Föreläsning 17

Hashing, Tree-based applications
 TDDD86: DALP

Utskriftsversion av Föreläsing i Datastrukturer, algoritmer och programmeringsparadigm 14 november 2023

IDA, Linköpings universitet

Content

Contents

1 Hash tables 1
1.1 Collision management 1
1.2 Choose a good hash function 3
2 Tree-based applications 5
2.1 Text compression 5
2.2 Prefix-trees 6
2.3 Union/Find 7
2.4 Geometric search 10

1 Hash tables

Can we find something better than BST for sets?

Yes, with hash tables

- Idea: given a table $T[0, \ldots, \max]$ to store the elements find a table index for each element
- Find a function h such that $h(k e y) \in[0, \ldots$, max $]$ and (ideally) $k_{1} \neq k_{2} \Rightarrow h\left(k_{1}\right) \neq h\left(k_{2}\right)$
- Store each key-value pair (k, v) in $T[h(k)]$

Hash table

- In practice the hash functions do not give unique values (they are not injective)
- We need to manage collisions
... and
- We need to find a good hash function

1.1 Collision management

Collision management
Two approaches for managing collisions:

- Open hashing or separate chaining. Maintain colliding data outside the table, e.g., using linked lists.
- Closed hashing or open addressing. Store all data in the table and let some algorithm decide which index to use in case of a collision.

Example: hashing with separate chaining

- Hash table of size 13
- Hash function h with $h(k)=k \bmod 13$
- Store 10 keys: $54,10,18,25,28,41,38,36,12,90$

Separate chaining: find
Given: key k, hash table T, hash function h

- compute $h(k)$
- look-up k in the list $T[h(k)]$

Notation: probing= an access in the linked list

- 1 probing to access the head of the list(if non-empty)
- $1+1$ probing to access the content of the first element
- $1+2$ probing to access the content of the second element
- ...

A probing (to follow a pointer) takes constant time. How many probings P are needed to get a data in the hash-table?

Separate chaining: unsuccessful look-up

- n data elements
- m locations in the table

Worst case:

- all elements have the same hash value: $P=1+n$

Average case:

- hash value uniformly distributed over m :
- average length α of a list: $\alpha=n / m$
- $P=1+\alpha$

Separate chaining: successful look-up

Average case:

- access to $T[h(k)]$ (beginning of the list L): 1
- traverse $L \Rightarrow k$ if found after: $|L| / 2$
- expected $|L|$ corresponds to α, so: expected $P=\alpha / 2+1$

Open addressing

- Store all elements inside the table
- Adopt a fixed algorithm to find a free place

Linear probing

- targeted hash index $j=h(k)$
- if conflict, move to next available position
- if reach end of the table, go to the start...
- Positions next to each other become full (primary clustering)
- How to remove (k) ?

Open addressing - remove()
The element to be removed can be part of a collision chain - can we detect it?

If it is part of a collision chain, we can not just remove it!

- Rehash all keys?
- Check following elements in the list and rehash until hit first free position ... ?
- Ignore - place a marker "deleted" if next place is not empty...

What to do in case of collision?

- Linear probing by steps hash function $h(K)+i \times c$ computes an increment in case of a collision
- Quadratic probing hash function $h(K)+c_{1} \times i^{2}+c_{2} \times i+c_{3}$
- A second hash function $h_{2}(K, i)$ computes an increment based on the step and the key

Linear probing is double hashing with $h_{2}(k, i)=i \times c$ Requirements on h_{2} :

- $h_{2}(k, i) \neq 0$ for all k
- $h_{2}(k, i)$ should go through all positions in the table by iterating through i. E.g., Linear probing step should not have common divisor with M (size of the table) for any $k \Rightarrow$ all positions in the table can be reached

1.2 Choose a good hash function

What is a good hash function?
Let k be a natural number.

Hashing should give a uniform distribution of the hash values, but this depends on the distribution of the keys in the considered data set.

Example: Hashing of English words

- hash function: ASCII-value of the first letter poor choice: not an even distribution.

String hashing in Java

hashCode () for String in Java 1.1

- For long strings: only consider a finite number of characters.

```
public int hashCode()
    int hash \(=0\);
    int skip \(=\) Math. \(\max (1\), length() / 8) ;
    for (int \(i=0 ; i<l\) ength(); \(i+=\) skip)
        hash \(=\mathrm{s}[\mathrm{i}]+(37 *\) hash \()\);
    return hash;
```

- Advantage: save time
- Disadvantage: high risk for a collision patterns

Ideas for hash functions

- Memory addresses
- Interpret memory address of an object as an integer
- Works well when using pointers as keys (difference between equality and identity).
- Interpret as integers
- Interpret the bits in a key as an integer
- Can work for keys with few numbers of bits
- Sum of components
- Divide the bits in the key into components of fixed length (e.g. 16 or 32 bits) and sum the components (Ignoring overflows.)
- Can work for numerical keys of fixed lengths with more bits than those in an integer

Possible hash functions

- Polynomial accumulation
- Divide the bits in a key into a sequence of components of fixed lengths (e.g., 8,16 or 32 bits)

$$
a_{0} a_{1} a_{n-1}
$$

- Evaluate the polynom

$$
p(z)=a_{0}+a_{1} z+a_{2} z^{2}+\ldots+a_{n-1} z^{n-1}
$$

for some fixed value z. (Ignore overflows)

- Works well for hashing strings . (e.g. $z=33$ gives at most 6 collisions for 50000 English words.)
- Polynom $p(z)$ can be evaluated in $O(n)$ steps with Horner's evaluation:
- Iterative evaluation. Each polynom can be evaluated in $O(1)$ steps based on the previous polynom in the sequence

$$
\begin{gathered}
p_{0}(z)=a_{n-1} \\
p_{i}(z)=a_{n-i-1}+z p_{i-1}(z)(i=1,2, \ldots, n-1)
\end{gathered}
$$

- with $p(z)=p_{n-1}(z)$

String hashing in Java
hashCode () for String in Java

Algorithmic complexity attacks

Is the assumption on the uniform distribution of the keys important in practice?

- In critical applications you want to avoid timing "surprises"
- An attacker could craft inputs or packages to produce a hash-collision based DOS-attack [CrosbyWallach 2003]
- Regular expression denial of service [Staicu-Pradel-2018]

2 Tree-based applications

2.1 Text compression

Text compression

Greedy algorithms: algorithms that solve a piece of the problem at a time. Each step performs the best "local" actions.

- The greedy approach is a general paradigm when designing algorithms, it builds on the following:
- Configurations: different choices, sets or values to find
- objective function: Configurations are assigned a score to be maximized or minimized
- The approach works best for problems that enjoy the greedy-choice-property:
- a globally optimal solution can always be found via a series of local improvements starting from a configuraiton
for many problems, the greedy approach does not give an optimal solution but good approximations.
Text compression
- Given a string X, encode X as a shorter string Y
- Saves memory/bandwidth
- A good way to do it: Huffman encoding
- Compute the frequency $f(c)$ of each character c
- Use short codes for frequent characters
- No code is a prefix of another code
- Use an optimal coding tree to determine the codes

An encoding tree example

- A code maps each character of an aplhabet to a binary code
- A prefix-code is a binary code ensures no code word is prefix of another code word
- An encoding tree represents a prefix-code
- Each external node stores a character
- The code-word for a character is given by the path from the root to the external node that stores the character (0 for the left child and 1 for the righ child)

00	010	011	10	11
a	b	c	d	e

Optimization of encoding trees

- Given a string X, we want to find a prefix-encoding for the characters in X that gives a short encoding of X
- Common characters should get short code-words
- Unusual characters can get get longer code-words

Exampel: $X=$ abrakadabra

- T_{1} encodes X with 29 bits
- T_{2} encodes X with 24 bits

a	b	k	d	r
5	2	1	1	2

Huffman's algorithm

- Given a string X, Huffman's algorithm constructs a prefix-encoding that minimizes the size of the resulting encoding of X
- The algorithm runs in $O(n+d \log d)$ time complexity, where n is the size of X and d is the number of distinct charachters in X
- A heap based priority queue is used as an extra data-structure
function $\operatorname{HUFFMANENCODING}(X,|X|=n)$
$C \leftarrow$ DISTINCTCHARACTERS (X)
COMPUTEFREQUENCIES (C, X)
$Q \leftarrow$ new empty heap
for all $c \in C$ do
$T \leftarrow$ new single node tree to encode c
$Q . \operatorname{INSERT}(\operatorname{GETFREQUENCY}(c), T)$
while $Q \cdot \operatorname{SIZE}()>1$ do
$f_{1} \leftarrow Q \cdot \operatorname{MIN}()$
$T_{1} \leftarrow Q \cdot$ REMOVEMin ()
$f_{2} \leftarrow Q \cdot \operatorname{Min}()$
$T_{2} \leftarrow Q \cdot$ REMOVEMin ()
$T \leftarrow \operatorname{JOIN}\left(T_{1}, T_{2}\right)$
$Q \cdot \operatorname{INSERT}\left(f_{1}+f_{2}, T\right)$
return Q.REMOVEMIN()

2.2 Prefix-trees

Prefix-trees (Trie)

- trie: An ordered tree datastructure used to store a data set, usually strings, an optimized to perform prefix-searches
- Example: Are there words in the set that start with the prefix mart?
- Lexicon-class in labb5 uses such a datastructure
- Idea: instead of a binary tree, use a " 26 -ary" tree
* Each node may have 26 children: one for each letter A-Z
* insert a word in the trie by following the suitable pointers associated to the children

Trie-node

```
struct TrieNode {
    bool word;
    TrieNode* children[26];
    TrieNode() {
        this->word = false;
        for (int i = 0; i < 26; i++) {
            this->children[i] = nullptr;
        }
    }
};
```


Trie with data

- After having inserted "am", "ate", "me", "mud", "my", "one", "out":

2.3 Union/Find

Partitions with Union/Find-operations

- makeSet (x) : create a singleton containing x and returns the position where x is stored
- union (A, B) : returns the set $A \cup B$, consumes the old A and B.
- find (p) : returns the set that contains the element at position p.

Example: Connectivity

Quesiton: is there a path between p and q ?

- Pixels in a digital photo
- Computers in a network
- Friends in a social media
- Transistors in a chip
- Elements in a mathematical set
- Variable names in a computer program

List based implementation

- Each set is stored as a sequence captured by a linked list
- Each node contains an element and a reference to the set name

Analysis of the list based representation

- When creating unions, always move elements from the smaller set to the larger set
- Each time an element is moved, it will be a member of a set that is at least twice as large as the old set
- Hence, an element can be moved a maximum of $O(\log n)$ times
- Total time to perform n union and find-operations is $O(n \log n)$

Tree based implementation

- Each element is saved in a node that contains a pointer to a set name
- A node v that points to itself is also a set name
- Each set is captured with a tree with a self-pointing node as a root
- ex. sets " 1 ", " 2 " och " 5 ":

Operations

- To perform a union, just let the root of the tree point to the root of the other tree
- To perform a find, follow the pointer from the given node to the self-pointing one

A heuristic

- Union by sizes:
- When performing a union, let the root of the smaller tree point to the root of the larger one
- Results in $O(n \log n)$ steps to perform n unions and find operations:
- Each time we follow a pointer, we get to a tree that is at least twice the size of the previous subtree
- Hence, we will follow at most $O(\log n)$ pointers during find

One more heuristic

- Path compression:
- After find is executed, make all nodes on the path point to the root

2.4 Geometric search

One dimension range search

- Extending ordered symbol tables
- insert key-value pairs
- search for key k
- Range seach: find all keys between k_{1} and k_{2}
- Range size: the number of keys between k_{1} and k_{2}
- Applications
- Database queries
- Geometric interpretation:
- Keys are points on a line
- Find/count the number of points in a given range

insert B	B
insert D	B D
insert A	A B D
insert I	A B D I
insert H	A B D H I
insert F	A B D F H I
insert P	A B D F H I P
count G to K	2
search G to K	H I

Range search in one dimension with BSTs

- Find all keys between k_{1} and k_{2}
- Find, recursively, all keys in the left subtree (if any can be in the range)
- Control key in current node
- Find, recursively, all keys in the right subtree (if any can be in the range)
searching in the range [F..T]
red keys are used in compares

Range search in a BST

Two dimensions range search

- Extending ordered symbole tabkes ti 2D-keys
- insert a 2D-key
- Search for a 2D-key
- Range search: find all keys in a 2D-range
- Range size: number of keys in a 2D-range
- Applications:
- Networks, Chip design, databases
- Geometric interpretation:
- Keys are points in a plane
- Find/count keys in a given rectangle

Range search in two dimensions with a grid

- Divide the plane into a grid with $M \times M$ squares
- Create a list of points in each square
- Use 2D-array to directly index the squares
- Range search: only examine the squares that overlap the query

Clustering

- Grid implementation:
- Fast, simple solution for well distributed points
- Problem: Clustering is a known phenomenon for geometrical data
- Some lists get too long, although the average length is shor
- Need for a data-structe that adapts to the data

Clustering

- Grid implementation:
- Fast, simple solution for well distributed points
- Problem: Clustering is a known phenomenon for geometrical data
- Exempel: kartdata

Tree structures

Use a tree to recursively partition the plane

- Grid: Divide the plane uniformly into squares
- Quadtree: Divide the plane recursively into four squares
- 2D-tree: Divide the plane recursively into two half planes
- BSP-tree: (Binary Search Partition) Divide the tree recursively into two regions

Rutnät

Quadtree

2d-träd

BSP-träd

Applications

- Ray-tracing
- Range search in 2 dimensions
- Fligh simulators
- N-body simulations
- Collision detection
- Astronomical databases
- Search for closest neighbors
- Adaptative grid generation
- Remove hidden surfaces and shading

Quadtree

- Idea: Divide tha plane recursively into 4 squares
- Implementation: 4 -way tree (actually a trie)

- Advantage: Good performance when clustered data
- Drawback: Arbitrary depth!

Quadtree: range search in 2D

- find recursively all keys in NE sqaure (if any can be found there)
- find recursively all keys in NW sqaure (if any can be found there)
- find recursively all keys in SE sqaure (if any can be found there)
- find recursively all keys in SW sqaure (if any can be found there)

The dimensionality problem

- Range search in k dimensions
- Main application: Multidimensional databases
- 3D: Octree: divide recursively the 3D space in 8 octants
- 100D: Centree: Divide recursively the 100D space into 2^{100} centrants???

Raytracing with octrees
http://graphics.cs.ucdavis.edu/~gregorsk/graphics/275.htmI

2D-tree

Divide recursively the plane into two half plances

2D-tree

- Data structures: BST, but alternate using x - and y-coordinates as key
- Seach returns a rectangle containing a point
- Insertion further divides the plane

2D-tree: Range search in 2D

Find all points in a rectangle given by the query (rectangle sides are parallel with the coordinates)

- Control if current points is in the rectangle
- Recursively search in the left/top subtrees (if any can be part of the rectangle)
- Recursively search in the righ/lower subtrees (if any can be part of the rectangle)

2D-tree: Search for closest neighbor

Find a point that is closest to a given point

- Control distance from current point to the point in the query
- Search recursively in the left/top subtree (if they can contain a closer point)
- Search recursively in the right/lower subtree (if they can contain a closer point)
- Set up the recurisve search so that it starts looking for the point in the query

- Typical execution time: $\log N$
- Worst case (even if the tree is balanced): N

KD-trees

- KD-tree: Recursively partition the k-dimensional space in two half spaces
- Implementation: BST, but cycle through the dimensions like in a 2D-tree

- Efficient, simple datastructure to manage k-dimensional data
- Wide usage
- Adapts well to high dimensional and clustered data
- Discovered by a student (Jon Bentley) in an algorithm course!

