n)
(rsq[i] = rsq[i-1] + A[i]).

 The cost of building a Fenwick Tree is O(m log n), where m is the 
number of data points.

 A Fenwick Tree only stores range sums, not the original values, which 
makes it very space efficient (O(n)).

 A Fenwick Tree is a binary tree where element i stores the range sum 
query for [i-LSOne(i)+1, i-LSOne(i)+2, …, i], where LSOne(i) is the 
least significant one in the binary representation of i.

 The range sum for any range [i,j] can be computed as rsq(j) – rsq(i-1).
 Fenwick Trees can be extended to d-dimensional data with query and 

update operations in O(2d logd n).



8Fenwick Tree

 Let’s define the following problem: 
We have n boxes. Possible queries are
 1. add marble to box i
 2. sum marbles from box k to box l

 The naive solution has time complexity of O(1) for query 1 and 
O(n) for query 2. Suppose we make m queries. The worst case 
(when all queries are type 2) has time complexity O(n * m). 

 Basic idea: Each integer can be represented as sum of powers of 
two. In the same way, cumulative frequency can be represented 
as sum of sets of subfrequencies. In our case, each set contains 
some successive number of non-overlapping frequencies.



9Segment Tree

 A Segment Tree is an efficient data structure for computing 
range queries with range updates, both in O(log n).

 Example range queries are range min/max queries and range 
sum queries.

 If the data is static then the range min/max queries can be 
precomputed in O(n log n).

 A Segment Tree is a binary tree where the root has index 1 and 
the index of the left/right child of index p is 2p/2p+1.

 RMQ(i,i) = A[i]. 
 For RMQ(i,j), let p1=RMQ(i, (i+j)/2) and p2=RMQ((i+j)/2+1, j), 

RMQ(i,j)=p1 if A[p1]≤A[p2], otherwise p2.



10Fenwick Tree vs Segment Tree
Feature Segment Tree Fenwick Tree

Build tree from array O(n) O(n log n)

Dynamic RMin/RMaxQ Ok Limited

Dynamic RSQ Ok Ok

Query Complexity O(log n) O(log n)

Point update complexity O(log n) O(log n)

Length of code Longer Shorter

,



11Example Problem: UVA 11402


