
Föreläsning 16
Splay-trees, Heaps, Skip-lists
TDDD86: DALP

Utskriftsversion av Föreläsing i Datastrukturer, algoritmer och programmeringsparadigm
13 November 2023

IDA, Linköpings universitet

16.1

Content

Contents

1 Splay-trees 1

2 Priority queues 6
2.1 Heaps . 8

3 Skip-lists 9 16.2

1 Splay-trees

Binary search trees are not unique
Recall that binary search trees:

• Allow for simple insertion and deletion, but . . .
• ”balance” depends on insertion and deletion orders.

Combine with the heuristic: ”keep last used first”?

• Elements that currently most often used should be close to the root!

insert: 1,2,4,5,8

insert: 5,2,1,4,8 16.3

Operation splay(k)

• Perform a normal search for k, and remember the nodes we pass. . .
• Let P be the last node we visit

– If k is in the tree T , then it is in P,

– otherwise, P is parent to an empty node in the tree

• Get back to the root and perform a rotation at each node to move P up in the tree . . . (3 cases)
16.4

1

Operation splay(k)

• zig: parent(P) is root: rotate wrt. P

Q

P

a b

c a

Q

P

cb
16.5

Operation splay(k)

• zig-zig: P and parent(P) are both left children (or both right children): perform two rotations to move
P upwards

P

Q

a

b

P

a b

c

d

Q

R Q

P

a b

R

c d

R

c d

16.6

Operation splay(k)

• zig-zag: One of P and parent(P) is a left child and the other is a right child: perform two different
rotations

Q

a

R

P

a b

b c

d
c d

R

P

Q

Observe that rotations can increase the height of the tree! 16.7

2

find and insert
function FIND(k,T)

SPLAY(k,T)
if KEY(ROOT(T)) = k then return (k,v)
else return null

function INSERT(k,v,T)
insert (k,v) as in a binary search tree
SPLAY(k,T)

16.8

Example: insertion of 14

16.9

Example: insertion 14

16.10

Example: insertion of 14

3

16.11

Example: insertion of 14

16.12

Example: insertion of 14

4

16.13

Example: insertion of 14

16.14

delete
function DELETE(k,T)

SPLAY(k,T)
if KEY(ROOT(T)) = k then

remove ROOT(T): gives Tle f t and Tright
do SPLAY on max value in Tle f t , gives T ′le f t
bind Tright to ROOT(T ′le f t)

You can also use successor in inorder traversal. 16.15

Example: remove 8

5

16.16

Performance

• Each operation might need to be executed on unbalanced trees

– no guaranty to achieve O(logn) in worst case

• Amortized time is logarithmic

– each sequence of m operations, executed on an initially empty tree, take in total O(m logm)
time complexity

– therefore, the amortized cost for an operation is O(logn) even if individual operations can
perform much worst

16.17

2 Priority queues

Priority queues
Naturally encountered:

• waiting lists (among tasks, events in a simulation)
• If a resource is free, choose an element from the waiting list
• Choice based on a partial/linear order:

– task with highest priority is chosen

– each event is to occur at some time, events are to be processed in time order
16.18

ADT priority queue

• Linearly ordered set of keys K
• We store pair (k,v) (as in a dictionary ADT), multiple pairs with same key are allowed
• A typical operation is to fetch a pair with a minimal key
• Operations on a priority queue P:

– makeEmptyPQ()

– isEmpty()

– size()

– min(): find pair (k,v) with minimal k in P; return (k,v)

– insert(k,v): insert (k,v) in P

– removeMin(): remove and return a pair (k,v) in P with a minimal k; error if P is empty
16.19

6

Implementation of priority queues

• One could use sorted linked lists or BSTs
• Another idea: use a complete binary tree where the root, in each (sub)tree, contains a minimal element

in the (sub)tree

This is a partially sorted tree, also called a heap! 16.20

Complete binary tree: sequential memory

16.21

Sequential memory
Use a table table<key,info>[0..n-1]

• leftChild(i) = 2i+1 (returns null if 2i+1≥ n)
• rightChild(i) = 2i+2 (returns null if 2i+2≥ n)
• isLeaf(i) = (i < n) and (2i+1 > n)
• leftSibling(i) = i−1 (returns null if i = 0 or odd(i))
• rightSibling(i) = i+1 (returns null if i = n−1 or even(i))
• parent(i) = b(i−1)/2c (returns null if i = 0)
• isRoot(i) = (i = 0)

16.22

7

2.1 Heaps

Updating a heap structure

• The last leaf is the last node when traversing level by level

• removeMin(PQ) // remove the root

– Replace root with last leaf

– Restore the partial ordering by pushing the node downwards with ”down-heap bubbling”

• insert(PQ,k,v)

– insert node (k,v) after the last leaf

– Restore the partial order with ”up-heap bubbling”
16.23

Properties

• size(), isEmpty(), min(): O(1)
• insert(), removeMin(): O(logn)

Recall array representation of a complete binary tree . . .
• Compact representation
• ”Bubble-up” and ”bubble-down” have efficient implementations

16.24

Example: ”bubble-up” after insert(4,15)

16.25

Recall ArrayList from lecture 7

• Write a class that implements an array of integers

– We call it ArrayList

– Behavior:

add(value) insert(index, value)
get(index) set(index, value)
size() isEmpty()
remove(index)
indexOf(value) contains(value)
toString()
...

• The size of the list will be the number of elements inserted so far

– The actual length of the array (capacity) can be larger. Start with a size of 10 by default.
16.26

8

Destructor

• // ClassName.h // ClassName.cpp
~ClassName(); ClassName::~ClassName() { ...

– Called when the object is destroyed by the program (when the object goes out of scope or delete
is used)

– Can be useful to:

* free temporary resources

* free dynamically allocated memory used by the members

• Does ArrayList need a destructor? What should it do?

– Yes; to free the memory associated with storing elements
16.27

Increase capacity

• What if the users wants to add more than ten elements?

list.add(75) //add a 11th element

• Answer: double the size of the field

– Do not forget to release the memory used by the old array!

– int* a = new int[10];
int* b = new int[20];
std::copy(a, a+10, b); // Do not use memcpy(b, a, 10 * sizeof(int))!
delete[] a;
a = b;
std::copy(first, after, output);

16.28

Amortised analysis
We want a new type of array that automatically increase available size when full (when the number

of ellementsis n is same as the capacity N). Suppose the array always insert new element in the first free
position:

• Allocate a new array B with capacity 2N
• Copy A[i] to B[i], for i = 0, . . . ,N−1
• Lets A = B, we let B take over the role A had.

In term of effectiveness, expanding the array is slow. But the algorithmic complexity is:

• O(1) most of the time
• O(n) for copying n element and O(1) for inserting after reallocation.

16.29

3 Skip-lists

Skip-lists

• A hierarchical linked list. . .
• A randomized alternative to implementing a dictionary ADT
• Insertion uses randomization (”coin tossing”)
• Good expected performance
• Worst behavior occurs extremely rarely (for more than 250 data elements, the risk that the search

time is more than 3 times the expected time is less than 10−6)
16.30

9

The skip-list data-structure

• Levels L1, . . . ,Lh of nodes (keys, values)
• Same nodes on several levels (tower)
• Special keys: −∞ and +∞ . . . smaller/larger than all real keys. . .
• Several levels of doubly linked lists, the higher the sparser

– Level 1: all nodes are part of a doubly linked list from −∞ to +∞, ordered according to ’<’-
relation

– In average, half the nodes from Li are also part of Li+1

– Special keys −∞ and +∞ are part of all levels

– Only −∞ and +∞ are part of Lh
16.31

Example: a skip-list

16.32

Search
Seach key k:

• Follow the list at the highest level. . .

– Stop just before passing some ki > k

– If found k, return the result, otherwise . . .

• We stopped at some level:

– Did we find the key?

– No, change the lower level (using the ”last tower”) and continue searching

– Return: largest key ki ≤ k (which could be +∞)
16.33

Searching
Searching for key k:

• Similarities with binary search, but for lists
• Example: find(18)

16.34

10

Insert
function INSERT(x)

P← FIND(x)
if P.value < x then

insert a new node after P
”toss a coin” to decide how high the ”tower” should be:
while ”tossing a coined”=yes do

increase tower with one level
(might increase the height of the skip-list)

16.35

Example: insert(20)

16.36

Deletion . . . and properties

• Similar to search:

– Search

– if found, remove and repair links between the towers

• Worst case for find, insert and remove in a skip-list with n elements is O(n+h)
• But expected execution time (assuming the keys are uniformly distributed) is O(logn) if the search

starts at height blognc
16.37

11

	Splay-trees
	Priority queues
	Heaps

	Skip-lists

