Forelasning 13

Recursion

TDDD86: DALP

Utskriftsversion av Féreldsing i Datastrukturer, algoritmer och programmeringsparadigm

10 October 2023

Content

Contents
[Introduction]
2__Recursion in C++

2.1 Implementation av recursion

B__Algorithm analysis

R Analysis of algorithms| . . .
. Recursive algorithms|
3.3 Common growth rates|. . . .

1 Introduction

Recursion

IDA, Linképings universitet

* recursion: Defining an operation in terms of itself

— To solve a problem recursively requires solving smaller instances of the same problem

* recursive programming: Write functions that call themselves to solve problems recursively

— As powerful as iteration (loops)

— Particularly suitable for certain types of problems

Why learn recursion??

“Cultural experience”: Another way to think about problem solving.

» powerful: can solve certain types of problems better than iteration
* Can result in elegant, simple and short code (if used correctly)
¢ Many (functional languages such as Scheme, ML and Haskell) programming languages use recursion

exclusively (no loops)

* A key component in many of the remaining labs in the course

13.1

13.2

13.4

Exercise

¢ (To a student in the first row) How many students sit in the “column” behind you in the lecture room?

— Suppose you can only see the people around you. You can therefore not just count the people
behind you

— You can however ask questions to the people around you.

— How can you solve the problem recursively?

Hur ménga ar det i den har kolumnen?
... Ohh, hur listar man ut det har nu igen?

Idea

* Recursion is about dividing a problem into smaller instances of the same problem.
— Each person can solve a small part of the problem.

+ How to define a smaller instance of the problem such that it is easier to solve?

= What information from your neighbor would help you in solving the problem?

Hej granne, hjalp mig!

v

Hej granne, hjdlp mig!

l & 9] granne, hjalp mig!

Recursive algorithm

¢ Number of people behind me:
— If there is a neighbor behind me, ask the neighbor how many people are behind him/her.
% When they answer N, then I should answer N + 1

— If there is no one behind me I should answer 0.

3. Hur manga finns bakom mig?

L

2. Hur ménga finns bakom mig?

l & 9ur manga finns bakom mig?

13.5

13.6

18.7

Recursion and case analysis

* Any recursive algorithm involves at least two cases:
— base case: A simple instance of the problem that can be solved directly.

— recursive case: A more complex instance of the problem for which the solution can be de-
scribed in terms of solutions to smaller instances of the same problem..

— Some recursive algorithms have more than one base case. All have at least one.

— Key to recursive programming is to identify these cases.

13.8
2 Recursion in C++
Recursion i C++
* Consider the following function to write a line of stars
// Prints a line containing the given number of stars.
// Precondition: n >= 0
void printStars(int n) {
for (int i = 0; i < n; i++) {
cout << "x";
}
cout << endl; // end the line of output
}
* Write a recursive version of the function (it should call itself).
— Solve the problem without using loops.
— Tips: Your solution should write a single star at a time.
13.9
Use recursion correctly
* Condense recursive cases to one case:
void printStars (int n) {
if (n == 1) {
// base case; just print one star
cout << "x" << endl;
} else {
// recursive case; print one more star
cout << ll*"’.
printStars(n - 1);
}
}
13.10

“Recursion-zen”
* The actual, simpler, base case is when n is 0, not 1:

void printStars (int n) {

if (n == 0) {
// base case; just end the line of output
cout << endl;

} else {
// recursive case; print one more star
cout << "x";
printStars(n - 1);

13.11

Exercise - printBinary

e Write a recursive function printBinary that takes a natural number and that writes it in base 2
(binary)
— Example: printBinary (7) prints 111
— Example: printBinary (12) prints 1100

plats [10| 1 3216|1842 |1
varde | 4 | 2 1101|010

— Example: printBinary (42) prints 101010

— Write a recursive function without loops 1312
Case analysis
* Recursion is about solving parts of a larger problem
— what is 69743 in base 2?
= what do we know about its representation in base 2?
— Case analysis:

+ Which numbers are simple to write in base 2?
% Can we express a larger number in terms of (some) smaller one(s)?

13.13
Find the pattern
¢ Assume an arbitrary number N.
— If the representation of N in base 2 is
— Then the representation of (N /2)
— and the representation of (N %2) is

+ What can we deduce?
10010101011
1001010101

1

13.14

Solution - printBinary

// Prints the given integer’s binary representation.
// Precondition: n >= 0
void printBinary (int n) {
if (n < 2) {
// base case; same as base 10
cout << nj;
} else {
// recursive case; break number apart
printBinary(n / 2);
printBinary(n % 2);

13.15

Exercise - reverseLines
* Write a recursive function reverseLines that takes a file stream as input and that prints the lines

Exempelindatafil: Forvantat utdata:

Roses are red, Are belong to you.
Violets are blue. All my base

All my base Violets are blue.
Are belong to you. Roses are red,

in reverse order
— Which cases should be considered?

* How can we solve part of the problem at a time?

= What would be a file that is easy to reverse? 1516

Pseudocode for reversing
¢ Reverse lines in a file:
— Read a line L from the file
— Print the rest of the lines in reverse order.
— Print the line L

* If we only could reverse the or the lines in the file. ..

Solution - reverselLines

void reverselines (ifstream& input)
string line;
if (getline(input, line)) {
// recursive case
reverselLines (input) ;
cout << line << endl;

¢ What is the base case?

2.1 Implementation av recursion
Recall: stacks and function calls

* Compiler implement functions:

— Function calls: push:a local context and return address

— Return: pop:a return address and local context

— This enables recursion.

gcd (216, 192)

p =216, q = 192

static int gcd(int p, int q) {
if (0) retu
else

rn_p
gcd (192, 24)

static int gcd(int p, int q) {
p =192, q =24 if (9 ==0 2
else

n p
gcd (24, 0)

}

{

static int gcd(int p, int @) {
if (q == 0) return p;
else return gcd(q, p % q);

2.2 Tail recursion

Tail recursion

main() {
inti=5;
foo(i);

}
foo(int j) {
intk;
k=j+1;
bar(k);

}

bar(int m) {

A recursive call is tail recursive iff the first instruction after the control gets back after the call is a

return.

¢ The stack is not needed

¢ Tail recursive functions can be rewritten into iterative functions

The recursive call in FACT is not tail recursive:

function FACT(n)
if n = 0 then return 1
else return n-FACT(n — 1)

First instruction after the return from the recursive call is a multiplication

to b kept on the stack

= n needs

13.17

13.18

13.19

13.20

A tail recursive function

function BINSEARCH(V[a, . . ., b],x)
if a < b then
m 5P|
if v[m].key < x then
return BINSEARCH(v[m+1,...,b],x)
else return BINSEARCH(V[q, ..., m],x)

if v[a].key = x then return a
else return ’not found’

The two recursive calls are tail recursive.

Eliminating tail recursion
The two tail recursive calls can be eliminated:

1: function BINSEARCH(V]g, ...,b].x)
2 if a < b then

3 ms |45t]

4 if v[m].key < x then

5: a < m+ 1 {var: return BINSEARCH(V[m +1,...,b],x)}
6

7

8

9

else b <— m {var: return BINSEARCH(V[a, .. .,m],x)}
goto (2)

if v[a].key = x then return a

else return ’not found’

Tail recursive factorial
fact can be rewritten by using a help function:

function FACT(n)
return FACT2(n, 1)

function FACT2(n, f)
if n = O then return f
else return FACT2(n— 1,n- f)

FACT?2 is tail recursive = memory usage after eliminating the recursive in O(1)

2.3 One more exercise

Exercise - pow

* Write a recursive function pow that takes two natural numbers as arguments: a base and an exponent

and that returns the base to the power of the exponent.
— Example: pow (3, 4) returns 81

— Solve the problem recursively without loops

Solution - pow

// Returns base ~ exponent.

// Precondition: exponent >= 0

int pow (int base, int exponent) {
if (exponent == 0) {

// base case; any number to Oth power is 1

return 1;
} else {
// recursive case: x"y = x * x"(y-1)

return base » pow(base, exponent - 1);

13.21

13.22

13.23

13.24

13.25

An optimization?

* Observe the following mathematical properties:

312 = 531441 =96
- (32)6
531441 =(92)3
= (32

— When does this work?
— How can we leverage on it?

— Why use it when the code already works?

Solution 2 - pow

// Returns base " exponent.
// Precondition: exponent >= 0
int pow(int base, int exponent) {
if (exponent == 0) {
// base case; any number to Oth power is 1
return 1;

} else if (exponent % 2 == 0) {
// recursive case 1: x"y = (x°2)"(y/2)
return pow (base * base, exponent / 2);
} else {

// recursive case 2: x"y = x * x"(y-1)
return base » pow(base, exponent - 1);

3 Algorithm analysis

3.1 Analysis of algorithms
Analysis of algorithms
What is analysis?

¢ Correctness (not in this course)
¢ Termination (not in this course)
« Efficiency, resources, complexity

Time complexity — how long it takes an algorithm in the worst case?

* as a function of what?
¢ what is a time step?

Memory complexity — how much memory is required?

* as a function of what?
¢ how is it measured?
* remember that code and function calls also takes memory

How can you compare different effectiveness

¢ Study execution time (or memory consumption) in function of the size of input data.
e When can we say that two algorithms have “similar effectiveness”?
* When can we say that an algorithm is better than an other?

Comparison between some elementary functions

n | logyn n nlogyn n? 2

2 1 2 2 4 4

16 4 16 64 256 6.5-10%
64 6 64 384 4096 1.84-10%°

1.84-10" useconds = 2.14 - 108 days = 583.5 millennia

13.26

13.27

13.28

13.29

Simplify calculations

“ It is convenient to have a measure of the amount of work involved
in a computing process, even though it be a very crude one. We may
count up the number of times that various elementary operations are
applied in the whole process and then given them various weights.
We might, for instance, count the number of additions, subtractions,
multiplications, divisions, recording of numbers, and extractions
of figures from tables. In the case of computing with matrices most
of the work consists of multiplications and writing down numbers,
and we shall therefore only attempt to count the number of
multiplications and recordings. ” — Alan Turing

ROUNDING-OFF ERRORS IN MATRIX PROCESSES
By A. M. TURING
(National Physical Laboratory, Teddington, Middlesex)
[Received 4 November 1047]
SUMMARY

A number of methods of solving sets of linear equations and inverting matrices
aro diseussed. The theory of the rounding-off errors involved is investigated for
some of the methods. In all cases examined, including the wellknown ‘Gauss

elimination process’, it is found that the errors are hormally quite moderate: no
exponential build-up need occur.

13.30

How complexity can be specified?

growth

¢ How does the complexity grow with the size n of input data?
* Asymptotic complexity — what happens when n grows to infinity?
* Much easier if we ignore constant factors

* O(f(n)) — grows at most as fast as f(n)
* Q(f(n)) — growth at least as fast as f(n)
O(f(n)) — grows as fast as f(n)

13.31

Ordo-notation
f,g: grow from N to R™

* f€0(g) if and only if it exists ¢ > 0,19 > 0 such as f(n) < c- g(n) for all n > ng Intuition: ignoring
the constant factor, f does not grow faster than g

* f€Q(g) if and only if it exists ¢ > 0,n9 > 0 such as f(n) > c¢- g(n) for all n > ng Intuition: ignoring
the constant factor, f grows at least as fast as g

e f(n) € ©(g(n)) if and only if f(n) € O(g(n)) and g(n) € O(f(n)) Intuition: ignoring the constant
factor, f and g have similar growth

Note: Q is the opposite of O, i.e. f € Q(g) if and only if g € O(f). 13.32

3.2 Recursive algorithms

Execution time for recursive algorithms

¢ Characterize execution time with a recursive relation
¢ Find a solution in closed form the recursive relation
« If you do not recognize the recursive relation, you can

— “Unroll” the relation a number of times to formulate a hypothesis for a possible solution of the

form T (n) =...
— Prove the hypothesis about T'(n) by induction. If it does not work, modify the hypothesis and
t in. ..
ry again 13.33
Example: Factorial function
function FACT(n)
if n = O then return 1
else return n-FACT(n — 1)
Execution time:
* time for comparison: 7.
* time for multiplication: ¢,
* time for calls and returns: ¢,
Total execution time 7'(n). T(0) =t,+t. T(n) =ty +tc + 1t +T(n—1), om n > 1 Hence, for n > 0:
T(n) =ty +1c+1tm) + (tr+lc+1m)+T(n—2) =
=(tr+tet+tm)+ @t +tettm)+(tr+te+tm)+T(n=3)=...=
= (trttet+tm)+...+(trttc+tm)+Htr+te =n-(tr+tc+tym) +1.+1. € O(n)
n ggr
13.34
Example: Binary search
function BINSEARCH(V[a, . . ., b],x)
if a < b then
me [452)
if v[m].key < x then
return BINSEARCH(v[m + 1,...,b],x)
else return BINSEARCH(Va, ..., m],x)
if v[a].key = x then return a
else return "not found’
Let T'(n) be the time, in the worst case, to search among n numbers with BINSEARCH.
el ifn=1
T(n) = { T([41)+O(1) if n> 1
If n=2" we get
_J e)ifn=1
Tim) = { T (4)+0(1)ifn> 1
We can then conclude that 7'(n) = @(logn).
13.35
Master theorem
Sats 1 (“Master theorem”). Assume a > 1,b > 1,d > 0. The recursive relation
T(n) = aT (%) + f(n)
T(l) = d
has the following asymptotic solution
o T(n) = ©(n'°%9) if f(n) € O(n'°%*~¢) for some & > 0
* T(n) = O(n'°%logn) if f(n) € O(n'°%*)
¢ T(n) =0O(f(n)) if f(n) € Q(n'°%%¢) for some € >0 and af (#) < c- f(n) for some constant ¢ < 1
for all large enough n.
Examples:
e T(n)=9T(n/3)+n
e T(n)=T(2n/3)+1
* T(n)=3T(n/4)+nlogn 13.36

3.3 Common growth rates

Common growth rates

Growth typical code description example T(2n)/T (n)
. . add two
1 a=>b+ c instruction 1
numbers
log n while (n > 1) divide binary search ~1
€2 {n=n/ 2; .} in halves y =
for (int 1 = 0; 1 < n, i++) find
n loop : 2
{ } maximum
nlogyn see lecture on mergesort divide mergesort 2
&2 g and conquer g -
for (int 1 = 0; i < n, i++) double check
n* for (int j = 0; J < n, J++) loop all pairs 4
{ ...}
for (int i = 0; i < n, i++)
3 for (int j = 0; j < n, J++) triple- check all 3
for (int k = 0; k < n, k++) loop triples
{ ...}
2" see next lecture total- check all T(n)
search subsets

10

13.37

	Introduction
	Recursion in C++
	Implementation av recursion
	Tail recursion
	One more exercise

	Algorithm analysis
	Analysis of algorithms
	Recursive algorithms
	Common growth rates

