
Föreläsning 13
Recursion
TDDD86: DALP

Utskriftsversion av Föreläsing i Datastrukturer, algoritmer och programmeringsparadigm
10 October 2023

IDA, Linköpings universitet

13.1

Content

Contents

1 Introduction 1

2 Recursion in C++ 3
2.1 Implementation av recursion . 5
2.2 Tail recursion . 5
2.3 One more exercise . 6

3 Algorithm analysis 7
3.1 Analysis of algorithms . 7
3.2 Recursive algorithms . 9
3.3 Common growth rates . 10 13.2

1 Introduction

Recursion

• recursion: Defining an operation in terms of itself

– To solve a problem recursively requires solving smaller instances of the same problem

• recursive programming: Write functions that call themselves to solve problems recursively

– As powerful as iteration (loops)

– Particularly suitable for certain types of problems
13.3

Why learn recursion??

• “Cultural experience”: Another way to think about problem solving.
• powerful: can solve certain types of problems better than iteration
• Can result in elegant, simple and short code (if used correctly)
• Many (functional languages such as Scheme, ML and Haskell) programming languages use recursion

exclusively (no loops)
• A key component in many of the remaining labs in the course

13.4

1

Exercise

• (To a student in the first row) How many students sit in the “column” behind you in the lecture room?

– Suppose you can only see the people around you. You can therefore not just count the people
behind you

– You can however ask questions to the people around you.

– How can you solve the problem recursively?

13.5

Idea

• Recursion is about dividing a problem into smaller instances of the same problem.

– Each person can solve a small part of the problem.

* How to define a smaller instance of the problem such that it is easier to solve?

* What information from your neighbor would help you in solving the problem?

13.6

Recursive algorithm

• Number of people behind me:

– If there is a neighbor behind me, ask the neighbor how many people are behind him/her.

* When they answer N, then I should answer N +1

– If there is no one behind me I should answer 0.

13.7

2

Recursion and case analysis

• Any recursive algorithm involves at least two cases:

– base case: A simple instance of the problem that can be solved directly.

– recursive case: A more complex instance of the problem for which the solution can be de-
scribed in terms of solutions to smaller instances of the same problem..

– Some recursive algorithms have more than one base case. All have at least one.

– Key to recursive programming is to identify these cases.
13.8

2 Recursion in C++

Recursion i C++

• Consider the following function to write a line of stars

// Prints a line containing the given number of stars.
// Precondition: n >= 0
void printStars(int n) {

for (int i = 0; i < n; i++) {
cout << "*";

}
cout << endl; // end the line of output

}

• Write a recursive version of the function (it should call itself).

– Solve the problem without using loops.

– Tips: Your solution should write a single star at a time.
13.9

Use recursion correctly

• Condense recursive cases to one case:

void printStars(int n) {
if (n == 1) {

// base case; just print one star
cout << "*" << endl;

} else {
// recursive case; print one more star
cout << "*";
printStars(n - 1);

}
}

13.10

“Recursion-zen”

• The actual, simpler, base case is when n is 0, not 1:

void printStars(int n) {
if (n == 0) {

// base case; just end the line of output
cout << endl;

} else {
// recursive case; print one more star
cout << "*";
printStars(n - 1);

}
}

13.11

3

Exercise - printBinary

• Write a recursive function printBinary that takes a natural number and that writes it in base 2
(binary)

– Example: printBinary(7) prints 111

– Example: printBinary(12) prints 1100

– Example: printBinary(42) prints 101010

– Write a recursive function without loops
13.12

Case analysis

• Recursion is about solving parts of a larger problem

– what is 69743 in base 2?

* what do we know about its representation in base 2?

– Case analysis:

* Which numbers are simple to write in base 2?

* Can we express a larger number in terms of (some) smaller one(s)?
13.13

Find the pattern

• Assume an arbitrary number N.

– If the representation of N in base 2 is

– Then the representation of (N /2)

– and the representation of (N %2) is

* What can we deduce?

13.14

Solution - printBinary

// Prints the given integer’s binary representation.
// Precondition: n >= 0
void printBinary(int n) {

if (n < 2) {
// base case; same as base 10
cout << n;

} else {
// recursive case; break number apart
printBinary(n / 2);
printBinary(n % 2);

}
}

13.15

Exercise - reverseLines

• Write a recursive function reverseLines that takes a file stream as input and that prints the lines

in reverse order

– Which cases should be considered?

* How can we solve part of the problem at a time?

* What would be a file that is easy to reverse?
13.16

4

Pseudocode for reversing

• Reverse lines in a file:

– Read a line L from the file

– Print the rest of the lines in reverse order.

– Print the line L

• If we only could reverse the or the lines in the file. . .
13.17

Solution - reverseLines

void reverseLines(ifstream& input) {
string line;
if (getline(input, line)) {

// recursive case
reverseLines(input);
cout << line << endl;

}
}

• What is the base case?
13.18

2.1 Implementation av recursion

Recall: stacks and function calls

• Compiler implement functions:

– Function calls: push:a local context and return address

– Return: pop:a return address and local context

– This enables recursion.

main() {

int i = 5;

foo(i);

}

foo(int j) {

int k;

k = j+1;

bar(k);

}

bar(int m) {

…

}

bar
PC = 1
m = 6

foo
PC = 3
j = 5
k = 6

main
PC = 2
i = 5

13.19

2.2 Tail recursion

Tail recursion
A recursive call is tail recursive iff the first instruction after the control gets back after the call is a

return.

• The stack is not needed
• Tail recursive functions can be rewritten into iterative functions

The recursive call in FACT is not tail recursive:

function FACT(n)
if n = 0 then return 1
else return n·FACT(n−1)

First instruction after the return from the recursive call is a multiplication ⇒ n needs
to b kept on the stack 13.20

5

A tail recursive function
function BINSEARCH(v[a, . . . ,b],x)

if a < b then
m← b a+b

2 c
if v[m].key < x then

return BINSEARCH(v[m+1, . . . ,b],x)
else return BINSEARCH(v[a, . . . ,m],x)

if v[a].key = x then return a
else return ’not found’

The two recursive calls are tail recursive. 13.21

Eliminating tail recursion
The two tail recursive calls can be eliminated:

1: function BINSEARCH(v[a, . . . ,b],x)
2: if a < b then
3: m← b a+b

2 c
4: if v[m].key < x then
5: a← m+1 {var: return BINSEARCH(v[m+1, . . . ,b],x)}

6: else b← m {var: return BINSEARCH(v[a, . . . ,m],x)}

7: goto (2)
8: if v[a].key = x then return a
9: else return ’not found’ 13.22

Tail recursive factorial
f act can be rewritten by using a help function:

function FACT(n)
return FACT2(n,1)

function FACT2(n, f)
if n = 0 then return f
else return FACT2(n−1,n · f)

FACT2 is tail recursive⇒ memory usage after eliminating the recursive in O(1) 13.23

2.3 One more exercise

Exercise - pow

• Write a recursive function pow that takes two natural numbers as arguments: a base and an exponent
and that returns the base to the power of the exponent.

– Example: pow(3, 4) returns 81

– Solve the problem recursively without loops
13.24

Solution - pow

// Returns base ^ exponent.
// Precondition: exponent >= 0
int pow(int base, int exponent) {

if (exponent == 0) {
// base case; any number to 0th power is 1
return 1;

} else {
// recursive case: x^y = x * x^(y-1)
return base * pow(base, exponent - 1);

}
}

13.25

6

An optimization?

• Observe the following mathematical properties:

– When does this work?

– How can we leverage on it?

– Why use it when the code already works?
13.26

Solution 2 - pow

// Returns base ^ exponent.
// Precondition: exponent >= 0
int pow(int base, int exponent) {

if (exponent == 0) {
// base case; any number to 0th power is 1
return 1;

} else if (exponent % 2 == 0) {
// recursive case 1: x^y = (x^2)^(y/2)
return pow(base * base, exponent / 2);

} else {
// recursive case 2: x^y = x * x^(y-1)
return base * pow(base, exponent - 1);

}
}

13.27

3 Algorithm analysis

3.1 Analysis of algorithms

Analysis of algorithms

What is analysis?

• Correctness (not in this course)
• Termination (not in this course)
• Efficiency, resources, complexity

Time complexity — how long it takes an algorithm in the worst case?

• as a function of what?
• what is a time step?

Memory complexity — how much memory is required?

• as a function of what?
• how is it measured?
• remember that code and function calls also takes memory

13.28

How can you compare different effectiveness

• Study execution time (or memory consumption) in function of the size of input data.
• When can we say that two algorithms have ”similar effectiveness”?
• When can we say that an algorithm is better than an other?

Comparison between some elementary functions

n log2 n n n log2 n n2 2n

2 1 2 2 4 4
16 4 16 64 256 6.5 ·104

64 6 64 384 4096 1.84 ·1019

1.84 ·1019µseconds = 2.14 ·108 days = 583.5 millennia 13.29

7

Simplify calculations

13.30

How complexity can be specified?

growth

f (n)

O(f (n))

Ω(f (n))

Θ(f (n))

• How does the complexity grow with the size n of input data?
• Asymptotic complexity — what happens when n grows to infinity?
• Much easier if we ignore constant factors

• O(f (n)) – grows at most as fast as f (n)
• Ω(f (n)) – growth at least as fast as f (n)
• Θ(f (n)) – grows as fast as f (n)

13.31

Ordo-notation
f ,g: grow from N to R+

• f ∈O(g) if and only if it exists c > 0,n0 > 0 such as f (n)≤ c ·g(n) for all n≥ n0 Intuition: ignoring
the constant factor, f does not grow faster than g

• f ∈Ω(g) if and only if it exists c > 0,n0 > 0 such as f (n)≥ c ·g(n) for all n≥ n0 Intuition: ignoring
the constant factor, f grows at least as fast as g

• f (n) ∈ Θ(g(n)) if and only if f (n) ∈ O(g(n)) and g(n) ∈ O(f (n)) Intuition: ignoring the constant
factor, f and g have similar growth

Note: Ω is the opposite of O, i.e. f ∈Ω(g) if and only if g ∈ O(f). 13.32

8

3.2 Recursive algorithms

Execution time for recursive algorithms

• Characterize execution time with a recursive relation
• Find a solution in closed form the recursive relation
• If you do not recognize the recursive relation, you can

– “Unroll” the relation a number of times to formulate a hypothesis for a possible solution of the
form T (n) = . . .

– Prove the hypothesis about T (n) by induction. If it does not work, modify the hypothesis and
try again. . .

13.33

Example: Factorial function
function FACT(n)

if n = 0 then return 1
else return n·FACT(n−1)

Execution time:
• time for comparison: tc
• time for multiplication: tm
• time for calls and returns: tr

Total execution time T (n). T (0) = tr + tc T (n) = tr + tc + tm +T (n−1), om n > 1 Hence, for n > 0:

T (n) = (tr + tc + tm)+(tr + tc + tm)+T (n−2) =

= (tr + tc + tm)+(tr + tc + tm)+(tr + tc + tm)+T (n−3) = . . .=

= (tr + tc + tm)+ . . .+(tr + tc + tm)︸ ︷︷ ︸
n ggr

+tr + tc = n · (tr + tc + tm)+ tr + tc ∈ O(n)

13.34

Example: Binary search
function BINSEARCH(v[a, . . . ,b],x)

if a < b then
m← b a+b

2 c
if v[m].key < x then

return BINSEARCH(v[m+1, . . . ,b],x)
else return BINSEARCH(v[a, . . . ,m],x)

if v[a].key = x then return a
else return ’not found’

Let T (n) be the time, in the worst case, to search among n numbers with BINSEARCH.

T (n) =
{

Θ(1) if n = 1
T
(
d n

2 e
)
+Θ(1) if n > 1

If n = 2m we get

T (n) =
{

Θ(1) if n = 1
T
(n

2
)
+Θ(1) if n > 1

We can then conclude that T (n) = Θ(logn).
13.35

Master theorem

Sats 1 (“Master theorem”). Assume a≥ 1,b > 1,d > 0. The recursive relation{
T (n) = aT

(n
b
)
+ f (n)

T (1) = d

has the following asymptotic solution
• T (n) = Θ(nlogb a) if f (n) ∈ O(nlogb a−ε) for some ε > 0
• T (n) = Θ(nlogb a logn) if f (n) ∈Θ(nlogb a)
• T (n) = Θ(f (n)) if f (n) ∈Ω(nlogb a+ε) for some ε > 0 and a f

(n
b
)
≤ c · f (n) for some constant c < 1

for all large enough n.

Examples:
• T (n) = 9 T (n/3)+n
• T (n) = T (2n/3)+1
• T (n) = 3 T (n/4)+n log n

13.36

9

3.3 Common growth rates

Common growth rates

Growth typical code description example T (2n)/T (n)
add two

1 a = b + c instruction
numbers

1

while (n > 1) divide
log2 n

{ n = n / 2; ...} in halves
binary search ≈ 1

for (int i = 0; i < n, i++) find
n

{ ... }
loop

maximum
2

divide
n log2 n see lecture on mergesort

and conquer
mergesort ≈ 2

for (int i = 0; i < n, i++) double check
for (int j = 0; j < n, j++) loop all pairsn2

{ ... }
4

for (int i = 0; i < n, i++)
for (int j = 0; j < n, j++) triple- check all
for (int k = 0; k < n, k++) loop triplesn3

{ ... }

8

total- check all
2n see next lecture

search subsets
T (n)

13.37

10

	Introduction
	Recursion in C++
	Implementation av recursion
	Tail recursion
	One more exercise

	Algorithm analysis
	Analysis of algorithms
	Recursive algorithms
	Common growth rates

