
Lecture 7
An extensible array, amortised
analysis, common pitfalls
TDDD86: DALP

Utskriftsversion av Lecture in Data Structures, Algorithms and Programming Paradigms
September 19th, 2023

IDA, Linköping University

7.1

Content

Contents

1 An extensible array 1
1.1 Dynamic memory . 1
1.2 ArrayList . 2
1.3 Destructor . 2
1.4 Increase capacity . 2

2 Amortised analysis 3

3 Common C++ mistakes and pitfalls 3

4 vector vs dequeue 6 7.2

1 An extensible array

1.1 Dynamic memory

Fields/array

• type name[length];

– a fix field; can not be resized

• type* name = new type[length];

– a dynamically allocated array;

– assignment can be done later, to change the array size

– memory allocated dynamically must be freed manually otherwise there will be memory leaks
in the program

• there are other differences between the two syntax

– the objects are stored in different part of the memory; the first syntax uses the stack while the
other use the heap

7.3

Free memory

• delete[] name;

– Free the memory associated with the pointer

– Must be called for all fields created with new type[]

* Otherwise, the program has a memory leak (No garbage collector unlike in Java)

* Leaked memory is freed when the program exit, but for applications with long running
time a memory leak can lead to exhausting the computer memory

1

int* a = new int[3];
a[0] = 42;
a[1] = -5;
a[2] = 17;
for (int i = 0; i < 3; i++) {

cout << i << ": " << a[i] << endl;
}
...
delete[] a;

7.4

1.2 ArrayList

Example

•• Write a class that implements an array of integers

– We call it ArrayList

– Behavior:

add(value) insert(index, value)
get(index) set(index, value)
size() isEmpty()
remove(index)
indexOf(value) contains(value)
toString()
...

• The size of the list will be the number of elements inserted so far

– The actual length of the array (capacity) can be larger. Start with a size of 10 by default.
7.5

1.3 Destructor

Destructor

• // ClassName.h // ClassName.cpp
~ClassName(); ClassName::~ClassName() { ...

– Called when the object is destroyed by the program (when the object goes out of scope or delete
is used)

– Can be useful to:

* free temporary resources

* free dynamically allocated memory used by the members

• Does ArrayList need a destructor? What should it do?

– Yes; to free the memory associated with storing elements
7.6

1.4 Increase capacity

Increase capacity

• What if the users wants to add more than ten elements?

list.add(75) //add a 11th element

• Answer: double the size of the field

2

– Do not forget to release the memory used by the old array!

– int* a = new int[10];
int* b = new int[20];
std::copy(a, a+10, b); // Do not use memcpy(b, a, 10 * sizeof(int))!
a = b;
delete[] a;
std::copy(first, after, output);

7.7

2 Amortised analysis

An extensible array
We want a new type of array that automatically increase available size when full (when the number

of ellementsis n is same as the capacity N). Suppose the array always insert new element in the first free
position:

• Allocate a new array B with capacity 2N
• Copy A[i] to B[i], for i = 0, . . . ,N −1
• Lets A = B, we let B take over the role A had.

In term of effectiveness, expanding the array is slow. But the algorithmic complexity is:

• O(1) most of the time
• O(n) for copying n element and O(1) for inserting after reallocation.

7.8

Amortised analyse
Using amortisation we can show that a sequence of insertion of element to our expandable array is

effective:

Proposition 1. Let S be a table implemented using an extensible array A, as previous. The total time to
insert n element in S, starting with an empty table S (which means that A has capacity N = 1) is O(n).

7.9

3 Common C++ mistakes and pitfalls

delete vs delete[]

• Memory allocated with new must be freed with delete. Memory allocated with new[] must be
freed with delete[]

• Using delete for memory allocated with new[] means only one destructor is called and it leads
to a crash

• can be tested with memory tracking tools, e.g., valgrind

int* q = new int;
delete q;

int* p = new int[20];
delete[] p;

7.10

Dynamic memory

• Common error is to forget to free
• Solution:

– Memory model, with parent/child hierarchy

– Smart pointers (based on the principle of resource acquisition is initialisation)

#include <memory>

using namespace std;

shared_ptr<int> foo(shared_ptr<int> ptr){
shared_ptr<int> lptr = ptr;
if(lptr)

++(*lptr);
return lptr;

}

3

int main(){
shared_ptr<int> aptr = make_shared<int>(41);
shared_ptr<int> bptr = foo(aptr);
cout << "answer is " << *bptr << endl;

return 0;
}

7.11

Returning a reference to a temporary

int& f()
{

int a;
return a;

}
7.12

Throwing exception from destructor

class A
{
public:

~A() { throw 0; }
};
void f()
{

A a;
throw 0;

}
int main()
{

try { f(); }
catch(int) { }
return 0;

}

• C++ does not know what to do when two exceptions are thrown in parallel!
7.13

Using Invalidated Iterators and Pointers

• When modifing a container, assume the old iterator is not valid anymore!
• For instance when removing elements:

std::vector<int> v{3,4,12,-1,4,5};
for(auto it = v.begin(); it != v.end(); ++it)
{

if(*it == 4) { v.erase(it); } // it invalid after the erase!
}

Instead:

std::vector<int> v{3,4,12,-1,4,5};
for(auto it = v.begin(); it != v.end();)
{

if(*it == 4) { it = v.erase(it); } // new it is valid after the erase!
else { ++it; }

}

• Or adding elements:

std::vector<int> v{3,4,12,-1,4,5};
auto it = v.begin();
int* first = &v[0];
v.push_back(2);
//it and first are not valid because of the push_back
std::cout << *it << " " << *first << std::endl; //bad

7.14

4

Use C++ library as much as possible instead of the the C standard library

• Most C functions have C++ equivalents and are safer to use:
• For instance use std::copy and not memcpy:

memcpy(dst, src, length * sizeof(int));
std::copy(src, src + length, dst);

• Use std::string and not C-strings:

const char* s1 = "hello";
const char* s2 = "hello";
if(s1 == s2)
{

std::cout << "Never shown!" << std::endl;
}

• Use ifstream or ofstream and not fopen, printf, fclose
7.15

Conversion

• C++ automatically convert most numbers without warning
• Integer division even though saving into float:

int nX = 7;
int nY = 2;
float fValue = nX / nY; // fValue = 3 (not 3.5!)

Fixed with:

float fValue = static_cast<float>(nX) / nY; // fValue = 3.5

• mixing signed and unsigned integers

unsigned u = 10;
int i = -42;
cout << i + i << endl; // -84
cout << u + i << endl; // 4294967265

7.16

Side effects

• Should the following print 25, 30 or 36?

void multiply(int x, int y)
{

using namespace std;
cout << x * y << endl;

}

int main()
{

int x = 5;
multiply(x, ++x);

}

• order of evaluation of arguments is undefined!
7.17

Switch statements without break

switch(v)
{

case 1:
str = "one";

case 2:
str = "two";

case 1:
str = "three";

...
};

5

• The correct way is:

switch(v)
{

case 1:
str = "one";
break;

case 2:
str = "two";
break;

case 1:
str = "three";
break;

...
};

7.18

4 vector vs dequeue

push_back: vector and dequeue

// Vector test code
vector<int> v;
// v.reserve(N); // Preallocate
// Insert at the start of the vector
for (int i = 0; i < N; i++)

v.push_back(i);
// Clear by using pop_front (erase)
for (int i = 0; i < N; i++)

v.pop_back();

// Deque test code
deque<int> d;
// Insert elements using push_front
for (int i = 0; i < N; i++)

d.push_back(i);
// Clear by using pop_front
for (int i = 0; i < N; i++)

d.pop_back();

<vector> <vector> reserve <deque>
N = 10000 30 30 50
N = 100000 180 180 333
N = 1000000 1712 1723 3.136
N = 10000000 17114 17051 33419

7.19

push_front: vector and dequeue

// Vector test code
vector<int> v;
// Insert at the start of the vector
for (int i = 0; i < N; i++)

v.insert(v.begin(), i);
// Clear by using pop_front (erase)
for (int i = 0; i < N; i++)

v.erase(v.begin());

// Deque test code
deque<int> d;
// Insert elements using push_front
for (int i = 0; i < N; i++)

d.push_front(i);
// Clear by using pop_front
for (int i = 0; i < N; i++)

d.pop_front();

6

<vector> <deque>
N = 10000 4974 117
N = 100000 937467 463
N = 1000000 TO 6275
N = 10000000 TO 34810

7.20

7

	An extensible array
	Dynamic memory
	ArrayList
	Destructor
	Increase capacity

	Amortised analysis
	Common C++ mistakes and pitfalls
	vector vs dequeue

