Föreläsning 15 Trees

TDDD86: DALP
Utskriftsversion av Föreläsing i Datastrukturer, algoritmer och programmeringsparadigm
02 November 2023
IDA, Linköpings universitet

Content
Contents
1 Symbol tables
1.1 Abstract datatypes. 1
1.2 Implementation . 1

2 Trees 2
2.1 Basic concepts . 2
2.2 ADT tree . 3
2.3 Representation of binary trees . 3
2.4 Tree traversals. 4
2.5 Binary search trees . 5
2.6 AVL-trees . 7
2.7 (2,3)-tree . 11
2.8 B-tree . 13

1 Symbol tables
Symbol tables

- Abstraction of key-value pairs
- insert a value with a specified key
- Given a key, search for a corresponding value

1.1 Abstract datatypes

1.2 Implementation

Implementation: Set, multiset, Map, Dictionary

- Table/array: sequence of adjacent memory locations
- Unordered: no order required between $T[i]$ and $T[i+1]$
- Ordered: ... order required between the keys $T[i]<T[i+1]$
- Linked lists
- unordered
- ordered
- (Binary) search trees
- Hashing
- Skip-lists

Table representation of a Dictionary

unordered table:

find with linear search

- unsuccessful look-up: n comparisons $\Rightarrow O(n)$ time complexity
- successful look-up, worst case: n comparisons $\Rightarrow O(n)$ time complexity
- successful look-up, average case with uniform partition of the query positions: $\frac{1}{n}(1+2+\ldots+n)=$ $\frac{n+1}{2}$ comparisons $\Rightarrow O(n)$ time complexity

Table representation of a Dictionary

Ordered table (keys are linearly ordered):

find with binary search

- look-up: $O(\log n)$ time complexity
- ... updates are however expensive!!

2 Trees

2.1 Basic concepts

Why trees?
Tree-like structures appear naturally in many situations

- File systems
- Decision trees
- Hierarchical organizations of
- Document: book, chapter, section
- XML-document
- To capture an ordering or a priority

Terminology

- A (rooted) tree $T=(V, E)$ consists in a set V of nodes and edges E, where each edge is a pair $(u, v) \in V \times V$.
- Nodes $v \in V$ store data in a parent-child relationship.
- A parent-child relationship between the parent node u and the child node v is expressed with a directed edge $(u, v) \in E$, from u to v.
- Each node has at most a parent; it can have many siblings.
- There are at most one node without a parent - the root node.

More terminology

- The degree of a node is the number of its children
- A node without children is a leaf or an external node. All other nodes are internal nodes.
- A path is a sequence of nodes $\left(v_{1}, v_{2}, \ldots, v_{k}\right)$, where $k>0$ and $\left(v_{i}, v_{i+1}\right)$ is an edge for each for $i=1, \ldots, k-1$.
- The length of a path $\left(v_{1}, v_{2}, \ldots, v_{k}\right)$ is $k-1$. Observe the length of the path $\left(v_{1}\right)$ with a single node is 0.
- A node n is an ancestor to a node v iff there is a path from n to v in T.
- A node n is a descendant to a node v iff there is a path from v to n in T.
\qquad
More terminology
- Depth $d(v)$ of a node v is the length of the path from the root node to v.
- Height $h(v)$ of a node v is the length of the longest path from v to some descendant of v.
- Height $h(T)$ of a tree T is the height of the root node.

Some tree types

- Ordered tree: linear ordering (as in left, right, or first, second etc) between the children of each node. Do not confuse with Sorted trees.
- Binary tree: ordered tree where each node has a degree ≤ 2. A node can have a left child and a right child.
- Empty binary tree (null): a binary tree without nodes.
- Full binary tree: non-empty binary tree where each node has a degree of 0 or 2 . Consequence (by induction on number of nodes): \#leaves $=1+$ \#internal nodes.
- Perfect binary tree: full binary tree where all leaves have the same depth. Consequence (induction on height) : \#nodes $=2^{h+1}-1$ where h is the height of the tree.
- Complete binary tree: An approximation of perfect trees where rows are filled row after row from left to right. Consequence: a complete binary tree with height h and n nodes satisfies $2^{h} \leq n \leq 2^{h+1}-1$.

2.2 ADT tree

Operations on a node v of a tree T

- parent (v) returns the parent of v, error if v is a root node
- children (v) returns set of children of v
- firstChild (v) returns first child of v or null if v is a leaf
- rightSibling (v) returns right sibling to v or null if no right sibling
- leftSibling (v) returns left sibling of v or null if no left sibling
- isLeaf (v) returns true iff v is a leaf
- isInternal (v) returns true iff v is not a leaf node
- isRoot (v) returns true iff v is a root node
- depth (v) returns depth of v in T
- height (v) returns height of v in T

Operations on a tree T

- size () returns number of nodes in T
- $\operatorname{root}()$ returns root node of T
- height () returns height of T

In addition, for a binary tree

- left (v) returns left child of v or error
- right (v) returns right child of v or error
- hasLeft (v) checks if v is a left child
- hasRight (v) checks if v is a right child

2.3 Representation of binary trees

A linked representation

class treeNode<T> nodeInfo: $\mathrm{T} \quad N$: integer children: array[1.. N] of treeNode< $\mathrm{T}>$

Or, for a binary tree
class treeNode<T> nodeInfo: $\mathrm{T} \quad$ leftChild: treeNode<T> rightChild: treeNode<T>

Complete binary tree: sequential memory

Sequential memory
Use a table table<key,info>[0..n-1]

- leftChild $(i)=2 i+1$ (returns null if $2 i+1 \geq n$)
- $\operatorname{rightChild}(i)=2 i+2$ (returns null if $2 i+2 \geq n$)
- $\operatorname{isLeaf}(i)=(i<n)$ and $(2 i+1>n)$
- leftSibling $(i)=i-1$ (returns null if $i=0$ or odd $(i))$
- rightSibling $(i)=i+1$ (returns null if $i=n-1$ or even (i))
- parent $(i)=\lfloor(i-1) / 2\rfloor$ (returns null if $i=0$)
- $\operatorname{isRoot}(i)=(i=0)$

2.4 Tree traversals

Traversal of a tree Generic routine for traversing a tree

procedure VISIT(node v)

for all $u \in \operatorname{children}(v)$ do
VISIT(u)

Call visit $(\operatorname{root}(T))$ and each node in T will be visited exactly once!

```
procedure PREORDERVISIT(node v)
        DOSOMETHING}(v)\quad\triangleright\mathrm{ before children
        for all }u\in\operatorname{CHILDREN(v) do
            PREORDERVISIT(u)
procedure POSTORDERVISIT(node v)
        for all }u\in\operatorname{CHILDREN}(v)\mathrm{ do
            POSTORDERVISIT(u)
        DOSOMETHING}(v)\quad\triangleright after children
```

Traversing a tree (here, for binary trees)
procedure INORDERVISIT(node v)
$\operatorname{INORDERVISIT}(\operatorname{LEFTCHILD}(v))$
DOSOMETHING $(v) \quad \triangleright$ after all left descendants
INORDERVISIT(RIGHTCHILD (v))

Traversing a tree

```
procedure LEVELORDERVISIT(node v)
    Q\leftarrowMAKEEMPTYQUEUE()
    ENQUEUE ( }v,Q
    while not ISEMPTY (Q) do
            v\leftarrow\operatorname{DEQUEUE}(Q)
            DOSOMETHING(v)
            for all }u\in\operatorname{CHILDREN}(v)\mathrm{ do
            ENQUEUE (u,Q)
```

A breadth first traversal.

2.5 Binary search trees

Binary search trees

A binary search tree (BST) is a binary tree such that:

- information associated with a node is (key,value). The keys are ordered as foolows.

The key in each node is:

- larger than or equal to each key appearing in all left descendants, and
- less than the key appearing in all right decendants.


```
ADT Map with a binary search tree
    procedure FIND(k,v)
    if v= null then return null
    else if KEY (v)=k then return v
    else if }k<\operatorname{KEY}(v)\mathrm{ then
            FIND (k,LEFTCHILD (v)) \triangleright unsuccessful if no leftChild
            else
            FIND}(k,\operatorname{RIGHTCHILD}(v))\quad\triangleright\mathrm{ unsuccessful if no rightChild
```

 Worst case: \(\operatorname{HEIGHT}(T)+1\) comparisons.

ADT Map with a binary search tree

$\operatorname{insert}(k, v)$: insert (k, v) as a new leaf if unsuccessful find, otherwise update the node

procedure $\operatorname{FIND}(k, v)$

if $v=$ null then return null
else if $\operatorname{KEY}(v)=k$ then return v
else if $k<\operatorname{KEY}(v)$ then
$\operatorname{FIND}(k, \operatorname{LEFTCHILD}(v))$
else
$\operatorname{FIND}(k, \operatorname{RIGHTCHILD}(v))$

Worst case: $\operatorname{HEIGHT}(T)+1$ comparisons

ADT Map with a binary search tree
remove (k) : find, then. . .

- if v is a leaf (e.g., 5, 49), remove v
- if v has a child u, replace v with u (e.g., 10, 20)
- if v has two children (e.g., 15,33), replace v with its successor in inorder and remove the successor
- (alternatively with its predecessor in inorder and remove the predecessor)

Worst case: $\operatorname{HEIGHT}(T)+1$ comparisons.
ADT Map with binary search tree

Heights of randomly chosen binary trees

How Tall is a Tree?

Bruce Reed
reed@moka.ccr.jussieu.fr
abstract
Let H_{n} be the height of a random binary search tree on n
nodes. We show that there exists constants $\alpha=431107$ nodes. We show that there exists constants $\alpha=4.31107$..
and $\beta=1.95 \ldots$ such that $\mathrm{E}\left(H_{n}\right)=\alpha \log n-\beta \log \log n+$ $O(1)$, We also show that $\operatorname{Var}\left(H_{n}\right)=O(1)$.

Worst case: $\operatorname{HEIGHT}(T)+1$ comparisons.

Binary search trees are not unique

Same data can result in different binary search trees
insert: 1,2,4,5,8

insert: 5,2,1,4,8

Successful look-up

BST in worst case

- BST degenerates to a linear sequence
- expected number of comparisons is $(n+1) / 2$

Balanced BST

- depth of leaves does not differ by more than 1
- $O\left(\log _{2} n\right)$ comparisons

Therefore - Strive to maintain them balanced!
Some common balanced trees:

- AVL-trees
- (2,3)-trees, (a,b)-trees,
- Red-black trees,
- B-trees,
- Splay-trees

2.6 AVL-trees

AVL-tree

- Self balancing BST
- $\mathrm{AVL}=$ Adelson-Velskii and Landis, 1962
- Idea: Maintain balance information at each node
- AVL-property
- The difference in height between the children of each node is at most 1
- alternatively, let $b(v)=$ height $(\operatorname{leftChild}(v))$ - height $(\operatorname{rightChild}(v))$ for node v in T. An AVLtree T satisfies $b(v) \in\{-1,0,1\}$ for each v in T.

Maximal height of an AVL-tree

Proposition 1. Height of an AVL-tree with n nodes is $O(\log n)$.

As a result,

Proposition 2. find, insert and remove can be written, for AVL-trees, to have time complexity in $O(\log n)$ while preserving the AVL-property.

Exampel: an AVL-tree

Insert in an AVL-tree

- The new node might change the heights in a way that the tree needs to be balanced.
- You can track heights of the subtrees by
* storing the hights explicitly in each node
* storing the difference in each node
- Balancing is usually described with right or left rotations of subtrees.
- It is enough to use rotations to balance the tree.

Insert in an AVL-tree (simple case)

(a)

(c)
(d)

Four different rotations

 Denote with y the parent of x.

- Rename x, y, z to a, b, c based on occurence in an inorder traversal
- Let $T_{0}, T_{1}, T_{2}, T_{3}$ be an enumeration, in an inorder traversal, of subtrees of x, y och z. (none of x, y or z is root to these subtrees.)

Simple rotation if $b=y$:
"Rotate y up over $z "$

- Replace z by b. The children of b are now a and c.
- T_{0} and T_{1} are children to $a . T_{2}$ and T_{3} are children to c.

Fyra olika rotationer

- Start from new node. Look for first x with unbalanced "grand-parent" z.

Denote with y the parent of x.

- Rename x, y, z to a, b, c based on occurence in an inorder traversal
- Let $T_{0}, T_{1}, T_{2}, T_{3}$ be an enumeration, in an inorder traversal, of subtrees of x, y och z. (none of x, y or z is root to these subtrees.)

Simple rotation if $b=y$:
"Rotate y up over $z "$

- Replace z by b. The children of b are now a and c.
- T_{0} and T_{1} are children to $a . T_{2}$ and T_{3} are children to c.

Fyra olika rotationer

Denote with y the parent of x.

- Rename x, y, z to a, b, c based on occurence in an inorder traversal
- Let $T_{0}, T_{1}, T_{2}, T_{3}$ be an enumeration, in an inorder traversal, of subtrees of x, y och z. (none of x, y or z is root to these subtrees.)

Double rotation if $b=x$:
"Rotate x up over y ",
"then over z "

- Replace z by b. The children of b are now a and c.
- T_{0} and T_{1} are children to $a . T_{2}$ and T_{3} are children to c.

Eyra olika rotationer

- Start from new node. Look for first x with unbalanced "grand-parent" z. Denote with y the parent of x.
- Rename x, y, z to a, b, c based on occurence in an inorder traversal
- Let $T_{0}, T_{1}, T_{2}, T_{3}$ be an enumeration, in an inorder traversal, of subtrees of x, y och z. (none of x, y or z is root to these subtrees.)

Double rotation if $b=x$:
"Rotate x up over y ",
"then over z "

- Replace z by b. The children of b are now a and c.
- T_{0} and T_{1} are children to $a . T_{2}$ and T_{3} are children to c.

Insertion algorithm

- Start from the new node. Look for the first x with an unbalanced "grand-parent" z. Denote with y the parent of x.
- Rename x, y, z to a, b, c based on the occurence in an inorder traversal
- Let $T_{0}, T_{1}, T_{2}, T_{3}$ be an enumeration, in an inorder traversal, of the subtrees of x, y och z. (none of x, y or z is root to these subtrees.)
- Replace z by b. The children of b are now a and c.
- T_{0} and T_{1} are children to $a . T_{2}$ and T_{3} are children to c.

Exempel: insertion in an AVL-tree

- Start from the new node. Look for the first x with an unbalanced "grand-parent" z. Denote with y the parent of x.
- Rename x, y, z to a, b, c based on the occurence in an inorder traversal
- Let $T_{0}, T_{1}, T_{2}, T_{3}$ be an enumeration, in an inorder traversal, of the subtrees of x, y och z. (none of x, y or z is root to these subtrees.)
- Replace z by b. The children of b are now a and c.
- T_{0} and T_{1} are children to $a . T_{2}$ and T_{3} are children to c.

Exempel: insertion in an AVL-tree

- Start from the new node. Look for the first x with an unbalanced "grand-parent" z. Denote with y the parent of x.
- Rename x, y, z to a, b, c based on the occurence in an inorder traversal
- Let $T_{0}, T_{1}, T_{2}, T_{3}$ be an enumeration, in an inorder traversal, of the subtrees of x, y och z. (none of x, y or z is root to these subtrees.)
- Replace z by b. The children of b are now a and c.
- T_{0} and T_{1} are children to $a . T_{2}$ and T_{3} are children to c.

Deletion in an AVL-tree

- find and remove are similar to a simple binary search tree
- Update the balance information on the way up to the root
- If unbalanced, restructure using rotations:
- when restoring balance in a part, we can create unbalance in another place
- Repeat balancing untill the root
- At most $O(\log n)$ rebalancings
2.7 (2,3)-tree

Another approach: drop some requirements

- AVL-tree: binary trees, accept some controlled unbalance. . .
- Recall
- Full binary trees: non-empty trees with node degrees of 0 or 2
- Perfect binary trees: full where all leaves have the same depth
- Maintain a perfect tree and drop the binary requirement? obtained tree would be perfectly balanced.

$(2,3)$-tree

in a binary search tree:

- a "pivot" element
- If larger, look to the right
- If smaller, look to the left

In a (2,3)-tree:

- Allow several (here 1-2) pivot elements
- Number of children of an internal node is 1 plus the number of pivot elements (here 2-3)

More generally (a, b)-tree

- a, b satisfy $2 \leq a \leq(b+1) / 2$
- Each internal node, except for the root, has a to b children
- The root is either a leaf or it has 2 to b children
- find as in a BST with the additional pivots
- insert has to handle overfull nodes, in which case nodes have to be divided
- remove has to handle underfull nodes, in which case values need to be transferred between the nodes, or nodes need to be merged

Proposition 3. Height +1 of an (a, b)-tree with n nodes is between $\log _{b}(n+1)$ and $\log _{a}(n+1)$.
\Rightarrow more flat trees, but more work in the nodes
Inserting in an (a, b)-tree with $a=2$ and $b=3$
(5)

Insert(10)

Insert(15)

- If there is place in a child, add the element...
- If full, divide the node and promote the pivot element up. This may need to be repeated.

Deletion in a (2,3)-tree
We consider three cases:

- A key is deleted without violating the requirements
- The last key in a leaf node is deleted and becomes empty
- transfer some key from another node: ok if a sibling has 2+ elements
- otherwise, merge
- A key in an internal node is deleted

Deletion in a (2,3)-tree

- A key is deleted without violating the requirements
- The last key in a leaf node is deleted and becomes empty
- transfer some key from another node: ok if a sibling has 2+ elements
- otherwise, merge
- A key in an internal node is deleted

Deletion in a (2,3)-tree

- A key in an internal node is deleted
- replace predecessor or successor in order and repair inconsistencies with replacements and merging

Delete(20)

Ersätt... ...slå ihop löv

2.8 B-tree

B-tree

- Used for indexing external data: (e.g. content on a hard drive)
- A B-tree is an (a, b)-tree where $a=\lceil b / 2\rceil$
- We can choose b so that it exactly occupies a hard drive memory block
- With $a=\lceil b / 2\rceil$ we ensure internal nodes are half full and merging results in a block
- B-tree (and variants of such as B+-trees) are used in many filesystems and databases
- Windows: HPFS
- Mac: HFS, HFS+
_ Linux: ReiserFS, XFS, Ext3FS, JFS
- Databaser: ORACLE, DB2, INGRES, PostgreSQL

