Algorithmic

Problem Solving
6hp, vt2018

Outline

What is algorithmic problem solving?

Why is algorithmic problem solving important?
What will be studied in this course?

A method for algorithmic problem solving
Common algorithmic problem solving approaches
Common data structures and algorithms

Pragmatic algorithmic problem solving using Kattis

What is Algorithmic Problem Solving?)

Algorithmic problem solving is about developing correct and
working algorithms to solve classes of problems.

The problems are normally very well defined and you know
there is a solution, but they can still be very hard.

Algorithms Programming

APS

Problem
Solving

- q’ Swedsoft

Mjukvaran ar
sjdlenisvensk
industri

Those that r;ally understand
and take advantage of a
software technology owns

the future'

ICPC Winners 2001-2016

2016 - Saint Petersburg State University, Russia
2015 - Saint Petersburg University of [TMO, Russia

2014 - Saint Petersburg State University, Russia
2013 - Saint Petersburg University of [TMO, Russia
2012 - Saint Petersburg University of ITMO, Russia
201 - Zhejiang, China

2010 - Shanghai Jiao Tong University, China

2009 - Saint Petersburg University of ITMO, Russia
2008 - Saint Petersburg University of ITMO, Russia
2007 - University of Warsaw, Poland

2006 - Saratov State University, Russia

2005 - Shanghai Jiao Tong University, China

2004 - Saint Petersburg University of ITMO, Russia
2003 - University of Warsaw, Poland

2002 - Shanghai Jiao Tong University, China

S oo oo oo

2001 - Saint Petersburg State University, Russia

Swedish Teams in the World Finals

2015 - KTH 28th
2010 — KTH 12th

2009 — KTH 34"
2007 - KTH 26t

2006 - Lund 19th
KTH 1gth

2005 - KTH 7t
2004 - KTH 2nd
2003 - KTH 13t
2002 — KTH nth

2001 — Ume3 11th

2000 - Linkoping 22md
1998 — Umed 4"
1997 — Umed 6"

The 3n + 1 problem

Background

Problem: in Computer Science are aften classified as belongies to a certain class of problams (e.g, WE Unsohvable, Recursive) In thiz problem you will be analyzirs a property of an
alzorithm whose classification is not known for all possibls inputs.

The Problem
Consider tha following alsnrithm:
inpzt o
mrizt o
if n = 1 than ISIOF

4 = d3 mdd shan B Jrd4]

azam Mo nf2

Given the ingut 22, the following sequence of mumbers will be printed 22 1134 1732 26 1340 20 105168421

It is conjachwed that the alsprithm above will terminate (when a 1 is printed) for amy intesral input value. Despite the simplicity of the alzorthm, it is mimown whether thiz conjachre iz
tmoz. It has been verified, bowever, for all integers n such that 0 p < 1,000,000 (and, in fact, for marm; moee mumbers them this.}

(Given an mpet A, it iz possible o determine the mmsber of mumbers printed (mcboding the 1). For a given # this 5 called the cycle-lengrh of m In the example above, the cyrle lensth of
22is 14.

For any two mumbers § and j vou are to det=rmine the maxmom cycle lensth over all monbers between | and .

The Input

Tha input will consist of a series of pairs of imezers § and j, one pair of integers per line ANl imtezers will be less than 1,000,000 and ereater than .
“You should process all pairs of intesers and for each peir determine the maginmem cycle length over all infezers between md inchiding i amd J.

You can assume that no operation overflons a 32-bit integer

The Output

For each pair of inpat intazers f and § you should outpet 1, j, and the magimam cycle lersth for integers between and inchuding § and j. These thres members should be separated by at
least ome space with all three membsrs on onz lne and with ona line of cotput for each line of nput. The imegers § 2nd § pust appear in the eatput in the :ams order in which they
appeared in the input and sheald be followed by the megimmmm cycle lensth {on the same line).

Sample Input

i ig

ico Iow
201 310
200 1900

Sample Output

110 30

i%2 300 3=
01 ILm o=@
AT 1oET 174

Example: The 3n+1 problem

100 The 351+ 1 problem

Background

Froblems= m ¢ e Science are often classified as belonegineg to a certain class of profolems= (e,

\ Unsolvable, hecorsive | e thns |'|I- e v will LAl Y AE A |'|I-|'I rtw ol an algoriblim wlios

clas=sification 1= not lkonown for all |II:'-.'-._|I_I' _|||||||-_

The Problem
Clonsider the following aleorithimn,

mput
2 print
3. [then ST
| Uooei= o then o B1T

£

. el=e y

i, L0y 2

Cilven the '_|||.||| 22 the following SEC e of numbers will be |.|-'_||||-||

2201031017 a226 154020 105 Tax 121

It s conjectured that the algorithon above will terminate Cwhen a 1 is printed] for any totegral tnpot
value, Despite the shmplicity of the algorthom, it s unkoown whether this conjectore is true, It has been
verified, however, for all integers wosuch that 0 < v < 1000, 000 (and, in fact, Tor many more nombers
Lhan this. |

Calven an put o, it 1s possible to o determine the nomber of nombers printed before and oeluding

Lhe 1= |||"_||||'||_ For a given o this s called the cgede-fe gkl of o, o the e ple above, the cyvele lengl i

ol 22 = 16,
For any two mombers ¢ and ¢ ovon are to detennine the maximum cvele length over all nombers

between and incloding both ¢ and .

Example: The 3n+1 problem

The Input

The '_||||||| will consist of a series of ||:|'_|'-\ of tntegers ¢ andd s ||:|'_|' of ntegers [per e, Al integers
Ul be dess than 10000 and greater than (0,
You should process all pairs of integers and for each pair deternmine the imasimomn cvele lenegth over

all integers between and ieloding © and .

The Output

For each pair of tnput tntegers ¢ and § von should outpot 0 poand the maxioomn evele length for integers
between and nelading @ and These three numbers shouald be -1.|'||;||':|||'|| ||_'. al least one space with all
Lhree nomnbers on one lne awd with one line ol ootpot for each lne of npot, The mtegers @ and §omnst
Appear m the |:|||||||| m the same order i owhich ||||'_'- :||||||':||'|'|| m the '_||||||| and =hould be followed ||_'-

Ehe masinm cvele leneth fon the samne line).

sample Input

1 10

100 200
201 210
200 1000

Sample Output

1 10 20

100 200 12k
201 210 g%
200 1000 174

Example: The 3n+1 problem

Follow the instructions in the problem!
Memoization to speed it up.

Table lookup to solve it in constant time.
Gotchas:

j can be smaller than i.
j can equal i.

The order of i and j in output must be the same as the input, even when j
is smaller than i.

Course Goals

The goals of the course are you should be able to:

analyze the efficiency of different approaches to solving a
problem to determine which approaches will be reasonably
efficient in a given situation,

compare different problems in terms of their difficulty;,

use algorithm design techniques such as greedy algorithms,
dynamic programming, divide and conquer, and combinatorial
search to construct algorithms to solve given problems,

strategies for testing and debugging algorithms and data
structures,

quickly and correctly implement a given specification of an
algorithm or data structure,

communicate and cooperate with other students during
problem solving in groups.

Examination

LAB1 4hp
individually solving the 4 lab assignments and

actively participating in at least 3 problem solving sessions.

UPPGa1 2hp,

individually solving the 14 weekly homework exercises, e.g.:
Data structures
Greedy Problems and Dynamic Programming
Graph Algorithms
Search
Math-related Problems

Computational Geometry.

The Schedule

18/1 Introduction 13.15-14.00

18/1 Practice problem solving session: 14.00-17.00 with discussion

25/1 Lab

26/1 Deadline Ex 1 (Greedy and DP 1) - Seminar Ex1 and Data structures

1/2 Lab

2/2 Deadline Ex2 (Data structures) — Seminar Ex2 and Arithmetic

8/2 Deadline Lab Assignment 1 (Data structures, Greedy/Dynamic, Arithmetic)
8/2 Problem solving session (individual based on Lab 1)

9/2 Deadline Ex3 (Arithmetic) - Seminar Ex3and Problem solving approaches
15/2 Lab

16/2 Deadline Ex4 (Greedy and DP 2) - Seminar Ex 4 and Graphs

21/2 Deadline Ex5 (Graphs 1) - Seminar Ex5 and Graphs

22/2 Lab

1/3 Deadline Lab Assignment 2 (Graphs)

1/3 Problem solving session (individual based on Lab 2)

2/3 Deadline Ex6 (Graphs 2) — Seminar Ex6

7/3 Deadline Ex7 — Seminar Ex7y

Steps in solving algorithmic problems

Estimate the difficulty

Theory (size of inputs, known algorithms, known theorems, ...)
Coding (size of program, many cases, complicated data structures, ...)

Have you seen this problem before? Have you solved it before? Do you
have useful code in your code library?

Understand the problem!

What is being asked for? What is given? How large can instances be?
Can you draw a diagram to help you understand the problem?
Can you explain the problem in your own words?

Can you come up with good examples to test your understanding?

Steps in solving algorithmic problems

Determine the right algorithm or algorithmic approach
Can you solve the problem using brute force?
Can you solve the problem using a greedy approach?
Can you solve the problem using dynamic programming?
Can you solve the problem using search?
Can you solve the problem using a known algorithm in your code library?

Can you modify an existing algorithm? Can you modify the problem to
suite an existing algorithm?

Do you have to come up with your own algorithm?

Solve the problem! ©

Time Limits and Computational Complexity)

The normal time limit for a program is a few seconds.

You may assume that your program can do about 100M
operations within this time limit.

< [10..11] O(n!), O(n°)
< [15..18] O(2" x n?)
< [18..22] O(2"x n)

<100 O(n4)
< 450 O(n3)
< 2K O(n?log, n)
< 10K O(n?)
<1M O(n log, n)

< 100M O(n), O(log,), O(1)

Enumerating permutations

DP TSP

DP with bitmask technique

DP with 3 dimensions and O(n) loop
Floyd Warshall’s (APSP)

2-nested loops + tree search
Bubble/Selection/Insertion sort
Merge Sort, Binary search

Simulation, find average

Important Problem Solving Approaches

Simulation/Ad hoc
Do what is stated in the problem
Example: Simulate a robot

Greedy approaches

Find the optimal solution by extending a partial solution by making locally
optimal decisions

Example: Minimal spanning trees, coin change in certain currencies

Divide and conquer
Take a large problem and split it up in smaller parts that are solved individually
Example: Merge sort and Quick sort

Dynamic programming
Find a recursive solution and compute it “backwards” or use memoization

Example: Finding the shortest path in a graph and coin change in all currencies

Search
Create a search space and use a search algorithm to find a solution

Example: Exhaustive search (breadth or depth first search), binary search,
heuristic search (A*, best first, branch and bound)

Important Data Structures and Algorithms

Data structures

Standard library data structures
Vector, stack, queue, heap, priority queue, sets, maps

Other data structures

Graph (adjacency list and adjacency matrix), Union/find, Segment tree,
Fenwick tree, Trie

Sorting
Quick sort, Merge sort, Radix sort, Bucket sort
Strings

String matching (Knuth Morris Pratt, Aho-Corasick), pattern matching,
trie, suffix trees, suffix arrays, recursive decent parsing

Important Data Structures and Algorithms

Dynamic programming

Longest common subsequence, Longest increasing subsequence, o/1
Knapsack, Coin Change, Matrix Chain Multiplication, Subset sum,
Partitioning

Graphs

Traversal (pre-, in- and post-order), finding cycles, finding connected
components, finding articulation points, topological sort, flood fill, Euler
cycle/Euler path, SSSP - Single source shortest path (Dijkstra, Bellman-
Ford), APSP - All pairs shortest path (Floyd Warshall), transitive closure
(Floyd Warshall), MST - Minimum spanning tree (Prim, Kruskal (using
Union/find)), Maximal Bipartite Matching, Maximum flow, Maximum
flow minimal cost, Minimal cut

Search

Exhaustive search (depth-first, breadth-first search, backtracking),
binary search (divide and conquer), greedy search (hill climbing),
heuristic search (A*, branch and bound), search trees

Important Data Structures and Algorithms

Mathematics

Number theory (prime numbers, greatest common divisor (GCD),
modulus), big integers, combinatorics (count permutations), number
series (Fibonacci numbers, Catalan numbers, binomial coefficients),
probabilities, linear algebra (matrix inversion, linear equations systems),
finding roots to polynomial equations, diofantic equations, optimization
(simplex)

Computational geometry

Representations of points, lines, line segments, polygons, finding
intersections, point localization, triangulation, Voronoi diagrams, area
and volume calculations, convex hull (Graham scan), sweep line
algorithms

Example Problem (NCPC 2009)

Money Matters

Our sad tale begins with a tight clique of friends. Together they went on a trip to the
picturesque country of Molvania. During their stay, various events which are too horrible
to mention occurred. The net result was that the last evening of the trip ended with a
momentous exchange of “I never want to see you again!”s. A quick calculation tells you
it may have been said almost 50 million times!

Back home in Scandinavia, our group of ex-friends realize that they haven't split the
costs incurred during the trip evenly. Some people may be out several thousand crowns.
Settling the debts turns out to be a bit more problematic than it ought to be, as many in
the group no longer wish to speak to one another, and even less to give each other money.

Naturally, you want to help out, so you ask each person to tell you how much money
she owes or is owed, and whom she is still friends with. Given this information, you're
sure you can figure out if it’s possible for everyone to get even, and with money only being
given between persons who are still friends.

Example Problem (NCPC 2009) |

Input specifications

The first line contains two integers, n (2 < n < 10000), and m (0 < m < 50000), the
number of friends and the number of remaining friendships. Then n lines follow, each
containing an integer o (—10000 < o < 10000) indicating how much each person owes
(or is owed if 0 < 0). The sum of these values is zero. After this comes m lines giving
the remaining friendships, each line containing two integers =z, y (0 < 2z <y < n — 1)
indicating that persons x and y are still friends.

Output specifications

Your output should consist of a single line saying “POSSIBLE” or “IMPOSSIBLE".

Example Problem

(NCPC 20009)

Sample input 1

Sample output 1

53
100
=75
-25
-42
42

W = o
= N =

POSSIBLE

Sample input 2

Sample output 2

4 2
15
20
-10
-25
0 2
13

IMPOSSIBLE

Example Problem (NCPC 2009) |

Problem

n persons with debts o5, o,. Can the debts be settled by only
transferring money between friends?

Solution

@ View the persons as vertices in a graph
with edges between friends.

100—-75) (42
@ Note: any amount of money can move
between two vertices that are

47
connected. @

@ Return POSSIBLE if the debts in each
connected component sum to zero.

Kattis (https://liu.kattis.com)

3£ AAPS/AAPS16 — Kattis, Linképing ... X | =+ v =
G- 6 @ | https://liukattis.com/courses/AAPS/AAPS16 c Search i:? E U ‘) (,1 @ vy | v @ e & p i v =
/.| Todo 0 G+ W Twitter M Mail f Cal & Doc " RSS | Readlater ' CiteULike | & Vin © Munsk B Me [E] overview [E] Links (B CFP) Schema| | | AAPS |) DM [} IDA) LiUB Proxy
(K4 Q Diigo~ & -~ Q 4 Bookmark ~ [B Highlight ~ - Capture ~ (& Send~) Read Later Unread Recent %¥ Add a filter | F Options L' Go premium!

Link6ping University | & submie Fredrik Heintz ™"

COURSES PROBLEMS QUEUE HELP ADMIN v Admin, Teacher, Stud...

Advanced Algorithmic Problem Solving - AAPS/AAPS16

This course offering has no end date

Teachers
o Hen

Problem groups associated with this course:

How Kattis checks a program

Compilation
Tac? | p
[Complles. | > .
For eachi test case
] Runtime
[Crashes? | > .
[Too slow?) 5 Time Limit
: J Exceeded
Incorrect) S Wrong
output? J Answer

Accepted

UVA Online Judge

UVa

Unline Judge

| Custom Search | Search

Main Menu

My Account

Contact Us

TOOLS on the Old Uva OJ Site
ACM-ICPC Live Archive
Logout

Online Judge
Quick submit
Migrate submissions
My Submissions
My Statistics
My uHunt with Virtual Contest Service

Browse Problems

http://uva.onlinejudge.org/

UVa OJ fundraising campaing

As you may already discovered by the widget shown on the left, we have started a fundraising campaing
to create a whole new UVa Online Judge. Please, take a couple of minutes to read the reasons for this on

the campaing website, by clicking on the widget.

Welcome to the UVa Online Judge

Here you will find hundreds of problems. They are like
the ones used during programming contests, and are
available in HTML and PDF formats. You can submit

your sources in a variety of languages, trying to solve
any of the problems available in our database.

See the new Contest Rankings section at the Live
Rankings link.

Mow you can use the new Quick access, info and
search option on the left menu for and easier
navigation. (The tool will be updated next days

Categorized set of problems

This book contains a
o o Froprat i 2 collection of relevant data
EES e e structures, algorithms,
and programming tips
written for University
students who want to be
more competitive in the
ACM International
Collegiate Programming
Contest (ICPC), high
school students who are
aspiring to be competitive
in the International
Olympiad in Informatics

Programming languages

Allowed languages are C, C++, Java, and Python.

C++ or Java is strongly recommended, use the language that
you are most familiar with and want to learn more about.

Get to know their standard libraries.

Get to know input and output. Remember that I/O in Java is
very slow, use Kattio. Remember that cout/cerr also is relatively
slow, learn how to use scanf/printf if you use C++.

Learn to use an appropriate IDE such as eclipse, emacs, or vim

Create a problem template to speed up problem solving and to
create a common format for your problems.

Pragmatic Algorithmic Problem Solving |

7% = Hodes Lt —— *7

II.-'**

¥ MAME C++ "Approach"
Started:
Finished:

Total time:

Submizsion 1:

Comments:

¥ E E X ¥ E X ¥ E ¥ ¥

Leszons learned:
i

#include <algorithm:
#include <cazsert>
#include <cmath
#include <cetdios
#include <cstdlibs
#include <cstrings
#include <functional>
#include <iomanipl
#include <iostream:
#include <zstream:
#include <map>
#include <set>
#include <queues
#include <stack>
#include <strings>
#include <utilitys>
#include <vector:

uzing namezpace std:
typedef wector{int> wit

int
main(int args, char* argul])

[] return G2

Testing and debugging

Always create an example input (.in) and example output (.out) file with
verbatim copies of the example input and output from the problem
statement!

For most problems it is enough to diff your output with the example output:
./prog < prog.in | diff - prog.out
Create additional tests, such as:

“»

Extreme inputs, i.e. smallest and largest values (o, 1, “”, empty line, 2"31-1)
Small inputs that you can compute by hand

Potentially tricky cases such as when all inputs are equal, in the case of floating
points numbers when you have to round both up and down

Very large cases, randomly generated to test that your program computes an
answer fast enough (even though you might not know the correct answer).
Use a correct but slow algorithm to compute answers.

Print intermediate information, such as values of relevant variables.

«

cout << “a=" <<a << “ b=" << b << endl;
Remember to remove the debug output before submitting! (or use cerr)

Summary

What is algorithmic problem solving?

Why is algorithmic problem solving important?
What will be studied in this course?

A method for algorithmic problem solving
Common algorithmic problem solving approaches
Common data structures and algorithms

Pragmatic algorithmic problem solving using Kattis

