
Exam: TDDD86

Data Structures, Algorithms and Programming
Paradigms

2024-03-13 kl: 08-12

On-call (jour): Ahmed Rezine (tel: 1938)

Specific instructions for the computer exams:

• In summary: you log in with your LiuID and your private password. You can only

save files in the desktop. We might leave files for you in the read-only

“given_files” folder. You will use the “student chat client”, or “student client” to

receive information during the exam, to ask questions and to submit your solution.

More details in the “EXAM_README.pdf” under “given_files”.

• Your “student client” should start automatically, if you close it and need to start it

again, double click on the “fish icon” on your desktop.

• Submit one file with all your answers. We will only look at the last submitted file.

• You can access OpenDSA using chromium. The start page will list available links.

General instructions:

• You may answer in either English or Swedish.

• Submit a single document (text file) with your answers. The document should

only contain text (for instance, no pictures, no drawings).

• The questions are formulated so that you can answer with any text editor (e.g., vim,

emacs, gedit, etc) or an office program (e.g., Open/Libre Office).

• If in doubt about a question, write down your interpretation and assumptions.

• The exam is divided into two parts:

o Part A with a maximum of 34 pts.

o Part B with a maximum of 20 pts.

• Grading:

o Grade 3 requires at least 20 pts exclusively from Part A.

o Grade 4 requires grade 3 is secured and at least 8 pts from Part B.

o Grade 5 requires grade 3 is secured and at least 12 pts from Part B.

Part A
Problem A.1: Asymptotic execution time (minimum 0pts, maximum 10 pts)
Consider the five methods f1, f2, f3, f4, f5 and the nine complexity classes (A)-(I)

depicted below. Assume the manipulated arrays are large enough in the four methods.

You can always assume the size “n” of the problem to be a power of 2.

// Size of the problem is n (not x).

// You can assume n = 2^p for some integer p.

// The array “a” is sorted

int f2(int a[], int n, int x){

 int i= -1;

 for (i = 0; i < n ; i++){

 if(a[i] >= x){

 return i;

 }

 }

 return i;

}

// Size of the problem is n.

// You can assume n = 2^p for some integer p.

int f3(int a[], int n){

 int rslt = 0;

 for (i = 0; i + 10 < n; i++){

 int j = 0;

 int is_plateau = 1;

 for (j = i + 1; j < i + 10; j++){

 if(a[0] != a[j]){

 is_plateau = 0;

 }

 }

 if(j == i + 10 && is_plateau == 1){

 rslt = rslt + 1;

 }

 }

 return rslt;

}

// Size of the problem is n = hi – lo.

//You can assume n = 2^p for some integer p.

int f4(int a[], int lo, int hi, int x){

 if(lo >= hi){

 return -1;

 }

 int m = lo + (hi - lo)/2;

 if(a[m] < x){

 return f4(a, lo, m, x);

 }else{

 return f4(a, m, hi, x);

 }

}

// Size of the problem is n.

// You can assume n = 2^p for some integer p.

int f1(int a[], int n){

 int rslt = 0;

 int i = 0;

 int j = 0;

 while(j < n){

 if(i == n){

 j = j + 1;

 i = 0;

 }

 if(a[i] == a[j]){

 rslt = rslt + 1;

 }

 i = i + 1;

 }

 return rslt;

}

// Size of the problem is n = hi – lo.

// You can assume n = 2^p for some integer p.

int f5(int a[], int lo, int hi, int x){

 if(lo >= hi){

 return 0;

 }

 int m = lo + (hi - lo)/2;

 int a = f5(a, lo, m, x);

 int b = f5(a, m+1, hi, x);

 if(a[m] == 0){

 return a + b + 1;

 }else{

 return a + b;

 }

}

Complexity classes:

(A) 𝛩(1) (D) 𝛩(𝑛 log 𝑛) (G) 𝛩(2𝑛)

(B) 𝛩(log 𝑛) (E) 𝛩(𝑛2) (H) 𝛩(3𝑛)

(C) 𝛩(𝑛) (F) 𝛩(𝑛3) (I) 𝛩(𝑛!)

1. For each one of the five methods above, give (without justification!) the

complexity class among the classes (A-I) that best matches its asymptotic worst-

case execution time. For each method, 1pts if correct, 0 if not answered, -1pts if

incorrect.

2. For each one of the five methods above, give (without justification!) the

complexity class among the classes (A-I) that best matches its asymptotic best-

case execution time. For each method, 1pts if correct, 0 if not answered, -1pts if

incorrect.

Problem A.2: Heaps (minimum 0pts, maximum 10 pts)

Consider the tree in Figure 1. It represents a heap with 7 elements.

3. The tree in Figure 1 is an ordered binary tree representing a heap. Is it a complete

tree, a perfect tree, or a full tree? Answer without justification. A wrong answer

counts negative within the contribution of problem A.2. (2pts if correct, 0 if not

answered, -2pts if incorrect).

4. Is the priority queue captured by the tree in Figure 1 a min priority queue or a

max priority queue? Answer without justification. A wrong answer counts

negative within the contribution of problem A.2. (2pts if correct, 0 if not

answered, -2pts if incorrect).

5. Priority queues can be efficiently implemented using arrays. Any heap “ℎ” like

the one in Figure 1 can be represented using an array (where |h| is the number of

elements in the priority queue):

𝐚𝐫𝐫𝐚𝐲𝐎𝐟(ℎ) = [𝑎0, 𝑎1, … , a|h|−1]

The array 𝐚𝐫𝐫𝐚𝐲𝐎𝐟(ℎ) captures the binary tree corresponding to the heap ℎ. Let

ℎ0 be the heap captured in Figure 1. Give the sequence of elements appearing in

𝐚𝐫𝐫𝐚𝐲𝐎𝐟(ℎ0). (2pts).

6. Give the sequence of elements appearing in 𝐚𝐫𝐫𝐚𝐲𝐎𝐟(ℎ1) where ℎ1 is the heap

obtained by inserting the element 10 to the priority queue captured by ℎ0. (2pts).

7. Assume the heap ℎ1 you obtained in the previous question (i.e., after adding 10 to

the priority queue captured by ℎ0). Give the sequence of elements appearing in

𝐚𝐫𝐫𝐚𝐲𝐎𝐟(ℎ2) where ℎ2 is the heap obtained by performing a “pop” or “remove”

operation from ℎ1. (2pts).

4

12

9 8

14 13 100

Figure 1. Heap corresponding to a priority queue.

Problem A.3: Binary search trees (minimum 0pts, maximum 8 pts)

Recall that binary trees can be represented

sequentially. In this problem (i.e., problem A.3),

we adopt the approach described in 8.3.1 in

OpenDSA. For instance, the binary tree in Figure

2 to the right can be represented using the

sequence: “A B / D // C E G /// F H // I //”. The

symbol “/” is used to represent a “null” child. Do

not draw your trees! Use this approach instead to

answer the following questions.

Consider this sequence of 15 elements:

S: 12, 13, 14, 3, 11, 7, 9, 10, 5, 1, 15, 2, 6, 4, 8

8. Give a sequential representation (see the description of sequential representations

of binary trees at the beginning of this problem) of the final binary search tree

obtained by starting from an empty tree and inserting all the integers of the

sequence S one after the other (i.e., first insert 12, then 13, then 14 …). Do not

try to balance the tree. Do not perform any splay operation in this question.

Call this tree 𝑇1. (2pts).

9. List the integer values encountered in a post-order traversal of 𝑇1. (2pts).

10. Give a sequential representation of the tree 𝑇2 obtained by removing the node

containing key 8 from the tree 𝑇1. Do not try to balance the tree. Do not

perform any splay operation in this question. (2pts).

11. Consider now that the tree 𝑇1 you obtained in question 8 (observe this question 11

is about the tree 𝑇1 obtained in question 8 without any splay operations and

without removing any node). Give a sequential representation of the tree 𝑇3

resulting from performing a splay operation on the node containing key 1 in 𝑇1.

(2pts).

Problem A.4: Graphs and shortest paths (minimum 0pts, maximum 6pts)
Consider the graph in Figure 2.

12. Give, without justification, a topological sort of the nodes of the directed graph

depicted in Figure 3. (2pt).

13. List the letters in the order they are processed in a depth first traversal that starts

from node A in the graph of Figure 3. Observe the traversal needs not pass all nodes!

Use the alphabetical ordering to break ties if any. (2pts)

Figure 2. Only relevant for Problem A.3

A

G

D

B C

E F

H I

14. List the letters in the order they are processed in a breadth first traversal that starts

from node A in the graph of Figure 3. Observe the traversal needs not pass all nodes!

Use the alphabetical ordering to break ties if any. (2pts)

Part B:

Problem B.1 (minimum 0pts, maximum 6pts)
Answer with yes or no (no need for justification). A wrong answer counts negative. All

algorithms discussed in this question take an array of size 𝑛 as input. The algorithms can

handle arrays of any size. We are interested in the asymptotic time complexity of the

algorithms, i.e., in the asymptotic number of steps required as the size of the inputs

increases. A step here is assumed to take a constant amount of time.

15. Assume the best-case time complexity of an algorithm is in Ω(𝑛 log 𝑛). Does this

exclude the existence of an infinite sequence of arrays 𝑎1, 𝑎2, … (where the size of

each array 𝑎𝑛 is 𝑛) for which the algorithm always terminates in less than 10

steps? (1pts if correct, 0 if not answered, -1pts if incorrect).

16. Assume the best-case time complexity of an algorithm is in O(𝑛 log 𝑛). Does this

exclude the possibility that the algorithm always terminates in less than 10 steps

no matter the size of the input? (1pts if correct, 0 if not answered, -1pts if

incorrect).

17. Assume the best-case time complexity of an algorithm is in Θ(𝑛 log 𝑛). Does this

exclude the existence of an infinite sequence of arrays 𝑎1, 𝑎2, … (where the size

A E

I

H

C

B

G

D

F

Figure 3. Directed graph for questions 12, 13 and 14.

of each array 𝑎𝑛 is n) for which the algorithm always terminates in less than 10

steps? (1pts if correct, 0 if not answered, -1pts if incorrect).

18. Assume the worst-case time complexity of an algorithm is in Θ(𝑛 log 𝑛). Does

this exclude the possibility that the algorithm always terminates in less than 10

steps no matter the size of the input? (1pts if correct, 0 if not answered, -1pts if

incorrect).

19. Assume the worst-case time complexity of an algorithm is in Ω(𝑛 log 𝑛). Does

this this exclude the existence of an infinite sequence of arrays 𝑎1, 𝑎2, … (where

the size of each array 𝑎𝑛 is 𝑛) for which the algorithm always terminates in less

than 10 steps? (1pts if correct, 0 if not answered, -1pts if incorrect).

20. Assume the worst-case time complexity of an algorithm is in O(𝑛 log 𝑛). Does

this exclude the existence of an infinite sequence of arrays 𝑎1, 𝑎2, … (where the

size of each array 𝑎𝑛 is 𝑛) for which the algorithm always terminates in less than

10 steps? (1pts if correct, 0 if not answered, -1pts if incorrect).

Problem B.2 (minimum 0pts, maximum 6 pts):
Assume a data structure where you can insert and remove letters. Suppose the sequence

X Y U V W can be read only once, one letter at a time from left to right. Each time a

letter is read, it can be either inserted in the data structure or it can be printed without

insertion. A letter can also be removed from the data structure (if it was inserted of

course) and printed. You can mix read operations (involving printing or insertion) and

remove operations, i.e., you have access to operations of the form:

• read and print: read next letter and print it without insertion.

• read and insert: read next letter and insert it in data structure without printing

• remove and print: remove letter from data structure and print it.

You can only store letters in the considered data structure. A sequence of operations “read

and print”, “read and insert” and “remove and print” allows you to print the same letters

as the sequence but in a possibly different order.

21. Can a sequence of such operations result in printing the sequence X U W V Y if

the data structure is a stack? If your answer is yes, give the sequence of involved

operations, if your answer is no, explain why. (3pts)

22. Can a sequence of such operations result in printing the sequence Y U W X V if

the data structure is a stack? If your answer is yes, give the sequence of involved

operations, if your answer is no, explain why. (3pts)

Problem B.3 (minimum 0pts, maximum 8 pts):
A polynomial expression 𝑝 of degree 𝑛 is an expression of the form:

 𝑝(𝑥) = 𝑎0 + 𝑎1𝑥1 + … + 𝑎𝑛𝑥𝑛

Where 𝑥 is a variable and 𝑎0, 𝑎1, … , 𝑎𝑛 are constants. Both variable and constants are

meant to be rational numbers and are captured using doubles.

23. Consider the pseudo code below. The method evaluate takes a constant reference

to the coefficients of the polynomial 𝑝 and a value for the variable 𝑥. It returns the

value of the polynomial for the variable value 𝑥. Write a simple “C++ pseudo

code”1 for the evaluate method. Your code should only use for loops and simple

(i.e., constant time) operations such as declarations of integer and double

variables, assignments to such variables, additions or multiplications, or access to

vector elements. Analyze the time complexity of your solution as a function of the

degree 𝑛 of the polynomial. Assume, in your analysis that you need to compute 𝑥𝑖

using multiplication (and not by calling some primitive operation for power

computations). (3pts)

24. Using the same assumptions as in the previous question, give “C++ pseudo code”

for a solution that always returns the result in time complexity Θ(n), where 𝑛 is

the degree of the polynomial. (3pts)

#include <iostream>

#include <vector>

using namespace std;

double evaluate(const vector<double>& p, double x){

 …

}

int main(){

 int n;

 double x, a;

 vector<double> p;

 cout << "Give the polynomial degree n: \n" << endl;

 cin >> n;

 for(int i=0; i <= n; i++){

 cout << "coefficient a" << i << "?\n" ;

 cin >> a;

 p.push_back(a);

 }

 cout << "give value for variable x: \n" << endl;

 cin >> x;

 cout << "The value of the polynomial for x="

<< x << " is " << evaluate(p,x) << endl;

 return 0;

}

1 Like the code above, “C++ like pseudo code” should clarify the steps involved in your method. It should

be possible to compile with minor changes. Syntax errors such as missing semi-colons are not a problem.

