Föreläsning 19
 Heap-sort, merge-sort. Lower limit for sorting. Sorting in linear time?

TDDD86: DALP

Utskriftsversion av Föreläsing i Datastrukturer, algoritmer och programmeringsparadigm 27 november 2023

IDA, Linköpings universitet

Content
Contents
1 Sorting 1
1.1 Heap-sort . 1
1.2 Merge-sort. 5
1.3 Summary . 10
2 A lower limit for comparison based sorting 11
3 Sorting in linear time? 13
3.1 Counting-sort . 14
3.2 Bucket-sort . 22
3.3 Radix-sort . 23

1 Sorting

1.1 Heap-sort

Sorting with a priority queue

- Use a priority queue to sort a number of comparable elements
- Insert the elements in the priority queue
- Remove the elements in a sorted order using removeMin-operations
- Execution time depends on the priority queue implementation:
- Unsorted sequence corresponds to a selection sort and an $O\left(n^{2}\right)$ time
- Sorted sequence gives insertion sort and an $O\left(n^{2}\right)$ time
- Can we achieve better?
procedure $\operatorname{PQSORT}(S)$
$P \leftarrow$ empty priority queue
while $\neg S$.ISEmpty () do
$e \leftarrow S . \operatorname{REMOVE}(S . \operatorname{FIRST}())$
P.INSERT(e)
while $\neg P$.ISEMPTY () do
$e \leftarrow P$.REMOVEMIN()
S.INSERTLAST (e)

Height of a heap

Proposition 1. A heap with n keys has height $O(\log n)$
Proof. The heap is a represented with a complete tree.

- Let h be the height of a heap with n keys
- There are 2^{i} keys at depths $i=0, \ldots h-1$ and at least a key at depth h. Therefore, $n \geq 1+2+4+$ $\ldots+2^{h-1}+1$
- Hence, $n \geq 2^{h}$ and $h \leq \log _{2} n$

Insertion in a heap

- Method insert in ADT priority queue inserts key k in the heap
- Insertion algorithm involves three steps:
- Find location for inserting node z (new last leaf)
- Store k in z
- Restore heap property

nytt sista löv

Upheap (bubble up)

- Insertion of a key k might violate the heap property
- Method upheap restores the heap property by moving the key k upwards along the path to the root
- upheap terminates when key k reaches the root or a node whose parent is not larger than k
- Since the height of the heap is $O(\log n)$, the upheap method is in $O(\log n)$ time

Removal from a heap

- Method removeMin in ADT priority queue removes the root key from the heap
- Removal algorithm consists in 3 steps:
- Replace root key with the key from the last leaf w
- Remove w
- Restore heap property

nytt sista löv

Downheap (bubble down)

- Replacing root key with key k from last leaf might violate the heap property
- Method downheap restores the heap property by moving k downwards
- downheap terminate when key k reaches a leaf or a node where none of the children has a key smaller than k
- Since the height of the tree is $O(\log n)$, the downheap method is in $O(\log n)$ time

Heap-sort

- Consider a priority queue with n elements implemented with a heap. For each one of the n elements:
- insert and removeMin take $O(\log n)$ time
- size, isEmpty and min take $O(1)$ time
- With a heap based priority queue, we can sort a sequence of n elements in $O(n \log n)$ time
- The resulting algorithm is called heap-sort
- Heap-sort is faster than a quadratic sorting algorithm.

Merging two heaps

- Given two heaps and a key k
- Create a new heap where the root node stores key k with the two heaps as sub-trees
- Run downheap to restore the heap property

Example: Building a heap bottom-up
Example: Building a heap bottom-up

Example: Building a heap bottom-up

Example: Building a heap bottom-up

Analysis

- We visualize a worst-case calls to downheap with paths that start right then continue left until the heap bottom.
- Since each node is traversed at most twice, the total number of such paths is $O(n)$
- Hence building the heap bottom-up requires at most $O(n)$ steps
- This is faster than n calls to insert in the first phase of heap-sort

1.2 Merge-sort

Back to divide-and-conquer

- Merge-sort is a sorting algorithm based on the divide-and-conquer paradigm
- Similar to heap-sort:
- has an execution time in $O(n \log n)$
- Unlike heap-sort
- does not use a priority queue
- accesses data in a sequential fashion (adapted for sorting data on disk)

Merge-sort
Merge-sort on an input sequence S with n elements consists in 3 steps:

- Divide: partition S in two sequences S_{1} and S_{2}, each with $n / 2$ elements
- Conquer: sort S_{1} and S_{2} recursively
- Combine: merge S_{1} and S_{2} into a sorted sequence
procedure MERGESORT(S)
if S. $\operatorname{SIZE}()>1$ then
$\left(S_{1}, S_{2}\right) \leftarrow$ PARTITION $(S . \operatorname{SIZE}() / 2)$
$\operatorname{MERGESort}\left(S_{1}\right)$
$\operatorname{MergeSort}\left(S_{2}\right)$
$S \leftarrow \operatorname{MERGE}\left(S_{1}, S_{2}\right)$

Merge two sorted sequences

- Combination step: merge two sequences A and B into a sorted sequence S containing the union of elements in A and B
- Merging two sorted sequences, each with $n / 2$ elements implemented with doubly linked lists takes $O(n)$ time

```
function MERGE}(A,B
    S\leftarrow empty sequence
    while }\negA\mathrm{ .ISEMPTY () }\wedge\negB.\operatorname{ISEMPTY() do
        if A.FIRST.ELEMENT() < B.FIRST.ELEMENT() then
            S.InSERTLAST(A.REMOVE(A.FIRST()))
        else
            S.InSERTLAST(B.REMOVE(B.FIRST()))
    while }\neg\mathrm{ A.ISEMPTY() do
        S.InSERTLAST(A.REMOVE(A.FIRST()))
    while }\negB\mathrm{ .ISEMPTY() do
        S.INSERTLAST(B.REMOVE(B.FIRST()))
    return S
```


Merge-sort tree

- Execution of merge-sort can be visualized with a binary tree
- Each node represents a recursive call to merge sort and represents
* Unsorted sequence before execution and its partition
* Sorted sequence after execution
- Root is the original call
- Leaves are calls on sequences with lengths 0 or 1

Example: Execution of merge-sort

- Partition

$$
7294 \mid 3861
$$

Example: Execution of merge-sort

- recursive call, partition

Example: Execution of merge-sort

- recursive call, partition

Example: Execution of merge-sort

- Recursive call, base case

Example: Execution of merge-sort

- merge

- recursive call, ..., base case

Example: Execution of merge-sort

- Merge

Example: Execution of merge-sort

- Recursive call, ..., merge

Example: Execution of merge-sort

- Merge

Analysis of merge-sort

- Height h of merge-sort tree is $O(\log n)$
- at each recursive call, the sequence is divided in the middle
- The total amount of work performed at depth i is $O(n)$
- we partition and merge 2^{i} sequences of lengths $n / 2^{i}$
- we perform 2^{i+1} recursive calls
- The total execution time for merge-sort is $O(n \log n)$

Analysis of merge-sort
djup \#sekv strl

1.3 Summary

Summary so far

Algoritm	Tid	Noteringar
selection-sort	$O\left(n^{2}\right)$	• in-place • långsam (bra för små indata)
insertion-sort	$O\left(n^{2}\right)$	• in-place • långsam (bra för små indata)
quick-sort	$O(n$ log $n)$ förväntad	• in-place, randomiserad • snabbast (bra för stora indata)
heap-sort	$O(n$ log $n)$	• in-place • snabb (bra för stora indata)
merge-sort	$O(n$ log $n)$	• sekvensiell dataaccess • snabb (bra för enorma indata)

2 A lower limit for comparison based sorting
Comparison based sorting

- Many sorting algorithms are comparison based
- They sort by comparing pairs of elements
- Example: insertion-sort, selection-sort, heap-sort, merge-sort, quick-sort, ...
- Let's deduce a lower limit for the worst-case execution time of any comparison-based algorithm that sorts a sequence of n elements $x_{1}, x_{2}, \ldots, x_{n}$

Count comparisons

- Let us just count the number of comparisons
- Each execution of the algorithm corresponds to a path from the root to a leaf in a decision tree

Example: Decision tree

Sort $\left\langle x_{1}, x_{2}, \ldots, x_{n}\right\rangle$

1:2

Each node is marked with indices $i: j$ for $i, j \in\{1,2, \ldots, n\}$

- Left sub-tree shows remaining comparisons if $x_{i} \leq x_{j}$
- Right sub-tree shows remaining comparisons if $x_{i}>x_{j}$

Example: Decision tree

Each node is marked with indices $i: j$ for $i, j \in\{1,2, \ldots, n\}$

- Left sub-tree shows remaining comparisons if $x_{i} \leq x_{j}$
- Right sub-tree shows remaining comparisons if $x_{i}>x_{j}$

Example: Decision tree
Sort $\left\langle x_{1}, x_{2}, x_{3}\right\rangle$
$=\langle 9,4,6\rangle$:

Each node is marked with indices $i: j$ for $i, j \in\{1,2, \ldots, n\}$

- Left sub-tree shows remaining comparisons if $x_{i} \leq x_{j}$
- Right sub-tree shows remaining comparisons if $x_{i}>x_{j}$

Example: Decision tree
Sort $\left\langle x_{1}, x_{2}, x_{3}\right\rangle$
$=\langle 9,4,6\rangle$:

Each node is marked with indices $i: j$ for $i, j \in\{1,2, \ldots, n\}$

- Left sub-tree shows remaining comparisons if $x_{i} \leq x_{j}$
- Right sub-tree shows remaining comparisons if $x_{i}>x_{j}$

Example: Decision tree

Each leaf corresponds to a permutation $\langle\pi(i), \pi(2), \ldots, \pi(n)\rangle$ to indicate that $x_{\pi(1)} \leq x_{\pi(2)} \leq \ldots \leq x_{\pi(n)}$ was established

Decision tree model

Decision trees can model executions of any comparison based sorting algorithm:

- A tree for each input size
- Consider that execution is forked in two each time two elements are compared
- Tree contains all comparisons along all possible executions
- Execution time for the algorithm $=$ length of the path to be traversed
- Execution time in worst case $=$ height of the tree

Height of decision tree

- Height of decision tree is a lower limit to the worst case execution time
- Each possible permutation of input data need to result in a separate output leaf
- Otherwise, some input sequence $\ldots 4 \ldots 5 \ldots$ would result in the same output as $\ldots 5 \ldots 4 \ldots$, which would be wrong
- Since there are $n!=1 \cdot 2 \cdot \ldots \cdot n$ leaves, the height of the tree is at least $\log (n!)$

Lower limit

- Each comparison based sorting algorithm uses at least $\log (n!)$ steps in the worst case
- Such an algorithm would therefore use at least

$$
\log (n!) \geq \log \left(\frac{n}{2}\right)^{\frac{n}{2}}=(n / 2) \log (n / 2) \text { steps }
$$

- The worst-case execution time of any comparison based sorting algorithm is therefore in $\Omega(n \log n)$

3 Sorting in linear time?

Some cases where sorting can be faster than $n \log n$

- Only a constant number of different elements to sort
$-\Theta(n)$ with Counting sort
- The elements to be sorted are uniformly distributed in a given interval
- $\Theta(n)$ with bucket-sort
- Elements to be sorted are strings with d "digits" $\left(S[i]=s_{i, 1} s_{i, 2} \ldots s_{i, d}\right)$
- $\Theta(n d)$ with radix-sort
- If d is constant we get linear time complexity
- If we count the number of digits in the input sequence, we get a linear time complexity $\Theta(N)$, with $N=n d$
3.1 Counting-sort

Counting sort
Require: $A[1, \ldots, n]$, with $A[j] \in\{1,2, \ldots, k\}$
function CountingSort (A)
an array for counting: $C[1, \ldots, k]$
an array for storing the result: $\operatorname{Res}[1, \ldots, n]$
for $i \leftarrow 1$ to k do

$$
C[i] \leftarrow 0
$$

for $j \leftarrow 1$ to n do

$$
C[A[j]] \leftarrow C[A[j]]+1
$$

$\triangleright C[i]=|\{k e y=i\}|$
for $i \leftarrow 2$ to k do

$$
C[i] \leftarrow C[i]+C[i-1] \quad \triangleright C[i]=|\{k e y \leq i\}|
$$

for $j \leftarrow n$ downto i do
$\operatorname{Res}[C[A[j]]] \leftarrow A[j]$
$C[A[j]] \leftarrow C[A[j]]-1$
return Res

Example

Counting-sort

Res:

Example

Loop 1

Res:

for $i \leftarrow 1$ to k do
$C[i] \leftarrow 0$

Example

Loop 2

$C:$| 1 | 2 | 3 | 4 |
| :---: | :---: | :---: | :---: |
| 0 | 0 | 0 | 1 |

Res:

for $j \leftarrow 1$ to n do
$C[A[j]] \leftarrow C[A[j]]+1 \triangleright C[i]=\mid\{$ nyckel $=i\} \mid$
Example
Loop 2

C: | 1 | 2 | 3 | 4 |
| :--- | :--- | :--- | :--- |
| 1 | 0 | 0 | 1 |

Res:

$$
\begin{aligned}
& \text { for } j \leftarrow 1 \text { to } n \text { do } \\
& \quad C[A[j]] \leftarrow C[A[j]]+1 \triangleright C[i]=\mid\{\text { nyckel }=i\} \mid
\end{aligned}
$$

Example

Loop 2

Res:

for $j \leftarrow 1$ to n do
$C[A[j]] \leftarrow C[A[j]]+1 \triangleright C[i]=\mid\{$ nyckel $=i\} \mid$
Example
Loop 2

C: | 1 | 2 | 3 | 4 |
| :--- | :--- | :--- | :--- |
| 1 | 0 | 1 | 2 |

Res:

$$
\begin{aligned}
& \text { for } j \leftarrow 1 \text { to } n \text { do } \\
& \quad C[A[j]] \leftarrow C[A[j]]+1 \triangleright C[i]=\mid\{\text { nyckel }=i\} \mid
\end{aligned}
$$

Example

Loop 2

Res:

for $j \leftarrow 1$ to n do
$C[A[j]] \leftarrow C[A[j]]+1 \triangleright C[i]=\mid\{$ nyckel $=i\} \mid$
Example
Loop 3

$C:$| 1 | 2 | 3 | 4 |
| :--- | :--- | :--- | :--- |
| 1 | 0 | 2 | 2 |

Res:

for $i \leftarrow 2$ to k do
$C[i] \leftarrow C[i]+C[i-1] \quad C[i]=\mid\{$ nyckel $\leq i\} \mid$
Example

Loop 3

Res:

for $i \leftarrow 2$ to k do

$$
C[i] \leftarrow C[i]+C[i-1] \quad \subset[i]=\mid\{\text { nyckel } \leq i\} \mid
$$

Example

Loop 3

C :

Res:

for $i \leftarrow 2$ to k do

$$
C[i] \leftarrow C[i]+C[i-1] \quad \triangleright C[i]=\mid\{\text { nyckel } \leq i\} \mid
$$

Example

Loop 4

for $j \leftarrow n$ downto 1 do
$\operatorname{Res}[C[A[j]]] \leftarrow \mathrm{A}[j]$
$C[A[j]] \leftarrow C[A[j]]-1$
Example
Loop 4

for $j \leftarrow n$ downto 1 do
$\operatorname{Res}[C[A[j]]] \leftarrow \mathrm{A}[j]$
$C[A[j]] \leftarrow C[A[j]]-1$
Example

Loop 4

for $j \leftarrow n$ downto 1do
$\operatorname{Res}[C[A[j]]] \leftarrow \mathrm{A}[j]$
$C[A[j]] \leftarrow C[A[j]]-1$
Example
Loop 4

for $j \leftarrow n$ downto 1 do
$\operatorname{Res}[C[A[j]]] \leftarrow \mathrm{A}[j]$
$C[A[j]] \leftarrow C[A[j]]-1$
Example

Loop 4

for $j \leftarrow n$ downto 1 do
$\operatorname{Res}[C[A[j]]] \leftarrow \mathrm{A}[j]$
$C[A[j]] \leftarrow C[A[j]]-1$

Analysis

$$
\begin{aligned}
& \text { for } i \leftarrow 1 \text { to } k \text { do } \\
& C[i] \leftarrow 0
\end{aligned}
$$

$$
\text { for } j \leftarrow 1 \text { to } n \text { do }
$$

$$
C[A[j]] \leftarrow C[A[j]]+1
$$

$\Theta(k) \quad\left\{\begin{aligned} \text { for } i & \leftarrow 2 \text { to } k \text { do } \\ C[i] & \leftarrow C[i]+C[i-1]\end{aligned}\right.$
$\Theta(n)\{$
for $j \leftarrow n$ downto 1 do
$\operatorname{Res}[C[A[j]]] \leftarrow \mathrm{A}[j]$
$C[A[j]] \leftarrow C[A[j]]-1$
$\Theta(n+k)$

Execution time

If $k \in O(n)$ Counting sorting takes $\Theta(n)$ time

- But sorting takes $\Omega(n \log n)$ time!
- What is wrong?

Answer:

- Comparison based sorting requires $\Omega(n \log n)$ steps
- Counting-sort is not comparison based
- No comparison between the elements!

Stable sorting
Counting-sort is a stable sorting algorithm: it preserves order among equal elements

To reflect:

Which other sorting algorithms are stable?

3.2 Bucket-sort

Bucket-sort

- Let S e a sequence of n pairs (key, value) with keys in $[0, N-1]$
- Bucket-sort uses keys as indices in an array B of sequences
- Phase 1: Empty the sequence S by moving each pair (k, v) to the end of the bucket $B[k]$
- Phase 2: For $i=0, \ldots, N-1$ move the pairs in bucket $B[i]$ to the end of the sequence S
- Analysis:
- Phase 1 takes $O(n)$ steps
- Phase 2 takes $O(n+N)$ steps

Bucket-sort has $O(n+N)$ time complexity
procedure BUCKETSORT (S, N)
$B \leftarrow$ array with N empty sequences
while $\neg S$.ISEMPTY() do
$f \leftarrow S$.FIRST()
$(k, o) \leftarrow S$.REMOVE (f)
$B[k]$.INSERTLAST $((k, o))$

for $i \leftarrow 0$ to $N-1$ do

while $\neg B[i]$.ISEMPTY() do
$f \leftarrow B[i] . \operatorname{FIRST}()$
$(k, o) \leftarrow B[i] \cdot \operatorname{REMOVE}(f)$
$S . \operatorname{INSERTLAST}((k, o))$

Example: keys in $[0,9]$

Properties and extensions

Type of keys:

- Keys are used as indices in an array and can therefore not be of arbitrary types

Stable sorting

- The relative order among pairs with equal keys is preserved

Extensions

- Integers in $[a, b]$
- Insert a pair (k, v) in bucket $B[k-a]$
- String keys from a finite set of strings D
- Sort D and compute the range $r(k)$ for each string $k \in D$ in the sorted sequence
- Insert pair (k, v) in bucket $B[r(k)]$

3.3 Radix-sort

Radix-sort

- Origin: Herman Holleriths sorting machine for 1890's census in USA
- digit-by-digit sorting
- Sort starting with the least significant digit first with an external stable sorting routine

Example: Execution of radix-sort

329	720	720	329
457	355	329	355
657	436	436	436
839	457	839	457
436	657	355	657
720	329	457	720
355	839	657	839

Correctness of radix-sort
Use induction over digit positions

- Assume the numbers are sorted according to the $t-1$ least significant digits
- Sort according to digit t

| 720 | 329 |
| :--- | :--- | :--- |
| 329 | 355 |
| 436 | 436 |
| 839 | 457 |
| 355 | 657 |
| 457 | 720 |
| 657 | 839 |

Correctness of radix-sort

Use induction over digit positions

- Assume the numbers are sorted according to the $t-1$ least significant digits
- Sort according to digit t
- Two numbers that differ in the digit t are correctly sorted

Correctness for radix-sort
Use induction over digit positions

- Assume the numbers are sorted according to their $t-1$ least significant digits
- Sort according to digit t
- Two numbers that differ in the digit t are correctly sorted
- Two numbers with equal digit t keep their relative order \Rightarrow correct ordering

Analysis of radix-sort

- Assume counting sort is used as the external sorting algorithm
- Sorting of n machine words with b bits each
- We can consider each word has b / r digits in base 2^{r}

Example:

32-bits word

$r=8 \Rightarrow b / r=4$: radix-sort with 4 counting-sort passes on digits in base 2^{8} or $r=16 \Rightarrow b / r=2$: radix-sort with 2 passes on digits in base 2^{16}

How many passes?

Analysis of radix-sort

Recall: counting-sort takes $\Theta(n+k)$ execution time to sort n numbers from $[0, k-1]$. If each b-bits word is partitioned into r-words then each counting-sort pass takes $\Theta\left(n+2^{r}\right)$ time. With b / r parts, we get

$$
T(n, b)=\Theta\left(\frac{b}{r}\left(n+2^{r}\right)\right)
$$

Choose r to minimize $T(n, b)$

- Increasing r gives less passes but if $r \gg \log n$ the required time increases exponentially in r.

Chooser

$$
T(n, b)=\Theta\left(\frac{b}{r}\left(n+2^{r}\right)\right)
$$

Minimize $T(n, b)$ by deriving and finding a minimum. Or, observe that we want to avoid $2^{r} \gg n$ and that it does not hurt asymptotically to have a large r as long as we avoid $2^{r} \gg n$. Choosing $r=\log n$ gives $T(n, b)=\Theta(b n / \log n)$.

- for numbers in the interval 0 to $n^{d}-1$, we get $b=d \log n \Rightarrow$ radix-sort runs in $\Theta(d n)$ time complexity.

Conclusions

In practice, radix-sort is fast for large input data and simple to encode and maintain

- for numbers in $\left[0, n^{d}-1\right]$, we get $b=d \log n$ and radix-sort runs in $\Theta(d n)$ time complexity.

Example: 32-bit integers

- At most 3 passes when sorting ~ 2000 numbers.
- Merge-sort and quick-sort use at least $\lceil\log 2000\rceil=11$ passes

Disadvantages: You cannot sort in place with counting-sort. Radix sort does not exhibit good locality (quick-sort does) so that a fine tuned quick-sort implementation can be faster on a modern processor with a steep memory hierarchy.

