Föreläsning 19

Heap-sort, merge-sort. Lower limit for sorting. Sorting in linear time?

TDDD86: DALP

Utskriftsversion av Föreläsing i *Datastrukturer, algoritmer och programmeringsparadigm* 27 november 2023

IDA, Linköpings universitet

Content

Contents

		Sorting					
	1.1	Heap-sort					
	1.2	Merge-sort					
	1.3	Summary					
2	A lo	wer limit for comparison based sorting					
		L O					
	Sort	ing in linear time?					
	Sort	ing in linear time? Counting-sort					
	Sort	ing in linear time?					

1 Sorting

1.1 Heap-sort

Sorting with a priority queue

- Use a priority queue to sort a number of comparable elements
 - Insert the elements in the priority queue
 - Remove the elements in a sorted order using removeMin-operations
- Execution time depends on the priority queue implementation:
 - Unsorted sequence corresponds to a selection sort and an $O(n^2)$ time

1

- Sorted sequence gives insertion sort and an $O(n^2)$ time
- Can we achieve better?

procedure PQSORT(S)

```
P \leftarrow empty priority queue

while \neg S.ISEMPTY() do

e \leftarrow S.REMOVE(S.FIRST())

P.INSERT(e)

while \neg P.ISEMPTY() do

e \leftarrow P.REMOVEMIN()

S.INSERTLAST(e)
```

Height of a heap

Proof. The heap is a represented with a complete tree.

- Let *h* be the height of a heap with *n* keys
- There are 2^i keys at depths i = 0, ..., h 1 and at least a key at depth h. Therefore, $n \ge 1 + 2 + 4 + ... + 2^{h-1} + 1$
- Hence, $n \ge 2^h$ and $h \le \log_2 n$

djup nycklar

Insertion in a heap

- Method insert in ADT priority queue inserts key k in the heap
- Insertion algorithm involves three steps:
 - Find location for inserting node *z* (new last leaf)
 - Store k in z
 - Restore heap property

Upheap (bubble up)

- Insertion of a key k might violate the heap property
- Method upheap restores the heap property by moving the key k upwards along the path to the root
- upheap terminates when key k reaches the root or a node whose parent is not larger than k
- Since the height of the heap is $O(\log n)$, the upheap method is in $O(\log n)$ time

19.4

Removal from a heap

- Method removeMin in ADT priority queue removes the root key from the heap
- Removal algorithm consists in 3 steps:
 - Replace root key with the key from the last leaf w
 - Remove w
 - Restore heap property

Downheap (bubble down)

- Replacing root key with key k from last leaf might violate the heap property
- Method downheap restores the heap property by moving *k* downwards
- downheap terminate when key *k* reaches a leaf or a node where none of the children has a key smaller than *k*
- Since the height of the tree is $O(\log n)$, the downheap method is in $O(\log n)$ time

Heap-sort

- Consider a priority queue with *n* elements implemented with a heap. For each one of the *n* elements:
 - insert and remove Min take $O(\log n)$ time
 - size, is Empty and min take O(1) time
- With a heap based priority queue, we can sort a sequence of *n* elements in $O(n \log n)$ time
- The resulting algorithm is called heap-sort
- Heap-sort is faster than a quadratic sorting algorithm.

Merging two heaps

- Given two heaps and a key k
- Create a new heap where the root node stores key k with the two heaps as sub-trees
- Run downheap to restore the heap property

19.7

19.8

Example: Building a heap bottom-up

4

19.12

19.10

Analysis

- We visualize a worst-case calls to downheap with paths that start right then continue left until the heap bottom.
- Since each node is traversed at most twice, the total number of such paths is O(n)
- Hence building the heap bottom-up requires at most O(n) steps
- This is faster than n calls to insert in the first phase of heap-sort

1.2 Merge-sort

Back to divide-and-conquer

- · Merge-sort is a sorting algorithm based on the divide-and-conquer paradigm
- Similar to heap-sort:
 - has an execution time in $O(n \log n)$

- Unlike heap-sort
 - does not use a priority queue
 - accesses data in a sequential fashion (adapted for sorting data on disk)

Merge-sort

Merge-sort on an input sequence S with n elements consists in 3 steps:

- Divide: partition S in two sequences S_1 and S_2 , each with n/2 elements
- Conquer: sort S₁ and S₂ recursively
- Combine: merge S_1 and S_2 into a sorted sequence

procedure MERGESORT(S)

if S.SIZE() > 1 then $(S_1, S_2) \leftarrow PARTITION(S.SIZE()/2)$ MERGESORT (S_1) MERGESORT (S_2) $S \leftarrow MERGE(S_1, S_2)$

Merge two sorted sequences

- Combination step: merge two sequences A and B into a sorted sequence S containing the union of elements in A and B
- Merging two sorted sequences, each with n/2 elements implemented with doubly linked lists takes O(n) time

function MERGE(A, B)

```
\begin{split} S &\leftarrow \text{empty sequence} \\ \text{while } \neg A.\text{ISEMPTY}() \land \neg B.\text{ISEMPTY}() \text{ do} \\ \text{if } A.\text{FIRST.ELEMENT}() &< B.\text{FIRST.ELEMENT}() \text{ then} \\ S.\text{INSERTLAST}(A.\text{REMOVE}(A.\text{FIRST}())) \\ \text{else} \\ S.\text{INSERTLAST}(B.\text{REMOVE}(B.\text{FIRST}())) \\ \text{while } \neg A.\text{ISEMPTY}() \text{ do} \\ S.\text{INSERTLAST}(A.\text{REMOVE}(A.\text{FIRST}())) \\ \text{while } \neg B.\text{ISEMPTY}() \text{ do} \\ S.\text{INSERTLAST}(B.\text{REMOVE}(B.\text{FIRST}())) \\ \text{return } S \end{split}
```

Merge-sort tree

- Execution of merge-sort can be visualized with a binary tree
 - Each node represents a recursive call to merge sort and represents
 - * Unsorted sequence before execution and its partition
 - * Sorted sequence after execution
 - Root is the original call
 - Leaves are calls on sequences with lengths 0 or 1

19.18

• Partition

Example: Execution of merge-sort

• recursive call, partition

Example: Execution of merge-sort

• recursive call, partition

19.20

• recursive call, base case

Example: Execution of merge-sort

• Recursive call, base case

Example: Execution of merge-sort

• merge

19.25

19.23

• recursive call, ..., base case

Example: Execution of merge-sort

• Merge

Example: Execution of merge-sort

• Recursive call, ..., merge

19.27

• Merge

Analysis of merge-sort

- Height *h* of merge-sort tree is $O(\log n)$
 - at each recursive call, the sequence is divided in the middle
- The total amount of work performed at depth i is O(n)
 - we partition and merge 2^i sequences of lengths $n/2^i$
 - we perform 2^{i+1} recursive calls
- The total execution time for merge-sort is $O(n \log n)$

Analysis of merge-sort djup #sekv strl

19.31

1.3 Summary

Summary so far

19.30

Algoritm	Tid	Noteringar			
selection-sort	O(<i>n</i> ²)	• in-place			
		• långsam (bra för små indata)			
insertion-sort	O(n ²)	 in-place 			
	0(17)	• långsam (bra för små indata)			
quick cort	O(<i>n</i> log <i>n</i>)	 in-place, randomiserad 			
quick-sort	förväntad	 snabbast (bra för stora indata) 			
boon cort	$O(n \log n)$	 in-place 			
heap-sort	O(<i>n</i> log <i>n</i>)	 snabb (bra för stora indata) 			
morgo cort	$O(n \log n)$	sekvensiell dataaccess			
merge-sort	O(<i>n</i> log <i>n</i>)	 snabb (bra för enorma indata) 			

2 A lower limit for comparison based sorting

Comparison based sorting

- Many sorting algorithms are *comparison based*
 - They sort by comparing pairs of elements
 - Example: insertion-sort, selection-sort, heap-sort, merge-sort, quick-sort, ...
- Let's deduce a lower limit for the worst-case execution time of any comparison-based algorithm that sorts a sequence of *n* elements $x_1, x_2, ..., x_n$

Count comparisons

- Let us just count the number of comparisons
- Each execution of the algorithm corresponds to a path from the root to a leaf in a decision tree

19.34

19.32

Example: Decision tree

Each node is marked with indices i : j for $i, j \in \{1, 2, ..., n\}$

- Left sub-tree shows remaining comparisons if $x_i \le x_j$
- Right sub-tree shows remaining comparisons if $x_i > x_j$

Example: Decision tree

Each node is marked with indices i : j for $i, j \in \{1, 2, ..., n\}$

• Left sub-tree shows remaining comparisons if $x_i \le x_j$

• Right sub-tree shows remaining comparisons if $x_i > x_j$

Example: Decision tree

Each node is marked with indices i : j for $i, j \in \{1, 2, ..., n\}$

• Left sub-tree shows remaining comparisons if $x_i \le x_j$

• Right sub-tree shows remaining comparisons if $x_i > x_j$

12

19.36

19.37

Each node is marked with indices i : j for $i, j \in \{1, 2, ..., n\}$

- Left sub-tree shows remaining comparisons if $x_i \leq x_j$
- Right sub-tree shows remaining comparisons if $x_i > x_j$

Example: Decision tree

Each leaf corresponds to a permutation $\langle \pi(i), \pi(2), \dots, \pi(n) \rangle$ to indicate that $x_{\pi(1)} \leq x_{\pi(2)} \leq \dots \leq x_{\pi(n)}$ was established

Decision tree model

Decision trees can model executions of any comparison based sorting algorithm:

- A tree for each input size
- · Consider that execution is forked in two each time two elements are compared
- · Tree contains all comparisons along all possible executions
- Execution time for the algorithm = length of the path to be traversed
- Execution time in worst case = height of the tree

Height of decision tree

- Height of decision tree is a lower limit to the worst case execution time
- · Each possible permutation of input data need to result in a separate output leaf
 - Otherwise, some input sequence ...4...5... would result in the same output as ...5...4..., which would be wrong
- Since there are $n! = 1 \cdot 2 \cdot \ldots \cdot n$ leaves, the height of the tree is at least log(n!)

Lower limit

- Each comparison based sorting algorithm uses at least log(n!) steps in the worst case
- · Such an algorithm would therefore use at least

$$\log(n!) \ge \log\left(\frac{n}{2}\right)^{\frac{n}{2}} = (n/2)\log(n/2) \text{ steps}$$

• The worst-case execution time of any comparison based sorting algorithm is therefore in $\Omega(n \log n)$

3 Sorting in linear time?

Some cases where sorting can be faster than $n \log n$

• Only a constant number of different elements to sort

– $\Theta(n)$ with Counting sort

• The elements to be sorted are uniformly distributed in a given interval

– $\Theta(n)$ with bucket-sort

- Elements to be sorted are strings with d "digits" $(S[i] = s_{i,1}s_{i,2}...s_{i,d})$
 - $\Theta(nd)$ with radix-sort
 - If d is constant we get linear time complexity
 - If we count the number of digits in the input sequence, we get a linear time complexity $\Theta(N)$, with N = nd

19.38

19.39

19.40

19.41

19.42

13

3.1 Counting-sort

Counting sort

Require: A[1,...,n], with $A[j] \in \{1,2,...,k\}$ **function** COUNTINGSORT(A) an array for counting: C[1,...,k]an array for storing the result: Res[1,...,n]for $i \leftarrow 1$ to k do $C[i] \leftarrow 0$ for $j \leftarrow 1$ to n do $C[A[j]] \leftarrow C[A[j]] + 1$ for $i \leftarrow 2$ to k do $C[i] \leftarrow C[i] + C[i-1]$ for $j \leftarrow n$ downto i do $Res[C[A[j]]] \leftarrow A[j]$ $C[A[j]] \leftarrow C[A[j]] - 1$

return Res

Example

Counting-sort

Example

Example

19.44

19.45

for $j \leftarrow 1$ to n do $C[A[j]] \leftarrow C[A[j]] + 1 \triangleright C[i] = |\{\text{nyckel} = i\}|$

19.47

19.48

for $j \leftarrow 1$ to n do $C[A[j]] \leftarrow C[A[j]] + 1 \triangleright C[i] = |\{nyckel = i\}|$

Example

for $j \leftarrow 1$ to n do $C[A[j]] \leftarrow C[A[j]] + 1 \triangleright C[i] = |\{\text{nyckel} = i\}|$

19.49

19.50

for $j \leftarrow 1$ to n do $C[A[j]] \leftarrow C[A[j]] + 1 \triangleright C[i] = |\{nyckel = i\}|$

Example

for $j \leftarrow 1$ to n do $C[A[j]] \leftarrow C[A[j]] + 1 \triangleright C[i] = |\{\text{nyckel} = i\}|$

19.51

Example

for $i \leftarrow 2$ **to** k **do** $C[i] \leftarrow C[i] + C[i-1] \triangleright C[i] = |\{\text{nyckel} \le i\}|$

19.52

Example

for $i \leftarrow 2$ to k do $C[i] \leftarrow C[i] + C[i-1] \triangleright C[i] = |\{nyckel \le i\}|$

Example

for $i \leftarrow 2$ to k do $C[i] \leftarrow C[i] + C[i-1] \triangleright C[i] = |\{\text{nyckel} \le i\}|$

Example

Loop 4

for $j \leftarrow n$ **downto** 1**do** $Res[C[A[j]]] \leftarrow A[j]$ $C[A[j]] \leftarrow C[A[j]] - 1$

Example

Loop 4

for $j \leftarrow n$ **downto** 1**do** $Res[C[A[j]]] \leftarrow A[j]$ $C[A[j]] \leftarrow C[A[j]] - 1$

Example

19.56

Loop 4

for $j \leftarrow n$ **downto** 1**do** $Res[C[A[j]]] \leftarrow A[j]$ $C[A[j]] \leftarrow C[A[j]] - 1$

Example

Loop 4

for $j \leftarrow n$ **downto** 1**do** $Res[C[A[j]]] \leftarrow A[j]$ $C[A[j]] \leftarrow C[A[j]] - 1$

Example

19.58

Loop 4

for $j \leftarrow n$ **downto** 1**do** $Res[C[A[j]]] \leftarrow A[j]$ $C[A[j]] \leftarrow C[A[j]] - 1$

Execution time

If $k \in O(n)$ Counting sorting takes $\Theta(n)$ time

- But sorting takes $\Omega(n \log n)$ time!
- What is wrong?

Answer:

- Comparison based sorting requires $\Omega(n \log n)$ steps
- Counting-sort is not comparison based
- No comparison between the elements!

Stable sorting

Counting-sort is a stable sorting algorithm: it preserves order among equal elements

19.59

19.60

To reflect:

Which other sorting algorithms are stable?

3.2 Bucket-sort

Bucket-sort

- Let S e a sequence of n pairs (key, value) with keys in [0, N-1]
- Bucket-sort uses keys as indices in an array B of sequences
 - Phase 1: Empty the sequence S by moving each pair (k, v) to the end of the bucket B[k]
 - Phase 2: For i = 0, ..., N 1 move the pairs in bucket B[i] to the end of the sequence S
- Analysis:
 - Phase 1 takes O(n) steps
 - Phase 2 takes O(n+N) steps

Bucket-sort has O(n+N) time complexity

```
procedure BUCKETSORT(S,N)
```

$$\begin{split} & B \leftarrow \text{array with } N \text{ empty sequences} \\ & \textbf{while } \neg S.\text{ISEMPTY}() \textbf{ do} \\ & f \leftarrow S.\text{FIRST}() \\ & (k, o) \leftarrow S.\text{REMOVE}(f) \\ & B[k].\text{INSERTLAST}((k, o)) \\ & \textbf{for } i \leftarrow 0 \text{ to } N-1 \text{ do} \\ & \textbf{while } \neg B[i].\text{ISEMPTY}() \text{ do} \\ & f \leftarrow B[i].\text{FIRST}() \\ & (k, o) \leftarrow B[i].\text{REMOVE}(f) \\ & S.\text{INSERTLAST}((k, o)) \end{split}$$

Properties and extensions

Type of keys:

· Keys are used as indices in an array and can therefore not be of arbitrary types

Stable sorting

• The relative order among pairs with equal keys is preserved

Extensions

19.63

- Integers in [*a*,*b*]
 - Insert a pair (k, v) in bucket B[k-a]
- String keys from a finite set of strings D
 - Sort *D* and compute the range r(k) for each string $k \in D$ in the sorted sequence
 - Insert pair (k, v) in bucket B[r(k)]

3.3 Radix-sort

Radix-sort

- Origin: Herman Holleriths sorting machine for 1890's census in USA
- digit-by-digit sorting
- Sort starting with the least significant digit first with an external stable sorting routine

Example: Execution of radix-sort

32	9	7	2	0		7	2	0	3	29
45	7	3	5	5		3	2	9	3	55
65	7	4	3	6		4	3	6	4	36
83	9	4	5	7		8	3	9	4	57
43	6	6	5	7		3	5	5	6	57
72	0	3	2	9		4	5	7	7	20
35	5	8	3	9		6	5	7	8	39
	l		ζ	2		ζ	t		•	
					\smile					

Correctness of radix-sort

Use induction over digit positions

- Assume the numbers are sorted according to the t 1 least significant digits
- Sort according to digit *t*

7	20	3	29
3	29	3	55
4	36	4	36
8	39	4	57
3	55	6	57
4	57	7	20
6	57	8	39
		•	

19.68

19.65

19.66

Correctness of radix-sort

Use induction over digit positions

- Assume the numbers are sorted according to the t-1 least significant digits
- Sort according to digit *t*
 - Two numbers that differ in the digit *t* are correctly sorted

Correctness for radix-sort

Use induction over digit positions

- Assume the numbers are sorted according to their t 1 least significant digits
- Sort according to digit t
 - Two numbers that differ in the digit *t* are correctly sorted
 - Two numbers with equal digit t keep their relative order \Rightarrow correct ordering

Analysis of radix-sort

- Assume counting sort is used as the external sorting algorithm
- Sorting of *n* machine words with *b* bits each
- We can consider each word has b/r digits in base 2^r

Example:

8 8 8 8 32-bits word

 $r = 8 \Rightarrow b/r = 4$: radix-sort with 4 counting-sort passes on digits in base 2^8 or $r = 16 \Rightarrow b/r = 2$: radix-sort with 2 passes on digits in base 2^{16}

How many passes?

19.69

Analysis of radix-sort

Recall: counting-sort takes $\Theta(n+k)$ execution time to sort *n* numbers from [0, k-1]. If each *b*-bits word is partitioned into *r*-words then each counting-sort pass takes $\Theta(n+2^r)$ time. With b/r parts, we get

$$T(n,b) = \Theta\left(\frac{b}{r}(n+2^r)\right)$$

Choose *r* to minimize T(n,b)

• Increasing r gives less passes but if $r \gg \log n$ the required time increases exponentially in r.

Choose r

$$T(n,b) = \Theta\left(\frac{b}{r}\left(n+2^{r}\right)\right)$$

Minimize T(n,b) by deriving and finding a minimum. Or, observe that we want to avoid $2^r \gg n$ and that it does not hurt asymptotically to have a large *r* as long as we avoid $2^r \gg n$. Choosing $r = \log n$ gives $T(n,b) = \Theta(bn/\log n)$.

• for numbers in the interval 0 to $n^d - 1$, we get $b = d \log n \Rightarrow$ radix-sort runs in $\Theta(dn)$ time complexity.

Conclusions

In practice, radix-sort is fast for large input data and simple to encode and maintain

• for numbers in $[0, n^d - 1]$, we get $b = d \log n$ and radix-sort runs in $\Theta(dn)$ time complexity.

Example: 32-bit integers

- At most 3 passes when sorting ~ 2000 numbers.
- Merge-sort and quick-sort use at least $\lceil \log 2000 \rceil = 11$ passes

Disadvantages: You cannot sort in place with counting-sort. Radix sort does not exhibit good locality (quick-sort does) so that a fine tuned quick-sort implementation can be faster on a modern processor with a steep memory hierarchy.