
Lecture 9
Constructor, Exceptions, Templates
TDDD86: DALP

Utskriftsversion av Lecture in Data Structures, Algorithms and Programming Paradigms
September 27th, 2023

IDA, Linköping University

9.1

Content

Contents

1 Constructor, copying and moving 1
1.1 Why constructor? . 1
1.2 Default constructor . 2
1.3 Type conversion constructor . 2
1.4 Copy constructor . 3
1.5 Copy assignment operator . 4
1.6 Move semantic . 5

2 Exceptions 8

3 Templates 10 9.2

1 Constructor, copying and moving

1.1 Why constructor?

Initialization vs Assignment

• Initialisation is fundamental in C++ and different from assignment

– Initialisation transforms an object initial garbage into valid data.

* Defined in class with constructor

– Assignment replace existing valid data with other valid data

* Defined in class with assignment operator

// Initialisation: Default constructor
Widget x;
// Initialisation: copy constructor
Widget y(x);
// Initialisation: copy constructor (alternative form)
Widget z = x;
// Assignment: copy/assignment operator
z = x;

9.3

Note

• It is not always necessary to define all kinds of constructors and assignment operators. If you do not,
the compiler will create a default version for you.

9.4

1

1.2 Default constructor

Default constructor
ArrayList() = default;

• A default constructor is a constructor that is called without arguments
ArrayList list; // variable declaration without initialisation

• = default means that the constructor is generated by the compiler

– members with a basic type are initialised with the value used in their declaration

– members of class type are either initialised with arguments if specified in their declaration, or
with their default constructor.

• Non-static members are initialised with their NSDMI (“non-static data member initialiser”)
int m_size = 0;
int m_capacity = 10;
int* m_elements = new int[m_capacity];

9.5

Member initialisation list
A default constructor could be written as

ArrayList()
: m_size{ 0 }, m_capacity { 10 }, m_elements { new int[m_capacity] }

{}

• If members are not in the list, they are initialised with the value specified in the definition or with
their default value

• Member initialisation list lets us initialise (not assign) data members when we initialise our object
// Assignement
struct Widget {

const int value;
Widget();

};

Widget::Widget() {
value = 42; //ERROR

}

// Initialisation
struct Widget {

const int value;
Widget();

};

Widget::Widget()
: value{42}

{}

9.6

1.3 Type conversion constructor

Type conversion constructor
ArrayList::ArrayList(const vector<int>& v) {

for (auto vi : v) {
add(vi);

}
}

• A constructor that can be called with the argument of another type is a type conversion constructor
ArrayList list(vector<int> {23, 24, 25, 26});

– the syntax above is called direct initialisation

• The following syntax is called copy initialisation
ArrayList a1 = a2; // same type - copy constructor does the initialisation
ArrayList a3 = vector<int>{1, 2, 3} // implicit type conversion
ArrayList a4 = ArrayList(vector<int>{1, 2, 3}) // explicit type conversion

– move constructor does the initialisation in the later two cases

– optimization may occur. . .

• All explicit type conversion may occurs with this constructor, for example
auto a5 = static_cast<ArrayList>(vector<int> {23, 24, 25, 26});

9.7

2

1.4 Copy constructor

Copy constructor
In C++ a copy initialisation can happen in three cases:
1. A variable is created as a copy of an existing one

MyClass one;
MyClass two = one;

The previous code is equivalent to
MyClass one;
MyClass two(one);

2. Passing a variable as an argument to a function
void myFunction(MyClass arg) {

...
}
MyClass mc;
myFunction(mc);

3. An object is returned as the value of a function
MyClass myFunction() {

MyClass mc
return mc;

}
9.8

Copy constructor
Copy in C++ happens with the copy constructor:
• The syntax of a copy constructor is a constructor that takes a single parameter of the type using a

const reference
class MyClass {

public:
MyClass();
~MyClass();
MyClass(const MyClass& other); // Copy constructor
/* ... */

};

• The compiler can generate a default version of the copy constructor. . . 9.9

Common copy bug
• Copy initialisation of our ArrayList causes problem

• A change in the list affects the other variable (bad!)

list2.add(88);
list1.remove(0);

– When the objects are destroyed, the memory is deleted twice (bad!)
9.10

Deep copy
• To fix the copy bug, we need to write a constructor that makes a deep copy of ArrayList

• Rule of Three: If a class has one of the three following member function:

– Destructor

– Copy constructor

– Copy assignment operator

it should probably have all three of them.
9.11

3

Prevent copy

• A simple solution is to disable the copy constructor:

// ArrayList.h
ArrayList(const ArrayList& list) = delete;

– Now attempts to do a copy will lead to an error

– It solves the problem but it is too restricted
9.12

Code for copy constructor

// ArrayList.cpp
ArrayList::ArrayList(const ArrayList& other) {

m_capacity = other.m_capacity;
m_size = other.m_size;
m_elements = new int[m_capacity]; // deep copy
std::copy(other.m_elements, other.m_elements + m_size, m_elements);

}
9.13

1.5 Copy assignment operator

Copy assignment operator
Assignment in C++ is different from the initialisation and only takes place if an existing object is

explicitly assigned a new value:

MyClass one, two;
two = one;

• Compare to the following where two is initialised as a copy of one

MyClass one;
MyClass two = one;

9.14

Copy assignment operator
Copy assignment in C++ is done by the copy operator:

• Syntactically, the copy assignment operator is more complex than the copy constructor:
class MyClass {

public:
MyClass();
~MyClass();
MyClass(const MyClass& other); // Copy constructor
MyClass& operator= (const MyClass& other); // Assignment operator
/* ... */

};

• The compiler-generated copy assignment operator works only for simple cases. . .
9.15

Code for deep copy
The code for a correct copy assignment operator is more involved than the copy constructor.

• To some extend C++ allows for maximal flexibility. For example, the following is a valid implemen-
tation:
void MyClass::operator= (const MyClass& other) {

cout << "I’m sorry, Dave. I’m afraid I can’t copy that object." << endl;
}

9.16

Code for deep copy assignment: version 1
/* Many common errors. Do not use as reference! */
void ArrayList::operator= (const ArrayList& other) {

m_capacity = other.m_capacity;
m_size = other.m_size;
m_elements = new int[m_capacity]; // deep copy
std::copy(other.m_elements, other.m_elements + m_size, m_elements);

}

• Code is based on the copy constructor

– However, when the copy operator is called ArrayList already has an allocated array of elements,
which lead to memory leak. . .

9.17

4

Code for deep copy assignment: version 2
/* Many common errors. Do not use as reference! */
void ArrayList::operator= (const ArrayList& other) {

delete[] m_elements;

m_capacity = other.m_capacity;
m_size = other.m_size;
m_elements = new int[m_capacity]; // deep copy
std::copy(other.m_elements, other.m_elements + m_size, m_elements);

}

• All code after the delete[] is the same has with copy constructor

– No coincidence— in most cases, there is a large overlap between the two operation
– Since we cannot call our own copy constructor directly (or any other constructor), we avoid the

code duplication using a helper function 9.18

Code for deep copy assignment: version 3
void ArrayList::copyOther(const ArrayList& other) {

m_capacity = other.m_capacity;
m_size = other.m_size;
m_elements = new int[m_capacity]; // deep copy
std::copy(other.m_elements, other.m_elements + m_size, m_elements);

}

ArrayList::ArrayList(const ArrayList& other) {
copyOther(other);

}

/* Not completely perfect yet. Do not use as reference! */
void ArrayList::operator= (const ArrayList& other) {

delete[] m_elements;
copyOther(other);

}

• We have a few things left to consider

– Consider the following:
ArrayList one;
one = one;

9.19

Code for deep copy assignment: version 4
/* Not completely perfect yet. Do not use as reference! */
void ArrayList::operator= (const ArrayList& other) {

if (this != &other) {
delete[] m_elements;
copyOther(other);
}

}

• A last bug to take care of
• Consider the following:

ArrayList one, two, three;
three = two = one;

9.20

Code for deep copy assignment: final version
ArrayList& ArrayList::operator= (const ArrayList& other) {

if (this != &other) {
delete[] m_elements;
copyOther(other);

}
return *this;

}
9.21

1.6 Move semantic

Before C++11
vector<string> ReadAllWords(const string& filename) {

ifstream input(filename.c_str());

vector<string> result;
result.insert(result.begin(),

istream_iterator<string>(input),
istream_iterator<string>());

return result;
}

• How effective is that code? 9.22

5

Before C++11

9.23

Before C++11

9.24

Before C++11

9.25

After C++11

vector<string> ReadAllWords(const string& filename) {
ifstream input(filename.c_str());

vector<string> result;
result.insert(result.begin(),

istream_iterator<string>(input),
istream_iterator<string>());

return result;
}

• No change in code. . .
9.26

After C++11

9.27

6

After C++11

9.28

After C++11

9.29

After C++11

9.30

Move semantic

• Copy semantic (C++03): Can duplicate an object

– Copy constructor and copy assignment operator

• Move semantic (C++11): Can move an object to an other one

– Move constructor and move assignment operator

• Move semantic gives better performance in most cases
• Copy and move constructors are sometimes avoided completely with copy-elision1, e.g. T x =
T(T(T()));

9.31

Rvalue-reference

• Syntax Type &&
• Reference to a temporary expression
• Represents an expression that can be moved

9.32

1https://en.cppreference.com/w/cpp/language/copy_elision

7

https://en.cppreference.com/w/cpp/language/copy_elision

With C++11
/* Move constructor */
ArrayList::ArrayList(ArrayList&& other) {

m_elements = other.m_elements;
m_size = other.m_size;
m_capacity = other.m_capacity;
other.m_size = 0;
other.m_capacity = 10;
other.m_elements = new int[other.m_capacity];

}

/* Move operator */
ArrayList& ArrayList::operator= (ArrayList&& other) {

if (this != &other) {
delete[] m_elements;
m_elements = other.m_elements;
m_size = other.m_size;
m_capacity = other.m_capacity;
other.m_size = 0;
other.m_capacity = 10;
other.m_elements = new int[other.m_capacity];

}
return *this;

}
9.33

Move semantic 6= copy semantic
• Returns the object in the same way
• C++11 tries to move first otherwise it fallbacks to copy
• Objects can be moveable even if not copyable

9.34

Rule of five
• Implicit definition of a move constructor or a move assignment operator is prevented by the presence

of user defined

– destructor, or
– copy constructor or,
– copy assignment operator.

• Rule of Five: If a class has one of the five following member functions:

– Destructor
– Copy constructor
– Move constructor
– Copy assignment operator
– move assignment operator

it should probably have all five of them.
9.35

2 Exceptions

Exceptions
Problem: size vs capacity
• What happens if the client access an element at a position after the size? list.get(7)

– Without a check this is allowed and returns a 0

* Is this good or bad? What (if possible) could we do about it? 9.36

Error messages and return values
• Error printout

– Print an error message and exit the program

* A bit drastic, the program get no chance to recover

• Return values

– Return a special value indicating that something went wrong, t.ex. -1

* The problem is that all integers can exist in the list! How to distinguish normal value from
error value? 9.37

8

Preconditions

• preconditions: make assumption in your code that a condition is true.

– Often documented as a comment:

/*
* Returns the element at the given index.

* Precondition: 0 <= index < size

*/
int ArrayList::get(int index) {

return m_elements[index];
}

– Having a documented precondition does not “solve” the problem, but it warns the user.

– But what if the user does not read the documentation (or ignore it) and access a value at a bad
index?

– Can we ensure that the user must follow the precondition?
9.38

Throw Exceptions

• throw expression;

– Generates an exception that aborts the program if there is no handling of the exception (catch)

– In Java, only objects inheriting Exceptions can be thrown; in C++ all types can be thrown
(int, string, etc.)

throw 0; // Throw an int
throw new vector<double>; // Throw a vector<double> *
throw 3.14159; // Throw a double

– There is a class std::exception that can be used

try {
// Do something

}
catch(int myInt) {

// If the code throw an int the execution continues here
}
catch(const exception& e) {

// If the code throw a std::exception the execution continues here
cout << "exception: " << e.what() << ’\n’;

}
catch(...) { // Special syntax to catch all remaining exceptions

cout << "An unexpected error has ocurred!\n";
}

9.39

Standard exceptions

9.40

9

Private helper function

// In ArrayList.h
private:

void checkIndex(int i, int min, int max) const;

// In ArrayList.cpp
void ArrayList::checkIndex(int i, int min, int max) const {

if (i < min || i > max) {
throw std::out_of_range("Index " + std::to_string(i)

+ " out of range; (must be between "
+ std::to_string(min) + " and "
+ std::to_string(max) + ")");

}
}

9.41

Exceptions and dynamic memory

void f(){
if(std::rand() > RAND_MAX / 2) throw std::random_exception();

}

try{
int* a = new int[10];
ArrayList b {10, 2, 4, 5};
f();
delete[] a;

} catch(const std::random_exception& re){
}

Without proper care, exceptions can lead to memory leaks! 9.42

3 Templates

What is a template?

• A template function is a model to generate function
• It is equivalent of letting the compiler generate each function automatically for each type
• Instantiation of a template happens when a given template function is called for a specific type

9.43

What is a template?

• To declare a template function, just add the following line in front of a function definition:

template <typename T>

• T is a template parameter which will be replaced by a specific type when you use the template
function. The function cannot be used with a type called T.

template<typename T>
T min(T a, T b) {

return (a < b) ? a : b;
}

9.44

Validation of templates

• Compiler “verifies” that template can be instantiated.
• Template functions can be instantiated only if all the operations on the variables used in the function

are valid.
9.45

Usage of templates

• In this lecture, we only use templates to avoid rewriting functions many times.
• Templates are much more powerful and useful (and complicated).

10

9.46

Class template

• Mark each class/function as template in .h- and .cpp-files
• Replace the previous type (t.ex. int) with T in code

9.47

.h and .cpp for template class

• In C++ template system, as soon as the compilers sees templates’ being used with a given type, it
needs to see the definition (and not only the declaration).

– Either write all code in .h-file,

– or include .cpp-file at the end of .h-file.

9.48

11

	Constructor, copying and moving
	Why constructor?
	Default constructor
	Type conversion constructor
	Copy constructor
	Copy assignment operator
	Move semantic

	Exceptions
	Templates

