Lecture 1

Introduction to DALG, Programming
Paradigms

TDDD86Data Structures, Algorithms and Programming Paradigms

Utskriftsversion av Lecture in Data Structures, Algorithms and Programming Paradigms
August 28-29, 2023

IDA, Linképing University

Content

Contents

(I Administrative aspects| 1
P DALG =] Tuction 2
|3 Origin of Programming| 4
{4 Programming paradigms| 6
[5 Programming languages concepts| 10

1 Administrative aspects

Teacher and personal

Ahmed Rezine Lecturer

Caspe N. Kanefall Teaching assistant, group D2.a
Gustav Carlsson Teaching assistant, group D2.b
Szilvia Varro-Gyapay Teaching assistant, group D2.c
Oscar Karlsson Teaching assistant, group U2.a
Hampuz Togeretz Teaching assistant, group U2.b
Anders Luong Teaching assistant

Benjamin Sundvall Teaching assistant

Linus Gardshol Teaching assistant

Anna Grabska Eklund course administrator

Literature

e C++

— C++ Primer 5/E, Lippman, Lajoie, Moo

— The C++ Programming Language 4/E, Stroustrup
* Data structure and algorithms

— OpenDSA
¢ Programming Paradigms

— Lectures handouts and linked material

Examination

UPG2 1hp — Report (U,G)

UPG1 2hp — Computer-based assignments (U,G)

DAT1 3hp — Computer-based exam (U,3,4,5)

LABI Shp — Labs (U,3,4,5)

The final grade is the weighted average of the grades of DAT1 and LAB1, rounded to the nearest
integer. See: www.ida.liu.se/~TDDD86/exam/

3

.

Labs: 5hp (U,3,4,5)
e 8labs (4 in HT1 and 4 in HT2)
— Conducted in pair
— To pass you need to reach grade 3
— A higher grade can be achieved by collecting bonus points

e Seewww.ida.liu.se/~TDDD86/info/labs.sv.shtml
You need to register to Webreg to get your points reported:

— In pairs for the labs before September 6th : LAB1 under webregwww.ida.liu.se/webreg3/
TDDD86-2023-1/LAB1

— In same pairs (or individually) before December 1st: extra assignments www.ida.liu.se/
webreg3/TDDD86-2023-1/Extra%20labs

— Individually for the Kattis problems before January 1st: Bonus problems www.1ida.liu.se/
webreg3/TDDD86-2023-1/Bonus%$20problems

Use Gitlab, follow style guide: www.ida.liu.se/~TDDD86/info/labs.sv.shtml
‘We might need to move some pairs from one group to the other in order to avoid bias situations.

Your involvement in the course

* Attend the lectures (if you want)

 Study under the whole course (including the OpenDSA part!)
e Do labs 1-8

¢ Do extra questions and bonus problems for a higher grade

* Do the written assignment

* Pass the exam. Planned for December 15th

Course homepage
http://www.ida.liu.se/~TDDD86/

Related course, to go further

TDDD20 Design and Analysis of Algorithms
Introduce greedy algorithms, decomposition and dynamic programming, NP-completness, inexact methods,
randomized algorithms, etc.

TDDD38 Advanced Programming in C++
Give a deeper knowledge about constructs and mechanisms in C++. Focus is on advanced constructions
and usage of C++.

2 DALG - introduction
DALG

Data structure
How to efficiently store data

» Theoretically, efficient data structures
* Practically, efficient data structures

Algorithms
How to solve problems efficiently
¢ Analyse complexity
» Examples of different types of algorithms

— Sort algorithms
— Graph algorithms

¢ Construction methods

www.ida.liu.se/~TDDD86/exam/
www.ida.liu.se/~TDDD86/info/labs.sv.shtml
www.ida.liu.se/webreg3/TDDD86-2023-1/LAB1
www.ida.liu.se/webreg3/TDDD86-2023-1/LAB1
www.ida.liu.se/webreg3/TDDD86-2023-1/Extra%20labs
www.ida.liu.se/webreg3/TDDD86-2023-1/Extra%20labs
www.ida.liu.se/webreg3/TDDD86-2023-1/Bonus%20problems
www.ida.liu.se/webreg3/TDDD86-2023-1/Bonus%20problems
www.ida.liu.se/~TDDD86/info/labs.sv.shtml
http://www.ida.liu.se/~TDDD86/

Why study DALG?
Ancient origin, new opportunities

 The study of algorithms has been going on at least since Euclid (fl. 300 BCE)
* Formalized by Church and Turing in the 1930s
¢ The subject of numerous ongoing researches

1.10
Why study DALG?
In order to solve otherwise unsolvable problems
» T.ex. network connectivity or the traveller salesperson problems
1.11

Why study DALG?
For intellectual stimulation

The Art of The Art of The Art of The Art of

Computer Computer Computer Computer 1

Programming Programming Programming Programming

DONALD E. KNUTH DONALD E. KNUTH DONALD E. KNUTH DONALD E. KNUTH Donald Knuth
1974 Turing Award
1.12
Why study DALG?
To become a proficient programmer
“Iwill, in fact, claim that the difference between a bad programmer

and a good one is whether he considers his code or his data structures

more important. Bad programmers worry about the code. Good

programmers worry about data structures and their relationships. ”

— Linus Torvalds (creator of Linux)
“ Algorithms + Data Structures = Programs. ” — Niklaus Wirth
1.13

Why study DALG?

Because it can help us figure out things about life and universe

“ Computer models mirroring real life have become crucial for most

advances made in chemistry today.... Today the computer is just as

important a tool for chemists as the test tube. ”
— Royal Swedish Academy of Sciences
(Nobel Prize in Chemistry 2013)

Martin Karplus, Michael Levitt, and Arieh Warshel

Why so many programming languages

* Some languages are focused on performance.
* Some languages are focused on making it easy to write code.

Hi stbrgome languages are focused on performing a particular task extremely well.

ome languages are focused on testing new concepts.

Just like half of the world’s spoken tongues, most of the 2,300-plus computer
pr are either or extinct. As CIC+H,
Visual Basic, Cobol, Java and other modern source codes dominate our systems,
hundreds of older languages are running out of life.

An ad hoc collection of engineers-electronic lexicographers, if you will-aim to

Mother
Tongues

Tracing the roots of computer
languages through the ages

9 million developers in search of coders still fluent in these nearly forgotten lingua
frangas. Among the most endangerad ara Ada, APL, B (the predecassor of C), Lsp,
Oberon, Smalltalk, and Simula.

1954 1955 1956 1957 83 1950 1960 1961 1962 1963 984 1085 1966 1967 196 1383 1970 1911 {972 913 fSM4 0975 197

save, or at least document the lingo of classic software. They're combing the globe’s

Code-raker Grady Booch, Rational Software’s chief scientist, is working with the Computer
History Musuem in Silicon Valley to record and, in some cases, maintain languages by writing
new compilers so our ever-changing hardware can grok the code. Why bother? “They tell
us about the state of software practice, the minds of their inventors, and the technical, social,
and economic forces that shaped history at the time,” Booch explains. “They'll provide the
raw material for software and to learn what worked,
‘what was brilliant, and what was an utter failure.” Here's a peek at the strongest branches
of programming’s family tree. For a nearly exhaustive rundown, check out the Language List
at HTTP:/'www. i-freib dey _list.html. - Michael Mendeno

19181979 190 1981 1982 1983 1984 1985 1585 1387 198 1989 1990 981 1092

Croated for the 1B 709094

| ANS! Cobol 85

Fortran 80 ISO/IEC.

1.14

Key

1954 Yoar Introduced
Active: thousands of users
Protectad: thughtat universities; compilecs
avalatio
Endangered: usage dropping off
Extinct: o kncwn active users of up-lo-<ate.
compirs
Lineage continues

994 1995 1995 197 1938 199 2000

ANSI Cobol 74

s

Lisp ofishoot

used in
at

Fl

\

s

Objoct Loge. Common Lisp
G i

avenied by Jobn NcCarihy at M,
Lifp b an unautad syntix made

Smalitalk-80

[Rea 1.00 Rax 220
Restroctured Extonded

abject-oro
wocedural peagramming
y Kiston Nygaand
and Die-Johan Dahl

Survival of the Fittest

Reasons ples of some classi

Appeals to a wide audience C (bolstered by the popularity of Unix)

Gets a job done Cobol (designed for business-report writing)
Delivers new functionality Java (runs on any hardware platform)
Fills aniche Mathematica (speeds up complex computations)

150 C (C9%)
virtual machine
- L
Tl

Offers a modicum of elegance Icon (has friendly, line-oriented syntax)
Has a powerful user base or backer C# (developed by Microsoft for .Met)
Hasa i ic leader Perl (pi thor Larry Wall)

ADAES -
e s s Lot S s ot
b i
oM oamnes o cisod by Joe Ehea s e f Aoyl

gﬁm‘ et o
o ride Java's buzz. N his e in comMon with that language.

%

fortoxt

and 1
lntex lventedby
van Pakonsky 3t Bell Labs.

Objectiva Caml , O Cami 2 © Cami

e

Sources: Paul Boutin; Brent Hailpern, associate director of computer science at IBM Research; The Retrocomputing Museum; Todd Proebsting, senior researcher at Microsoft; Gio Wiederhold, computer scientist, Stanford University

www.In aphicality.com

e
Hites Micresont Visual tools.

1.16

Language popularity

TIOBE Programming Community Index
Source: www.tiobe.com
30

25

20

Ratings (%)

e e MM@\/V»M\ %

2002 2004 2006 2008 2010 2012 2014 2016 2018 2020

[

C ==Java Python C++ == C# == Visual Basic JavaScript ==R == PHP sQL

1.17
Origin of programming languages

e A programming language is commonly defined as a way to communicate to the computer what we
want to do.

» Before the mid-1940s, to perform a task it was required to switch the internal cable connections in a
computer.

— Example: IBM 407 Accounting Machine (1949)

— It would be the equivalent of designing your own chip for each program

* Programming was invented to allow users to solve problems without having to reconfigure the hard-
ware.
1.18

Programming a coupling board

Hmm, should I transfer this parameter by value or by
reference?
1.19

Machine language

 John von Neumann suggested that the computer could keep the same cabling defining a set of general
operations.

* The operator would input a series of binary codes to organize the basic hardware operations to solve
specific problems.

1.20

Assembly

* Assembly language was introduced to provide symbolic abbreviation (“ADD”, “PUSH”...) to repre-
sent binary code.
¢ An improvement but...

— Lacks abstraction of mathematical notation

— Each type of hardware architecture has its own set of machine instructions, and therefore re-
quires its own assembly dialect.

* Assembly language appeared in the 1950s and is still used today for machine-oriented tools and hand

imization.
opt atio 1.21

Algol

e Algol: Algorithmic Language, released in 1960.
¢ Structured control statements

— sequence
— loops (for)
— selection (if-else)
» Different numeric types

¢ Introduce array/field
* Supports procedure (and recursion)

procedure Absmax(a) Size: (n, m) Result:(y) Subscripts: (i, k);

value n, m; array a; integer n, m, i, k; real y;

comment The absolute greatest element of the matrix a, of size n by m
is transferred to y, and the subscripts of this element to i and k;

begin

integer p, g;

y :=0; 1 =k :=1;

for p := 1 step 1 until n do
for g := 1 step 1 until m do
if abs(alp, g9l) > y then
begin y := abs(alp, 9l);

i :=p; k :=¢g

end

end Absmax
1.22

4 Programming paradigms

Programming Paradigm?

¢ Programming: define and communicate to the computer what we want to do
» Paradigms: patterns, worldviews

Programming Paradigm: conceptual way of looking at how to describe a programming language 1.23

Example 1: Imperative Programming

A
B:
C
D

First do A, then do B, then do C, etc... For example:

read integer n
set m = nxn
print m

1.24

Example 2: Object-Oriented Programming

Class A, B, C has data and method.

class A {

}

function read()

class B {

}

function square ()

class C {

function print ()

1.256

Declarative Programming
Describes what a program should output.

List all the students in the TDDD86 course.

Programming Paradigm
Programming Paradigm: conceptual way of looking at how to describe a programming language

* A programming paradigm is a set of programming concepts.
* Examples of concepts:
— threads / parallelism

— items (object orientation)

record
R The principal programming paradigms
pmgmn;(m;f’ "More is not better (or worse) than less, just different."

Data structures only S—expression

v1.03 © 2007 by Peter Van Roy

+ procedure !

,,,,,,,,,,,,,,,,,,,,,,, First-order H i 4 cell (s
i B cell (state, 5
| Observable 31 functional L -) Imperative
. nondeterminism? Yes No_ | programming : : PEOSrAmIIDS|
i H Pascal, C
+ closure ! Imperative
Functional - search
g i + search
programming ! programming
|

+ unification SNOBOL, Icon, Prolog

(equality)

+ name !
(unforgeable constant)

pelcmutitc T i ADT + cell ADT + port s (m
logic programming | Conunuall‘on] functional : imperative ([t/mnnel) (state) + closure
= ' p 1 P i Sequential
Scheme, ML ! Haskell, ML, E i CLU. Oz | Event-loop object—oriented
- - H s VL, ! ’ rogrammin; i
Relational &'lag'lc + by—need + thread | e s =
RIS synchron. + single assign.) Stateful
Prolog, SQL Lazy Monotonic ! i + thread functional
emb;bt'ldAmgs functional dataflow i 1 ‘Multi—agent programming
+ solver P [LORLAHIITIG : + nondeterministic + port programmin; Java, OCaml
Constraint (logic) Declarative ! choice ; (channel) M. passi + thread
DTN concurrent E N ytonic 3 Multi t concurrent Concurrent
CLP, ILOG Solver PIOSTARIOIN ! dataflow I dataflow programming object—oriented
+ thread 2 - Unix pipes| B i] progr: i Erlang, AKL rogramminy
e X +thread \ (+ by ’:’“‘] oy ! Concurrent logic ' Oz,Alice, AKL Shared—state
it + single a Syncir ! programming ! % locallcell concurrent
Il ocat ce 1
programming Lazy ! FGHC, FCP, —1— 2
LIFE, AKL ity : 0z, Alice, AKL Al e Java, Alice,
o programming ' e programming Smalltalk, Oz
+ by—need synchronization Laz ! + S)'IlChl(‘)Ilh,a):lm‘l . Object—capability .
Lazy concurrent declarative ' on partial termination programming
constraint concurrent ' | Functional reactive | ! E, 0z, Alice, Software
T, in; rogrammin; ! ogramming (FRP’ i blish :
B DL AT i G | B ribe, e
Oz, Alice Oz, Alice i FrTime 1 tuple space (Linda) "
' ' SQL embeddings
|
Logic and . H i Dataflow and)
B Functional ! |\ message passing Message passing Shared state
Weak state 3
]

No state !
| i]

Stateful
More declarative T : T }

T = Less declarative

Important Concept: State

In Imperative Programming a program has a state and step-by-step instruction to manipulate the
state.

So far, the programming language you have used at LiU have been imperative: Python, Java, assembly.

Contrast: in declarative programming the code defines the end result and not how it should be
achieved.

Important Concept: State
In imperative programming there are variables that represent the application state (along with the
implicit variables, such as instruction pointer).
The instructions change the variables and affect the application state. The instructions have side-effects!
In declarative programming, you define what things are and there is no modification of the state.
The instructions have no side-effects!
It is a fundamental different way of thinking about computations compared to imperative programming.

1.26

1.27

1.28

1.29

1.30

Data structures only

record

Descriptive
declarative
programming

XML,
S—expression

+ procedure

First—order

The principal programming paradigms

"More is not better (or worse) than less, just different."

v1.03 © 2007 by Peter Van Roy

+ cell (state)

| Observable [functional : : g NG
| nondeterminism? Yes No_ | programming ! ! PLOETAMIIING]
”””””””””””” [! Pascal, C
+ closure ! ! Imperative
F e - ! search "
programming . : programming | + $¢4/¢
+ unification H + name i SNOBOL, Icon, Prolog
(equality) i, (unforgeable constant)
Deterministic ADT ; ADT + cell
i i A H . cell g : losur
logic programming | Contlnuat!on | : s tlonz?l + Lle imperatiYe iy (1;,],1,”;"’18[) (stat ‘;) + (‘ losure
Scheme, ML ! Hraskell, ML, E 3 - CLU, Oz Event-loop object—oriented
Relational &'logic + by-need wifhFead 1 : programming b f
PIOETATTETIE) synchron. + single assign. 1 Stateful
Prolog, ,SQL Lazy Monotonic ‘ 1 + thread functional
em‘bedd‘mgs fu.nctiom_xl dataflov{ 1 : e programming
+ solver P programming ! + nondeterministic + port programming Java, OCaml
Constraint (logic) Declarative ! choice ; (channel) M. passi + thread
T concurient i N i 3 Multi t concurrent Concurrent
CLP, ILOG Solver B ST O3] | dataflow I dataflow rogrammin, object—oriented
+ thread Unix pipes? p i 3 programmin; Erlang, AKL programming
Concurrent) + thread) [+ h-"_,””‘{ o ! Concurrent logic ' Oz, Alice, AKL Shared—state
R + single a SYRCHT ! programmin, ! % locillcell concurrent
programming Lazy J FGHC, FCP, 1+ local ce p
LIFE, AKL dataflow : 0z, Alice, AKL Active object Java, Alice,
s o programming : e LTI Smalltalk, Oz
+ by—need synchronization Lazy ' + synchronization Object—capability ;
Lazy concurrent declarative [on partial termination programming A
constraint concurrent .| Functional reactive | ! E, Oz, Alice et
pn()) :ll::in prz)grajr:lr.ning : progra]‘r‘m;\fng (FRP) 3 » ;.3 s s :_;,) memony (STM)
Z, Alice z, Alice i rTime i uple space (Linda -
' | PSP SQL embeddings
Logic and N H | Dataflow and .
congstraints Functional [|\ message passing Message passing Shared state
i Weak stat | —~
No state ! cakstate ! Stateful
More declarative I t { T } Less declarative
L iflen(L) <1
sort(L) = < merge(sort(firsthalf(L)), .
otherwise
sort(secondhalf(L)))
merge(Li,Ly) =
L if length(L,) =
Ly if length(L;) =
head(L;)|merge(tail(L;),L,) if head(L;) < head(L,)
head(L,)|merge(Ly,tail(Ly)) if head(L;) > head (L)

sort([5,12,43,1]) returns [1,5,12,43]

Logic programming

A type of declarative programming where the result of the calculations are specified as formal logic.
Most common is first-order predicate logic.

Data structures only

+ unification
(equality)

record

declarative
programming
XML,
S—expression

+ procedure !

First—order i

Drcipde The principal programming paradigms

"More is not better (or worse) than less, just different."

v1.03 © 2007 by Peter Van Roy

+ cell (state)

functional
programming i

+ name

(unforgeable constant)
|

Imperative

programming

Pascal, C
Imperative
search
programming | * search

SNOBOL, Icon,

Prolog

No state
|

—_—
Stateful
|

e ADT : ADT] +m
Continuation el 5 [‘E” imperative i (pC Zgnne) (state) + closure
L ' p , P i ial
Scheme, ML . Haskell, ML, E ! CLU. Oz Event-loop object—oriented
Relational & logic + by—need + thread ’ ’ 7 ’ PLORTAMMIng p i
EOCTATTIIE synchron. + single assign ! Stateful
Prolog, ,SQL Lazy Monotonic i + thread functiona}l
em‘b;ddmgs functional dataflow ' | Multi-agent PLC
HiSOVER P programming i + nondeterministic + port programming Java, OCaml
Constraint (logic) Haskell Declarative ! choice : (channel) M. passi + thread
programming concurrent N . 3 ‘Multi ¢ AT Goncnent
CLP, ILOG Solver PrO gL AT dataflow i dataflow programming object—oriented
+ thread I ! D Erlang, AKL | _Programmin;
Concurrent e + thread Concurrent logic ' Oz, Alice, AKL Shared-—state
i SmgLe ! rogrammin; ! concurrent
constraint ! j2 FGIHC FCP‘ + local cell i
programming H s s = = -
LIFE. AKL atiidtory 1 0Oz, Alice, AKL AR eI Java, Alice,
s programming ' | programming Smalltalk, Oz
+ by—need synchronization Lazy ' + s{\'nchr(‘mizm‘iofl) Object—capability edog
Lazy concurrent declarative ! on partial termination programming —
constraint concurrent ! Functional reactive ! E, Oz, Alice. S
programmin programming ' | programming (FRP) | blish/subscril
Oz, Al Oz, Ali i FrTi , taipl (Li "&") memory (STM)
z, Alice z, Alice i rTime i uple space (Linda n
? ? ; | PR SQL embeddings
Logic and . H i Dataflow and)
A Functional ! |\ message passing Message passing Shared state
Weak state 3

Less declarative

More declarative T

Defines a predicate sort(L,S) is true if S is sorted list for L.

sort(L,S) = sorted(S) and permutation (L, S)

sort([5,12,43,1],S) = true

Means that S must

be [1,5,12,43).

Other important paradigms
Object oriented programming:

* Object, class, inheritance, polymorphism...

Parallel programm

ing:

¢ Thread, synchronisation, etc...

Distributed calculations:

« Calculation spread on different computers (e.g., cloud computing)

Different Paradigms

= Different Strengths

Rule of thumb: the more declarative language, the further from the hardware
In the end, the program will run on the same hardware, regardless of which language it is written in.
Declarative language make it easier to express complex calculations.
...but they are harder to execute on a machine.

Imperative language to execute faster...
...but they require more code.

Why do you need to

know all this?

“It is essential for anyone who wants to be considered a professional in the areas of software
to know several languages and several programming paradigms.”

— Bjarne Stroustrup

1.32

1.33

1.34

1.35

Why do you need to know all this?

* You are here (in the computer science/software engineering program at LiU) to become computer
scientists, not to teach you to write simple programs in the < latest fashionable language >.

* Better understanding of programming and algorithms by getting multiple perspectives on how to
think about programming

* The right tool for the right projects - different languages and paradigms are good at different things
1.36

5 Programming languages concepts

Foundation of programming languages

* Programming languages have many similarities to natural languages
— There are rules of syntax and semantics, there are many dialects, etc...

 Lets have a look at a few concepts:

Compiled/interpreted
— Syntax

Semantics

Typing
1.37

Compiled vs interpreted
Compiled languages translate into machine code that can be run directly on a computer CPU.

* The entire program is usually translated before running
Interpreted languages are processed by a virtual machine on a higher level

 Usually the program is transformed while running, batches-by-batches when it is needed
1.38

Compiled language

Source code

1

Lexical/Syntactical Analysis

i

Type Checker

iy

Code generation/optimization

T

Input — Computer — Output

1.39

10

Interpreted language

Source code

1

Lexical/Syntactical Analysis

I

Type Checker

7

Input — Interpreter — Output

L1

Computer

1.40

Syntax
A language syntax describes how well-formed expression should look like:
* How to assemble symbols to form units
* How to assemble units to from expressions

¢ The formalism to describe a language’s syntax is usually called a grammar 141

Semantic
The semantic is an important aspect of a (programming) language:
* Semantic is about the meaning of constructions.
* More difficult to define than the syntax
* A programmer should be able to predict what happens before the program run
« It is a precise description of what different constructions of a language means
Different approaches:

¢ Operational semantic:

— Describes directly the execution of the statements of a language, for exemple by describing the
transitions of an abstract machine.

* Axiomatic semantic:
— Defines the meaning of commands in term of logical predicates and axioms on the program
state, for example Hoare logic.
* Denotational semantic:

— Uses mathematical objects, e.g., partial functions, to denote what programs do. 140

Type
¢ A program needs to handle data
* structures and mechanisms for doing this are called type systems
* types help with
— program design
— check correctness

— determine storage requirements 1.43

Type system

* A program needs to handle data

» Types provide a specification for data

« Structures and mechanisms to handle types is called type system
* Type system usually includes

— aset of predefined types

— amechanism to create new types

— amechanism to control types
+* When are two types the same?
% When should a type replace the other?
+ What is the type of a compound term?

— Rules for control: static/dynamic 144

11

Typing

* A language is said to be typed when it requires specification of the type of data when defining an
operation or a variable
* Assembly languages are usually untyped

— In assembly all data is represented as bytes array

Weak and strong typing
» There is a distinction between weak typing and strong typing
* With strong typing, the language will not allow operation on the wrong type of data
— adding an integer to a float

* With weak typing, the language will perform implicit type conversion, i.e. a type will be interpreted
as an other (for)

— when adding an integer to a float, the integer is converted to a float

— when adding an integer to a string, the integer is converted to a string

Static vs dynamic type control

* There is a distinction on when the types are checked
* With statically types languages, the types are checked before the program runs
* With dynamic types languages, the types are checked while the program is running

12

1.45

1.46

1.47

	Administrative aspects
	DALG – introduction
	Origin of Programming
	Programming paradigms
	Programming languages concepts

