
Algorithmic
Problem Solving

6hp, vt2017

Fredrik Heintz
Dept of Computer and Information Science

Linköping University

2Research

Delegation and task allocation through constraint satisfaction

S
tr

ea
m

re
as

on
in

g

A
rc

h
ite

ct
u

re
s

3Programming Contest Director

 Skolornas Programmeringsolympiad (PO)
 IDA-Mästerskap i Programmering och Algoritmer (IMPA)
 ACM International Collegiate Programming Contest (ICPC)

 Nordic Collegiate Programming Contest (NCPC)
 North Western European Regional Contest (NWERC)
 Deputy Super Regional Contest Director Europe

4ICPC Analytics

5Outline

 What is algorithmic problem solving?
 Why is algorithmic problem solving important?
 What will be studied in this course?
 A method for algorithmic problem solving
 Common algorithmic problem solving approaches
 Common data structures and algorithms
 Pragmatic algorithmic problem solving using Kattis

6What is Algorithmic Problem Solving?

 Algorithmic problem solving is about developing correct and
working algorithms to solve classes of problems.

 The problems are normally very well defined and you know
there is a solution, but they can still be very hard.

Algorithms Programming

Problem
Solving

APS

Those that really understand
and take advantage of

software technology owns
the future!

9ICPC Winners 2001-2016
 2016 - Saint Petersburg State University, Russia
 2015 - Saint Petersburg University of ITMO, Russia
 2014 - Saint Petersburg State University, Russia
 2013 - Saint Petersburg University of ITMO, Russia
 2012 - Saint Petersburg University of ITMO, Russia
 2011 - Zhejiang, China
 2010 - Shanghai Jiao Tong University, China
 2009 - Saint Petersburg University of ITMO, Russia
 2008 - Saint Petersburg University of ITMO, Russia
 2007 - University of Warsaw, Poland
 2006 - Saratov State University, Russia
 2005 - Shanghai Jiao Tong University, China
 2004 - Saint Petersburg University of ITMO, Russia
 2003 - University of Warsaw, Poland
 2002 - Shanghai Jiao Tong University, China
 2001 - Saint Petersburg State University, Russia

10Swedish Teams in the World Finals

 2015 – KTH 28th

 2010 – KTH 12th

 2009 – KTH 34th

 2007 – KTH 26th

 2006 – Lund 19th

KTH 19th

 2005 – KTH 7th

 2004 – KTH 2nd

 2003 – KTH 13th

 2002 – KTH 11th

 2001 – Umeå 11th

 2000 – Linköping 22nd

 1998 – Umeå 4th

 1997 – Umeå 6th

12Example: The 3n+1 problem

13Example: The 3n+1 problem

14Example: The 3n+1 problem

 Follow the instructions in the problem!
 Memoization to speed it up.
 Table lookup to solve it in constant time.
 Gotchas:

 j can be smaller than i.
 j can equal i.
 The order of i and j in output must be the same as the input, even when j

is smaller than i.

15Course Goals

The goals of the course are you should be able to:
 analyze the efficiency of different approaches to solving a

problem to determine which approaches will be reasonably
efficient in a given situation,

 compare different problems in terms of their difficulty,
 use algorithm design techniques such as greedy algorithms,

dynamic programming, divide and conquer, and combinatorial
search to construct algorithms to solve given problems,

 strategies for testing and debugging algorithms and data
structures,

 quickly and correctly implement a given specification of an
algorithm or data structure,

 communicate and cooperate with other students during
problem solving in groups.

16Examination

 LAB1 4hp
 individually solving the 4 lab assignments and
 actively participating in at least 3 problem solving sessions.

 UPPG1 2hp,
 individually solving the 14 weekly homework exercises, e.g.:

▪ Data structures
▪ Greedy Problems and Dynamic Programming
▪ Graph Algorithms
▪ Search
▪ Math-related Problems
▪ Computational Geometry.

17The Schedule
 18/1 Introduction
 19/1 Practice problem solving session: 13.10-16.30 Solving; 16.30-17.00 Discussion
 24/1 Deadline Ex 1 (Greedy and DP 1) – Seminar Ex1 and Data structures
 26/1 Lab
 31/1 Deadline Ex2 (Data structures) – Seminar Ex2 and Arithmetic
 2/2 Lab
 8/2 Deadline Ex3 (Arithmetic) – Seminar Ex3 and Problem solving approaches
 9/2 Deadline Lab Assignment 1 (Data structures, Greedy/Dynamic, Arithmetic)
 9/2 Problem solving session (individual based on Lab 1)
 15/2 Deadline Ex4 (Greedy and DP 2) – Seminar Ex 4 and Graphs
 16/2 Lab
 22/2 Deadline Ex5 (Graphs 1) – Seminar Ex5 and Graphs
 23/2 Lab
 28/2 Deadline Ex6 (Graphs 2) – Seminar Ex6
 2/3 Deadline Lab Assignment 2 (Graphs)
 2/3 Problem solving session (individual based on Lab 2)
 7/3 Deadline Ex7 – Seminar Ex7
 20/3 Problem solving session (group based on Lab 1 and Lab 2)

18Steps in solving algorithmic problems

 Estimate the difficulty
 Theory (size of inputs, known algorithms, known theorems, …)
 Coding (size of program, many cases, complicated data structures, …)
 Have you seen this problem before? Have you solved it before? Do you

have useful code in your code library?

 Understand the problem!
 What is being asked for? What is given? How large can instances be?
 Can you draw a diagram to help you understand the problem?
 Can you explain the problem in your own words?
 Can you come up with good examples to test your understanding?

19Steps in solving algorithmic problems

 Determine the right algorithm or algorithmic approach
 Can you solve the problem using brute force?
 Can you solve the problem using a greedy approach?
 Can you solve the problem using dynamic programming?
 Can you solve the problem using search?
 Can you solve the problem using a known algorithm in your code library?
 Can you modify an existing algorithm? Can you modify the problem to

suite an existing algorithm?
 Do you have to come up with your own algorithm?

 Solve the problem!

20Time Limits and Computational Complexity

n Worst AC Complexity Comments

≤ [10..11] O(n!), O(n6) Enumerating permutations

≤ [15..18] O(2n × n2) DP TSP

≤ [18..22] O(2n × n) DP with bitmask technique

≤ 100 O(n4) DP with 3 dimensions and O(n) loop

≤ 450 O(n3) Floyd Warshall’s (APSP)

≤ 2K O(n2 log2 n) 2-nested loops + tree search

≤ 10K O(n2) Bubble/Selection/Insertion sort

≤ 1M O(n log2 n) Merge Sort, Binary search

≤ 100M O(n), O(log2), O(1) Simulation, find average

 The normal time limit for a program is a few seconds.
 You may assume that your program can do about 100M

operations within this time limit.

21Important Problem Solving Approaches

 Simulation/Ad hoc
 Do what is stated in the problem
 Example: Simulate a robot

 Greedy approaches
 Find the optimal solution by extending a partial solution by making locally

optimal decisions
 Example: Minimal spanning trees, coin change in certain currencies

 Divide and conquer
 Take a large problem and split it up in smaller parts that are solved individually
 Example: Merge sort and Quick sort

 Dynamic programming
 Find a recursive solution and compute it “backwards” or use memoization
 Example: Finding the shortest path in a graph and coin change in all currencies

 Search
 Create a search space and use a search algorithm to find a solution
 Example: Exhaustive search (breadth or depth first search), binary search,

heuristic search (A*, best first, branch and bound)

22Important Data Structures and Algorithms

 Data structures
 Standard library data structures

▪ Vector, stack, queue, heap, priority queue, sets, maps

 Other data structures
▪ Graph (adjacency list and adjacency matrix), Union/find, Segment tree,

Fenwick tree, Trie

 Sorting
 Quick sort, Merge sort, Radix sort, Bucket sort

 Strings
 String matching (Knuth Morris Pratt, Aho-Corasick), pattern matching,

trie, suffix trees, suffix arrays, recursive decent parsing

23Important Data Structures and Algorithms

 Dynamic programming
 Longest common subsequence, Longest increasing subsequence, 0/1

Knapsack, Coin Change, Matrix Chain Multiplication, Subset sum,
Partitioning

 Graphs
 Traversal (pre-, in- and post-order), finding cycles, finding connected

components, finding articulation points, topological sort, flood fill, Euler
cycle/Euler path, SSSP - Single source shortest path (Dijkstra, Bellman-
Ford), APSP – All pairs shortest path (Floyd Warshall), transitive closure
(Floyd Warshall), MST – Minimum spanning tree (Prim, Kruskal (using
Union/find)), Maximal Bipartite Matching, Maximum flow, Maximum
flow minimal cost, Minimal cut

 Search
 Exhaustive search (depth-first, breadth-first search, backtracking),

binary search (divide and conquer), greedy search (hill climbing),
heuristic search (A*, branch and bound), search trees

24Important Data Structures and Algorithms

 Mathematics
 Number theory (prime numbers, greatest common divisor (GCD),

modulus), big integers, combinatorics (count permutations), number
series (Fibonacci numbers, Catalan numbers, binomial coefficients),
probabilities, linear algebra (matrix inversion, linear equations systems),
finding roots to polynomial equations, diofantic equations, optimization
(simplex)

 Computational geometry
 Representations of points, lines, line segments, polygons, finding

intersections, point localization, triangulation, Voronoi diagrams, area
and volume calculations, convex hull (Graham scan), sweep line
algorithms

25Example Problem (NCPC 2009)

26Example Problem (NCPC 2009)

27Example Problem (NCPC 2009)

28Example Problem (NCPC 2009)

29Kattis (https://liu.kattis.com)

30How Kattis checks a program

Compiles?

Crashes?

Incorrect
output?

Too slow?

Compilation
Error

Runtime
Error

Time Limit
Exceeded

Wrong
Answer

Accepted

For each test case

31UVA Online Judge

http://uva.onlinejudge.org/

32Programming languages

 Allowed languages are C, C++, Java, and Python.
 C++ or Java is strongly recommended, use the language that

you are most familiar with and want to learn more about.
 Get to know their standard libraries.
 Get to know input and output. Remember that I/O in Java is

very slow, use Kattio. Remember that cout/cerr also is relatively
slow, learn how to use scanf/printf if you use C++.

 Learn to use an appropriate IDE such as eclipse, emacs, or vim
 Create a problem template to speed up problem solving and to

create a common format for your problems.

33Pragmatic Algorithmic Problem Solving

34Testing and debugging
 Always create an example input (.in) and example output (.out) file with

verbatim copies of the example input and output from the problem
statement!

 For most problems it is enough to diff your output with the example output:
./prog < prog.in | diff - prog.out

 Create additional tests, such as:
 Extreme inputs, i.e. smallest and largest values (0, 1, “”, empty line, 2^31-1)
 Small inputs that you can compute by hand
 Potentially tricky cases such as when all inputs are equal, in the case of floating

points numbers when you have to round both up and down
 Very large cases, randomly generated to test that your program computes an

answer fast enough (even though you might not know the correct answer).

 Use a correct but slow algorithm to compute answers.
 Print intermediate information, such as values of relevant variables.

cout << “a=“ << a << “; b=“ << b << endl;
Remember to remove the debug output before submitting! (or use cerr)

35Summary

 What is algorithmic problem solving?
 Why is algorithmic problem solving important?
 What will be studied in this course?
 A method for algorithmic problem solving
 Common algorithmic problem solving approaches
 Common data structures and algorithms
 Pragmatic algorithmic problem solving using Kattis

