Föreläsning 20

Graphs and graph searches

TDDD86: DALP

Utskriftsversion av Föreläsing i Datastrukturer, algoritmer och programmeringsparadigm 4 December 2023

IDA, Linköpings universitet

Content

Contents

1 Graphs 1
1.1 Introduction 1
1.2 ADT graph 3
1.3 Data structures 4
2 Search in undirected graphs 5
2.1 DFS 5
2.2 BFS 10
2.3 DFS vs BFS 12

1 Graphs

1.1 Introduction

Definition

- A graph is a pair (V, E), where
- V is a set of nodes or vertices
- E is a set of pairs of nodes or edges
- Nodes and edges can store data

Types of edges

- Directed edge
- ordered pair of nodes (u, v)
- u is the start node, v is the end node
- undirected edge

$$
\text { - unordered pair }\{u, v\}
$$

- In a directed graph, all edges are directed
- In an undirected graph, all edges are undirected

Why study graphs?

- Thousands of practical applications
- Multitude of graph algorithms
- Interesting abstraction with many applications
- Branch of computer science and discrete mathematics with many challenges

Terminology

- An edge has endpoints (a has endpoints U and V)
- Edges that end in a node n are said to be incidents (a, d and b are incident to V)
- Nodes can be adjacent (U and V are adjacent)
- Nodes have degrees (X has degree 5)
- Parallel edges (h and i are parallel edges)
- Loops (j is a loop)

More terminology

- A cycle is a circular sequence of alternating nodes and edges. Each edge is preceded and followed by its endpoints.
- A simple cycle is a cycle where all nodes and edges are distinct.
- $C_{1}=(V, b, X, g, Y, f, W, c, U, a, V)$ is a simple cycle.
- $C_{2}=(U, c, W, e, X, g, Y, f, W, d, V, a, U)$ is not a simple cycle.

Properties

Property 1
$\sum_{v} \operatorname{deg}(v)=2 m$ Proof: each edge is counted twice

Property 2

In an undirected graph without loops and parallel edges, we have $m \leq n(n-1) / 2$ Proof: Each node has a max degree of $(n-1)$

Notation

- n number of nodes
- m number of edges
- $\operatorname{deg}(v)$ is the degree of node v

Exempel
$n=4$
$m=6$
$\operatorname{deg}(v)=3$

Some algorithmic graph problems

- Path. Is there a path between s and t ?
- Shortest path. What is the shortest path between s and t ?
- Cycle. Is there a cycle in the graph?
- Euler tour. Is there a cycle that uses each edge exactly once?
- Hamiltonian cycle. Is there a cycle that uses each node exactly once?
- Connectivity. Is there a path from each node to each other node?
- MST. What is the best way to connect all nodes?
- Bi-connected graph. Is it possible to obtain a disconnected graph by removing a single node?
- Planar. Is it possible to draw a graph without having edges crossing each other?
- Isomorphism. Are two graphs identical except for renaming?

Challenge. Which of these problems are simple? difficult? impossible to solve efficiently?

1.2 ADT graph

Important methods for undirected graphs

- Node och edges
- are positions
- store labels
- Access methods
- endVertices (e) : an array with e 's two endpoints
- opposit (v, e) : the node opposit v wrt. e
- areAdjacent (v, w) : true iff v and w are adjacent
- replace (v, x) : replace label in node v with x
- replace (e, x) : replace label in edge e with x

Important methods for undirected graphs

- Update methods
- insertVertex (o) : inserts a node with label o
- insertEdge (v, w, o) : insert an edge (v, w) with label o
- removeVertex (v) : remove node v (and its incident edges)
- removeEdge((e) : remove edge e
- Iteration methods
- incidentEdges (v) : edges incident to v
- vertices(): all nodes in the graph
- edges(): all edges in the graph

1.3 Data structures

Data-structure 1: Edge list

- A nodes' sequence with a sequence of positions for node objects
- An edges' sequence with a sequence of positions for edge objects
- A node object stores the label and a reference to the position in the nodes' sequence
- An edge object stores the label, a reference to start node object, a reference to the end node object and a reference to the position in the edges' sequence

Data-structure 2: adjacent list

- Additional structure to the edge list
- Each node is associated to a list of its incident edges and references to the incident edge objects
- Edge objects are augmented with references to associated positions in the sequences of incident edges associated to its endpoints

Data-structure 3: adjacent matrix

- Add extra structure to the edges' list
- Node objects augmented with integer keys (indices) associated with the nodes
- Two dimensional adjacent array
- Reference to edge object for nodes that are adjacent
- null for nodes that are not adjacent

Asymptotic performance

\boldsymbol{n} noder, \boldsymbol{m} bågar inga parallella kanter inga öglor	Båglista	Grannlista	Grann- matris
minne	$O(\boldsymbol{n}+\boldsymbol{m})$	$O(\boldsymbol{n}+\boldsymbol{m})$	$O\left(\boldsymbol{n}^{2}\right)$
incidentEdges (\boldsymbol{v})	$O(\boldsymbol{m})$	$O(\operatorname{deg}(\boldsymbol{v}))$	$O(\boldsymbol{n})$
areAdjacent $(\boldsymbol{v}, \boldsymbol{w})$	$O(\boldsymbol{m})$	$O(\min (\operatorname{deg}(\boldsymbol{v}), \operatorname{deg}(\boldsymbol{w}))$	$O(1)$
insertVertex (\mathbf{o})	$O(1)$	$O(1)$	$O\left(\boldsymbol{n}^{2}\right)$
insertEdge $(\boldsymbol{v}, \boldsymbol{w}, \mathbf{o})$	$O(1)$	$O(1)$	$O(1)$
removeVertex (\boldsymbol{v})	$O(\boldsymbol{m})$	$O(\operatorname{deg}(\boldsymbol{v}))$	$O\left(\boldsymbol{n}^{2}\right)$
removeEdge (\boldsymbol{e})	$O(1)$	$O(1)$	$O(1)$

2 Search in undirected graphs
2.1 DFS

Sub-graphs

- A sub-graph S of a graph G is a graph s.t.
- Nodes of S are subset of the nodes in G
- Edges in S are subset of the edges in G
- A spanning sub-graph of G is a sub-graph that includes all nodes in G

Delgraf

Spännande delgraf

Connectivity

- A graph is connected if there is a path between each pair of nodes
- A connected component of a graph G is a maximal connected sub-graph of G

Sammanhängande graf

Ej sammanhängande graf med två sammanhängande komponenter

Connected components

63 sammanhängande komponenter

Trees and forests

- A (free) tree is an undirected graph T such that:
- T is connected
- T does not have any cycles
- This definition is different from the one for rooted trees
- A forest is an undirected graph without cycles
- The connected components of a forest are trees

Spanning trees and forests

- A spanning tree for a connected graph is a spanning sub-graph that is a tree
- A spanning tree is not unique if the original graph is not a tree
- Spanning trees have applications in design of communication networks
- A spanning forest for a graph is a spanning sub-graph that is a forest

Graf

Spännande träd

DFS: Depth first search

- Depth first search (DFS) is a generic technique for traversing a graph
- DFS in a graph G
- Visits all nodes and edges in G
- Checks whether G is connected
- Computes connected components in G
- Computes a spanning forest for G
- DFS on a graph with n nodes and m edges takes $O(n+m)$ time
- DFS can be augmented to solve other graph problems
- Find a path between two given nodes in a graph
- Find a cycle in a graph

```
Algorithm for DFS
    procedure \(\operatorname{DFS}(G)\)
    for all \(u \in G\).VERTICES() do
        SETLABEL ( \(u, U N E X P L O R E D)\)
    for all \(e \in G\). \(\operatorname{EDGES}()\) do
        SETLABEL( \(e\), UNEXPLORED)
    for all \(v \in G\).VERTICES() do
        if \(\operatorname{GEtLabel}(v)=U N E X P L O R E D\) then
            \(\operatorname{DFS}(G, v)\)
    procedure \(\operatorname{DFS}(G, v)\)
    SETLABEL( \(v\), VISITED)
    for all \(e \in G\).IncidentEdges \((v)\) do
        if \(\operatorname{GETLABEL}(e)=U N E X P L O R E D\) then
            \(w \leftarrow \operatorname{OPPOSITE}(v, e)\)
            if \(\operatorname{GetLabel}(w)=U N E X P L O R E D\) then
                    SETLABEL \((e\), DISCOVERY)
                    \(\operatorname{DFS}(G, w)\)
                else
                    \(\operatorname{SETLABEL}(e, B A C K)\)
```


- - - back edge

Example

DFS and labyrinth exploration

- Algorithm for DFS resembles a classical strategy for exploring a labyrinth
- We mark each crossing and dead end we encounter (nodes)
- We mark each corridor we walk through (edges)
- We keep how to get back to the start node (recursion stack)

Properties

Property 1

$\operatorname{DFS}(G, v)$ visits all nodes and edges in the connected part of G that includes v

Property 2

The "discovery"-edges that are marked by a $\operatorname{DFS}(G, v)$ execution result in a spanning tree for the connected component of G containing v

Analysis of DFS

- Marking/checking marking of node/edge takes $O(1)$ time
- Each node is marked twice:
- one time as UNEXPLORED
- one time as VISITED
procedure $\operatorname{DFS}(G)$
for all $u \in G$. VERTICES() do SETLABEL($u, U N E X P L O R E D)$
for all $e \in G . \operatorname{EDGES}()$ do SETLABEL (e, UNEXPLORED)
for all $v \in G$.VERTICES() do if $\operatorname{GEtLabel}(v)=U N E X P L O R E D$ then $\operatorname{DFS}(G, v)$
- Each edge is marked twice:
- once as UNEXPLORED
- once as DISCOVERY or BACK
- The method incidentEdges is called once for each node
procedure $\operatorname{DFS}(G, v)$ $\operatorname{SETLABEL}(v$,VISITED)
for all $e \in G$.IncidentEdges (v) do if $\operatorname{GETLABEL}(e)=U N E X P L O R E D$ then
$w \leftarrow \operatorname{OPPositE}(v, e)$
if $\operatorname{GETLABEL}(w)=$ UNEXPLORED then SETLABEL (e,DISCOVERY) $\operatorname{DFS}(G, w)$
else
SETLABEL $(e, B A C K)$
\qquad

Find paths

- We can specialize DFS to find a path between two given nodes v and z
- We call $\operatorname{DFS}(G, v)$ with v as a start node
- We use a stack S to maintain the path from the start node to the current node
- As soon as we find the target node z, we return the content of the stack as the path

```
procedure PATHDFS(G,v,z)
    SETLABEL(v,VISITED)
    S.PUSH(v)
    if v=z///found path then
            print labels in S
    else
        for all e\inG.incidentEdges(v) do
            if GETLABEL}(e)=UNEXPLORED the
                w\leftarrow\operatorname{OPPOSITE}(v,e)
                if GETLAbel}(w)=UNEXPLORED then
                    SETLABEL(e,DISCOVERY)
                        S.puSH(e)
                        PathDFS(G,w,z)
                        S.POP() // e
            else
                SETLABEL(e,BACK)
    S.POP() //v
```

Find cycles

- We can specialize the DFS algorithm to find simple cycles
- We use a stack S to maintain a path to the start node from the current node
- As soon as we encounter an edge (v, w) that leads to an ancestor we return the content of the cycle from the stack

```
procedure CYCLEDFS \((G, v, z)\)
    SETLABEL \((v\), VISITED)
    \(S\).PUSH(v)
    for all \(e \in G\).IncidentEdges \((v)\) do
        if \(\operatorname{GETLABEL}(e)=U N E X P L O R E D\) then
            \(w \leftarrow \operatorname{OPPOSITE}(v, e)\)
            \(S\).PUSH (e)
            if \(\operatorname{GETLABEL}(w)=U N E X P L O R E D\) then
                \(\operatorname{SETLABEL}(e, D I S C O V E R Y)\)
                CYCLEDFS \((G, w)\)
            else // found cycle
                \(\operatorname{GETLABEL}(w)=V I S I T E D\)
                    // \(w\) has to be in \(S\)
                print labels in \(S\) between \(w\) and \(v\)
            S.POP() //e
    \(S . \operatorname{POP}() / / v\)
```


2.2 BFS

BFS: Breadth first search

- BFS is a generic technique to traverse a graph
- BFS in a graph G
- Visits all nodes and edges in G
- Checks whether G is connected
- Computes connected components in G
- Computes a spanning forest in G
- BFS on a graph with n nodes and m edges takes $O(n+m)$ time
- BFS can be augmented to solve other graph problems:
- Find and return a shortest path between two given nodes in a graph
- Find a simple cycle in a graph, if any exists

```
Algorithm for BFS
    procedure BFS(G)
    mark all nodes/edges with UNEXPLORED
    for all v\inG.VERTICES() do
        if GETLABEL}(v)=UNEXPLORED then BFS (G,v
    procedure BFS(G,s)
        L
        while}\neg\mp@subsup{L}{i}{}\mathrm{ .ISEMPTY() do
            Li+1}\leftarrow\leftarrow\mathrm{ new empty sequence
            for all v\in Li}\mathrm{ .ELEMENTS() do
            for all }e\inG.INCIDENTEDGES(v) do
                    if GETLABEL}(e)=UNEXPLORED the
                    w\leftarrowOPPOSITE }(v,e
                        if GETLABEL}(w)=UNEXPLORED then
                                SETLABEL(e,DISCOVERY)
                                SETLABEL(w,VISITED)
                                Li+1.INSERTLAST(w)
                    else
                                    SETLABEL(e,CROSS)
            i\leftarrowi+1
```

(A) unexplored node
(A) explored node

- unexplored edge
\longrightarrow discovery edge

- - - cross edge

Example

Properties

Let G_{s} be the connected component of G that includes s

Property 1

$\operatorname{BFS}(G, s)$ visits all nodes and edges in G_{s}

Property 2

"discovery"-edges marked by $\operatorname{BFS}(G, s)$ are a spanning tree T_{s} for G_{s}

Property 3

For each node v in L_{i} :

- The path in T_{s} from s to v has i edges
- Any path from s to v in G_{s} has at least i edges

Analysis of BFS

- Mark/check marking of a node/edge takes $O(1)$ time
- Each node is marked twice
- once as UNEXPLORED
- once as VISITED
- Each edge is marked twice
- once as UNEXPLORED
- once as DISCOVERY or CROSS
- Each node is inserted once in a sequence L_{i}
- Method incidentEdges is called once for each node
- BFS executes in $O(n+m)$ time given the graph is represented with adjacent lists

$$
-\operatorname{Recall} \sum_{v} \operatorname{deg}(v)=2 m
$$

```
procedure BFS(G)
    mark all nodes/edges with UNEXPLORED
    for all }v\inG.\mathrm{ vertices() do
        if GETLABEL}(v)=UNEXPLORED then
        BFS(G,v)
    procedure BFS(G,s)
    L
    Lo.INSERTLAST(s)
    SETLABEL(s,VISITED)
    SETLA
    while}\neg\mp@subsup{L}{i}{}\mathrm{ .ISEMPTY() do
    while}\neg\mp@subsup{L}{i}{}\mathrm{ .ISEMPTY() do
        Li+1}\leftarrow\leftarrow\mathrm{ new empty sequence
        for all v\inL L
            for all e\inG.incidentEdges(v) do
                if GETLABEL}(e)=UNEXPLORED then
                    w\leftarrow\operatorname{OPPOSITE}(v,e)
                    if GETLABEL}(w)=UNEXPLORED the
                        SETLAbel(e,DISCOVERY)
                        SETLABEL( }w,\mathrm{ VISITED)
                            Li+1}\cdot\mathrm{ INSERTLAST( }w
                            else
                            SETLABEL(e,CROSS
```

 \(\leftarrow i+1\)

2.3 DFS vs BFS

Applications

Applications	DFS	BFS
Spaning tree, connected components, paths, cycles	$\sqrt{ }$	$\sqrt{ }$
Shortest path		$\sqrt{ }$
2-connected components	\checkmark	

DFS

BFS

Edges to already visited nodes
edge to ancestor

- w is an ancestor to v in the tree of "discovery"-edges

DFS
crossing edge

- w is in the same level as v or in the next level in the tree of "discovery"-edges

