Föreläsning 21
 Directed and weighted graphs

TDDD86: DALP

Utskriftsversion av Föreläsing i Datastrukturer, algoritmer och programmeringsparadigm 05 December 2023

IDA, Linköpings universitet

Content
Contents
1 Directed graphs 1
2 Connectivity 2
3 Transitive closure 4
4 Topological sorting 9
5 Weighted graphs 14
6 Shortest paths 15
1 Directed graphs
Introduction

- In a directed graph, all edges are directed

Properties

- A graph $G=(V, E)$ s.t. each edge as a direction:
- With edge (a, b) you can go from a to b but not from b to a.
- If G is simple (no parallel edges or loops) then $m \leq n \cdot(n-1)$, hence $m \in O\left(n^{2}\right)$.

Some algorithmic graph problems

- Path. Is their a directed path from s to t ?
- Shorted path. what is the shorted directed path from s to t ?
- Strong connectivity. Is there a directed path between all pairs of nodes?
- Topological sort. Is it possible to draw the graph such that all the edges point in the same direction?
- Transitive closure. For which nodes v and w there is at least one path from v to w ?
- Page Rank. How important is a web page?

Directed DFS

- We can specialize the DFS and BFS graph traversing algorithms to directed graphs
- In the directed DFS algorithm there are 4 kinds of edges
- "discovery"-edges
- back-edges
- forward-edges
- crossing edges
- A directed DFS from node s lists the nodes that are reachable from s

2 Connectivity

Reachability

- DFS-tree rooted in v : nodes reachable from v via directed paths
- Not all nodes are reachable from node C, but all nodes are reachable from node B

Strongly connected graphs
Each node is reachable from each other node

Algorithm to decide whether a graph is strongly connected

- Choose a node v in G
- // Can we reach all nodes from v ? Perform DFS from v in G
- If a node w remains unvisited, answer "no"
- Obtain G^{\prime} from G by reversing all edges
- // Can we reach all nodes from v in G^{\prime} ? Perform DFS v in G^{\prime}
- If a node w remains unvisited, answer "no"
- Otherwise answer "yes"
- Execution time: $O(n+m)$
G:

Strongly connected components

- A maximal sub-graph where each node is reachable from each other node in the sub-graph
- Can also be obtained in $O(n+m)$ time complexity by using DFS in several steps
- The DFS based Kosaraju's algorithm:
- Call DFS and enumerate vertices in post-order
- Call DFS on transposed graph (i.e., reversed edges)

3 Transitive closure

Transitive closure

- Given a directed graph G, the transitive closure of G is the directed graph G^{*} where
- G^{*} has the same nodes as G
- if G has a directed path from u to $v(u \neq v)$ then G^{*} has a directed edge fro $\mathrm{m} u$ to v
- The transitive closure make explicit reachability in a directed graph

Computing the transitive closure

- We could execute DFS from each node v_{1}, \ldots, v_{n}, hence $O(n \cdot(n+m))$
- A dynamic programming alternative: Floyd-Warshalls algorithm
- Identify the nodes with $1,2, \ldots, n$.
- In phase k, only consider paths that use nodes in $1,2, \ldots, k$ as intermediary nodes:

Floyd-Warshall algorithm

- The Floyd-Warshall algorithm enumerates the nodes in G as v_{1}, \ldots, v_{n} and computes the series of directed graphs G_{0}, \ldots, G_{n}
- $G_{0}=G$
- G_{k} has a directed edge $\left(v_{i}, v_{j}\right)$ if G has a directed path from v_{i} to v_{j} with intermediary nodes in the set $\left\{v_{1}, \ldots, v_{k}\right\}$
- We get $G_{n}=G^{*}$
- At iteration k the graph G_{k} is computed from G_{k-1}
- Execution time: $O\left(n^{3}\right)$ if areAdjacent is $O(1)$

The Floyd-Warshall algorithm
function FLOYDWARSHALL (G)

$$
\begin{aligned}
& G_{0} \leftarrow G \\
& \text { for } k \leftarrow 1 \text { to } n \text { do } \\
& \quad G_{k} \leftarrow G_{k-1} \\
& \quad \text { for } i \leftarrow 1 \text { to } n(i \neq k) \text { do } \\
& \quad \text { for } j \leftarrow 1 \text { to } n(j \neq i, k) \text { do } \\
& \quad \text { if } G_{k-1} \text {.AREADJACENT }\left(v_{i}, v_{k}\right) \text { then } \\
& \quad \text { if } G_{k-1} \text {.AREADJACENT }\left(v_{k}, v_{j}\right) \text { then } \\
& \text { if } \neg G_{k} \text {.AREADJACENT }\left(v_{i}, v_{j}\right) \text { then } \\
& \quad G_{k} \text {. INSERTDIRECTEDEDGE }\left(v_{i}, v_{j}, k\right)
\end{aligned}
$$

return G_{n}

Example: Floyd-Warshall

Floyd-Warshall, iteration 1

Floyd-Warshall, iteration 2

Floyd-Warshall, iteration 3

Floyd-Warshall, iteration 4

Floyd-Warshall, iteration 5

Floyd-Warshall, iteration 6

Floyd-Warshall, end

4 Topological sorting

Directed acyclic graphs and topological sorting

- A directed acyclic graph (DAG) is a directed graph that does not have any directed cycle
- A topological sorting of a graph is a total ordering v_{1}, \ldots, v_{n} of the nodes such that each edge $\left(v_{i}, v_{j}\right)$ satisfies $i<j$
- Example: Existence of a plan for tasks that depend on each other.

Proposition 1. A graph can be topologically sorted iff it is a DAG

An algorithm for topological sorting
procedure TOPOLOGICALSORT(G)

$$
\begin{aligned}
& H \leftarrow G \\
& n \leftarrow G . \text { NUMVERTICES }
\end{aligned}
$$

while H is non-empty do
let v be a node without outgoing edges
mark v with n
$n \leftarrow n-1$
remove v from H

Execution time: $O(n+m)$. How...?

Algorithm for topological sorting via DFS

procedure TOPOLOGICALDFS(G)
$n \leftarrow G$.NUMVERTICES
mark all nodes and edges as UNEXPLORED like in DFS
for all $v \in G$.VERTICES() do

if $\operatorname{GETLABEL}(v)=U N E X P L O R E D$ then

 TOPOLOGICALDFS (G, v)
procedure TOPOLOGICALDFS (G, v)

SETLABEL ($v, V I S I T E D)$
for all $e \in G$.IncIDENTEDGES (v) do if $\operatorname{GETLABEL}(e)=U N E X P L O R E D$ then $w \leftarrow \operatorname{OPPOSITE}(v, e)$
if $\operatorname{GETLABEL}(w)=U N E X P L O R E D$ then
$\operatorname{SETLABEL}(e, D I S C O V E R Y)$
TOPOLOGICALDFS (G, w)

else

 e is a crossing edge or a forward edgemark v with the topological number n
$n \leftarrow n-1$

Example: Topological sorting

Example: Topological sorting

Example: Topological sorting

Example: Topological sorting

Example: Topological sorting

Example: Topological sorting

Example: Topological sorting

Example: Topological sorting

Example: Topological sorting

5 Weighted graphs

Weighted graphs

- In a weighted graph, each edge is associated a numerical weight.
- Weights can represent distances, costs, etc.

Google maps

Continentals fly routes in USA (august 2010)

6 Shortest paths

The shortest path problem

- Given a weighted graph and two nodes u and v, find a path between u and v with minimal total weight.
- Length of a path is the sum of the weights of its edges

Example

Shortest path between Providence and Honolulu

Properties of shortest paths

- A sub-path of a shortest path is also a shortest path
- There is a tree of shortest paths from a start node to all other nodes

Example
A tree of shortest paths from Providence


```
Weighted Floyd-Warshalls algorithm
    function WeightedFloydWarshall \((G(N, E, w))\)
        for \(i \leftarrow 1\) to \(N\) do
            for \(j \leftarrow 1\) to \(N\) do
            \(\operatorname{dist}(i, j) \leftarrow w(i, j)\)
        for \(i \leftarrow 1\) to \(N\) do
            \(\operatorname{dist}(i, i) \leftarrow 0\)
        for \(k \leftarrow 1\) to \(N\) do
            for \(i \leftarrow 1\) to \(N\) do
                for \(j \leftarrow 1\) to \(N\) do
                    if \(\left(\operatorname{dist}\left(v_{i}, v_{j}\right)>\operatorname{dist}\left(v_{i}, v_{k}\right)+\operatorname{dist}\left(v_{k}, v_{j}\right)\right)\) then
                        \(\operatorname{dist}\left(v_{i}, v_{j}\right) \leftarrow \operatorname{dist}\left(v_{i}, v_{k}\right)+\operatorname{dist}\left(v_{k}, v_{j}\right)\)
```

 return dist

Dijkstra's algorithm

- Distance from a node v to a node s is the length of a shortest path between s and v
- Dijkstra's algorithm computes the distance from a given start node s to all other nodes v in the graph
- Assumptions:
- the graph is connected
- graph has no loops or parallel edges
- weights are non-negative
- We build a "cloud" of nodes, starting from s, that will cover all nodes
- We mark each node v in the cloud or neighbor to it with $d(v)$, which represents the distance between v and s
- At each step:
- Extend the cloud to the node u that was outside the cloud and which has the minimal distance $d(u)$
- update distances of nodes that are neighbor to u

Extension step

- Consider an edge $e=(u, z)$ s.t.
- u has just been added to the cloud
$-z$ is not part of the cloud yet
- Edge e updates $d(z)$ with :
$-d(z) \leftarrow \min \{d(z), d(u)+$ weight $(e)\}$

Dijkstra pseudocode
function dijkstra $\left(v_{1}, v_{2}\right)$:
initialize every vertex to have a cost of infinity.
set v_{1} 's cost to 0 .
pqueue := \{v ${ }_{1}$, with priority 0$\}$. // ordered by cost
while pqueue is not empty:
$v:=$ dequeue vertex from pqueue with minimum priority.
mark v as visited.
if v is v_{2}, we can stop.
for each unvisited neighbor n of v :
cost $:=v$'s cost + weight of edge (v, n).
if cost < n 's cost:
set n 's cost to cost, and n 's previous to v.
enqueue n in the pqueue with priority of cost, or update its priority if it was already in the pqueue.
reconstruct path from v_{2} back to v_{1}, following previous pointers.

Example

- dijkstra(A, F);

> unction $\operatorname{dijkstra}\left(v_{1}, v_{2}\right):$
> v_{1} 's cost $:=0$.
> pqueue $:=\left\{v_{1}\right\} . ~ / / ~ o r d e r e d ~ b y ~ c o s t ~$
while pqueue is not empty: $v:=$ dequeue min cost from pqueue. mark v as visited if v is v_{2}, we can stop.
for each unvisited neighbor n of v : cost $:=v$'s cost + weight of edge (v, n). if cost < n 's cost:
set n 's cost to cost and n 's previous to v. enqueue or update n in the pqueue.
reconstruct path from v_{2} back to v_{1}, following previous pointers.

- I våra diagram färglägger vi en nod:
- vit om den är outforskad
pqueue $=\{\mathrm{A}: 0\}$
- gul om den köats för senare behandling
- grön om den besökts (plockats ut ur kön) och behandlats

Example

- dijkstra(A, F);
function $\operatorname{dijkstra}\left(v_{1}, v_{2}\right)$:
v_{1} 's cost := 0 .
pqueue := $\left\{v_{1}\right\}$. // ordered by cost
while pqueue is not empty:
$v:=$ dequeue min cost from pqueue. // A mark v as visited.

$$
\text { if } v \text { is } v_{2} \text {, we can stop. }
$$

for each unvisited neighbor n of $v: / / B, D$ cost $:=v$'s cost + weight of edge (v, n). if cost < n 's cost:
set n 's cost to cost and n 's previous to v. enqueue or update n in the pqueue. // B's cost $=0+2$, D's cost $=0+1$
reconstruct path from v_{2} back to v_{1}, following previous pointers.

∞
∞
pqueue $=\{D: 1, B: 2\}$

Example

- dijkstra(A, F);

function dijkstra $\left(v_{1}, v_{2}\right)$:
v_{1} 's cost :=0.
pqueue :=\{vi $\}$. // ordered by cost
while pqueue is not empty: $v:=$ dequeue min cost from pqueue. // D mark v as visited. if v is v_{2}, we can stop.
for each unvisited neighbor n of $v: / / C, E, F, G$ cost $:=v$'s cost + weight of edge (v, n). if cost < n 's cost:
set n 's cost to cost and n 's previous to v. enqueue or update n in the pqueue. // $\mathrm{C}=1+2, \mathrm{E}=1+2, \mathrm{~F}=1+8, \mathrm{G}=1+4$
reconstruct path from v_{2} back to v_{1}, following previous pointers.

pqueue $=\{B: 2, C: 3, E: 3, G: 5, F: 9\}$

Example

- dijkstra(A, F);
function $\operatorname{dijkstra}\left(v_{1}, v_{2}\right)$:
v_{1} 's cost :=0.
pqueue :=\{v, $\}$. // ordered by cost
while pqueue is not empty:
$v:=$ dequeue min cost from pqueue. // B mark v as visited.
if v is v_{2}, we can stop.
for each unvisited neighbor n of $v: / / E$ cost $:=v$'s cost + weight of edge $(v, n) . / / 2+10$ if cost < n's cost:
set n 's cost to cost and n 's previous to v. enqueue or update n in the pqueue. // no change
reconstruct path from v_{2} back to v_{1}, following previous pointers.

pqueue $=\{C: 3, E: 3, G: 5, F: 9\}$

Example

- dijkstra(A, F);

function dijkstra $\left(v_{1}, v_{2}\right)$:
v_{1} 's cost : $=0$.
pqueue :=\{ $\left.v_{1}\right\}$. // ordered by cost
while pqueue is not empty:
$v:=$ dequeue min cost from pqueue. // C
mark v as visited.
if v is v_{2}, we can stop.
for each unvisited neighbor n of $v: / / F$ cost $:=v$'s cost + weight of edge $(v, n) . / / 3+5$ if cost < n 's cost: // $8<9$
set n 's cost to cost and n 's previous to v. enqueue or update n in the pqueue. $/ / F=8$
reconstruct path from v_{2} back to v_{1}, following previous pointers.

pqueue $=\{E: 3, G: 5, F: 8\}$

Example

- dijkstra(A, F);
function dijkstra $\left(v_{1}, v_{2}\right)$:
v_{1} 's cost :=0.
pqueue $:=\left\{v_{1}\right\}$. // ordered by cost
while pqueue is not empty:
$v:=$ dequeue min cost from pqueue. //E mark v as visited.
if v is v_{2}, we can stop.
for each unvisited neighbor n of $v: / / G$ cost $:=v$'s cost + weight of edge $(v, n) . / / 3+6$ if cost < n 's cost: // $9>5$
set n 's cost to cost and n 's previous to v. enqueue or update n in the pqueue. // no change
reconstruct path from v_{2} back to v_{1}, following previous pointers.

pqueue $=\{G: 5, F: 8\}$

Example

- dijkstra(A, F);
function dijkstra $\left(v_{1}, v_{2}\right)$:
v_{1} 's cost := 0 .
pqueue := $\left.v_{1}\right\}$. // ordered by cost
while pqueue is not empty:
$v:=$ dequeue min cost from pqueue. // G mark v as visited.
if v is v_{2}, we can stop.
for each unvisited neighbor n of $v: / / F$
cost $:=v$'s cost + weight of edge (v, n). // 5+1
if cost < n's cost: // $6<8$
set n 's cost to cost and n 's previous to v. enqueue or update n in the pqueue. $/ / F=6$
reconstruct path from v_{2} back to v_{1},
following previous pointers.

Example

- dijkstra(A, F);
function $\operatorname{dijkstra}\left(v_{1}, v_{2}\right)$:
v_{1} 's cost := 0 .
pqueue : $=\left\{v_{1}\right\}$. // ordered by cost
while pqueue is not empty: $v:=$ dequeue min cost from pqueue. // F mark v as visited.
if v is v_{2}, we can stop.
for each unvisited neighbor n of v :
cost $:=v$'s cost + weight of edge (v, n).
if cost < n 's cost:
set n 's cost to cost and n 's previous to v. enqueue or update n in the pqueue.
reconstruct path from v_{2} back to v_{1},
following previous pointers.

pqueue $=\{ \}$

Example

- dijkstra(A, F);

function dijkstra $\left(v_{1}, v_{2}\right)$:
v_{1} 's cost $:=0$.
pqueue := $\left\{v_{1}\right\}$. // ordered by cost
while pqueue is not empty: $v:=$ dequeue min cost from pqueue. mark v as visited. if v is v_{2}, we can stop. for each unvisited neighbor n of v : cost $:=v$'s cost + weight of edge (v, n). if cost < n's cost:
set n 's cost to cost and n 's previous to v. enqueue or update n in the pqueue.
reconstruct path from v_{2} back to v_{1},
following previous pointers.

$/ /$ path $=\{A, D, G, F\}$

Analysis of Dijkstra algorithm

- incidentEdges is called once for each node
- markings are fetched/updated for node $z O(\operatorname{deg}(z))$ times
- to fetch/update a marking takes $O(1)$ time
- Each node is inserted once and removed once from the priority queue, where each insertion and removal takes $O(\log n)$ time
- The key of a node in the priority queue is updated at most $\operatorname{deg}(w)$ times, where each update may take at most $O(\log n)$ time
function dijkstra $\left(v_{1}, v_{2}\right)$:
initialize every vertex to have a cost of infinity.
set v_{1} 's cost to 0
pqueue $:=\left\{v_{1}\right.$, with priority 0$\}$. // ordered by cost
while pqueue is not empty:
$v:=$ dequeue vertex from pqueue with minimum priority. mark v as visited.
if v is v_{2}, we can stop.
for each unvisited neighbor n of v :
cost $:=v$'s cost + weight of edge (v, n). if cost < n 's cost:
set n 's cost to cost, and n 's previous to v.
enqueue n in the pqueue with priority of cost, or update its priority if it was already in the pqueue.
reconstruct path from v_{2} back to v_{1}, following previous pointers.
- Dijkstra's algorithm has execution time of $O((n+m) \log n)$ given the graph is represented using adjacent lists
- Execution time can also be expressed as $O(m \log n)$ since we assume it is connected

Why does it work

Dijkstra's algorithm is a greedy algorithm. It greedily adds nodes in increasing distances to the source.

- Suppose the algorithm does not find all shortest distances. Let F be the first node that got a wrong shortest distance.
- Any node D preceding F along a shortest path must have obtained a correct shortest distance and added to the cloud at some point.
- But then the edge (D, F) must have been updated when such a D was added!
- In other words, since $d(F) \geq d(D)$, then the distance to F should have been correct.

Why does it require non-negative weights?
Dijkstra's algorithm is a greedy algorithm. It greedily adds nodes in increasing distances to the source.

- If a node with a negative incident edge is added later to the cloud, it would jeopardize the distances to nodes that were earlier added.

C's sanna avstånd är 1, men finns
redan i molnet med $\mathrm{d}(\mathrm{C})=5$!

Observations

- Dijkstra's algorithm works by incrementally computing shortest path to potential intermediary nodes.
- Most such paths are in the wrong direction.

			$5 ?$	4	$5 ?$	6?			
	$6 ?$	5?	4	3	4	5	6?		
6 ?	5	4	3	2	3	4	5?		
$5 ?$	4	3	2	1	2	3	4	$5 ?$	
4	3	2	1	स	1	2	3	4	
5?	4	3	2	1	2	3	4	5?	
	$5 ?$	4	3	2	3	4	5	6?	
	6 ?	5	4	3	4	5?	$6 ?$		
		$6 ?$	5?	4	5?				

- The algorithm explores in all directions;
- Could we tips the algorithm to first explore more promising directions?

Heuristics

- heuristic: Speculation, estimation or a qualified guess on how the search for a solution should proceed.
- Example: Estimate the distance between two locations in a map using a direct line.
- for the following algorithm, an admissible heuristic is one that does not over-estimate the distance.
- Ok if the heuristic under-estimates the distance (as above with the maps).

A^{\star}-algorithm

- A^{\star} ("A-star): a modified version of Dijkstra's algorithm that uses a heuristic to direct the search.

- Suppose we are looking for a path from source node a to target node c
- Each intermediary node b has two costs:
- The known exact cost from a to b
- A heuristic based estimation of the cost from b to the target node c.
- Idea: Execute Dijkstra's algorithm but adopt the following priority in the priority queue:
- priority $(b)=\operatorname{cost}(a, b)+\operatorname{Heuristic}(b, c)$
- Explore based on the smallest estimated cost

Example: Labyrinth heuristic

- A possible heuristic to find paths in a labyrinth:
$-\mathrm{H}\left(p_{1}, p_{2}\right)=\operatorname{abs}\left(p_{1} \cdot x-p_{2} \cdot x\right)+\operatorname{abs}\left(p_{1} \cdot y-p_{2} \cdot y\right) \quad / / \mathrm{dx}+\mathrm{dy}$
- Idea: Explore neighbors with low value of (cost + heuristic)

6	5	4	3	4
5	4	3	2	3
4	3	2	1	2
a	2	1	c	1
4	3	2	1	2
5	4	3	2	3

Recall: pseudo-code for Dijkstra's algorithm
function dijkstra $\left(v_{1}, v_{2}\right)$:
initialize every vertex to have a cost of infinity.
set v_{1} 's cost to 0 .
pqueue $:=\left\{v_{1}\right.$, with priority 0$\}$. // ordered by cost
while pqueue is not empty:
$v:=$ dequeue vertex from pqueue with minimum priority.
mark v as visited.
if v is v_{2}, we can stop.
for each unvisited neighbor n of v :
cost $:=v$'s cost + weight of edge (v, n).
if cost < n 's cost:
set n 's cost to cost, and n 's previous to v. enqueue n in the pqueue with priority of cost, or update its priority if it was already in the pqueue.
reconstruct path from v_{2} back to v_{1}, following previous pointers.

Pseudo-code for the A^{\star}-algorithm
function $\operatorname{astar}\left(v_{1}, v_{2}\right)$:
initialize every vertex to have a cost of infinity.
set v_{1} 's cost to 0 .
pqueue : $=\left\{v_{1}\right.$, at priority $\left.\mathrm{H}\left(\mathrm{v}_{1}, v_{2}\right)\right\}$.
while pqueue is not empty:
$v:=$ dequeue vertex from pqueue with minimum priority. mark v as visited.
if v is v_{2}, we can stop.
for each unvisited neighbor n of v :
cost $:=v$'s cost + weight of edge (v, n).
if cost < n 's cost:
set n 's cost to cost, and n 's previous to v.
enqueue n in the pqueue with priority of (cost $+\mathrm{H}\left(n, v_{2}\right)$),
or update its priority to be $\left(\operatorname{cost}+\mathrm{H}\left(n, v_{2}\right)\right)$ if it was already in the pqueue.
reconstruct path from v_{2} back to v_{1}, following previous pointers.
Observe that only nodes' priorities are influenced by the heuristic, not their costs.

