
Expectations, Outcomes, and Challenges
of Modern Code Review

Alberto Bacchelli Christian Bird
REVEAL @ Faculty of Informatics Microsoft Research
University of Lugano, Switzerland Redmond, Washington, USA

alberto.bacchelli@usi.ch cbird@microsoft.com

Abstract—Code review is a common software engineering
practice employed both in open source and industrial contexts.
Review today is less formal and more “lightweight” than the
code inspections performed and studied in the 70s and 80s. We
empirically explore the motivations, challenges, and outcomes of
tool-based code reviews. We observed, interviewed, and surveyed
developers and managers and manually classified hundreds of
review comments across diverse teams at Microsoft. Our study
reveals that while finding defects remains the main motivation for
review, reviews are less about defects than expected and instead
provide additional benefits such as knowledge transfer, increased
team awareness, and creation of alternative solutions to problems.
Moreover, we find that code and change understanding is the key
aspect of code reviewing and that developers employ a wide range
of mechanisms to meet their understanding needs, most of which
are not met by current tools. We provide recommendations for
practitioners and researchers.

I. INTRODUCTION

Peer code review, a manual inspection of source code by
developers other than the author, is recognized as a valuable
tool for reducing software defects and improving the quality
of software projects [2], [1]. In 1976, Fagan formalized a
highly structured process for code reviewing [13], based on
line-by-line group reviews, done in extended meetings—code
inspections. Over the years, researchers provided evidence on
code inspection’s benefits, especially in terms of defect finding,
but the cumbersome, time-consuming, and synchronous nature
of this approach hinders its universal adoption in practice [32].

Nowadays many organizations are adopting more lightweight
code review practices to limit the inefficiencies of inspections.
In particular, there is a clear trend toward the usage of tools
developed to support code review [28]. In the context of
this paper, we define Modern Code Review, as review that
is (1) informal (in contrast to Fagan-style), (2) tool-based, and
that (3) occurs regularly in practice nowadays, for example
at companies such as Microsoft, Google [19], Facebook [36],
and in other organizations and open source software (OSS)
projects [40].

This trend raises questions, such as: What are the expecta-
tions for code review nowadays? What are the actual outcomes
of code review? What challenges do people face in code review?

Answers to these questions can provide insight for both prac-
titioners and researchers. Developers and other software project
stakeholders can use empirical evidence about expectations and
outcomes to make informed decisions about when to use code
review and how it should fit into their development process.

Researchers can focus their attention on the challenges faced
by practitioners to make code review more effective.

We present an in-depth study of practices in teams that use
modern code review, revealing what practitioners think, do,
and achieve when it comes to modern code review.

Since Microsoft is made up of many different teams working
on very diverse products, it gives the opportunity to study
teams performing code review in situ and understand their
expectations, the benefits they derive from code review, the
needs they have, and the problems they face.

We set up our study as an exploratory investigation. We
started without a priori hypotheses regarding how and why
code review should be performed, with the aim of discovering
what developers and managers expect from code review, how
reviews are conducted in practice, and what the actual outcomes
and challenges are. To that end, we (1) observed 17 industrial
developers performing code review with various degrees of
experience and seniority across 16 separate product teams with
distinct reviewing cultures and policies; (2) interviewed these
developers using a semi-structured interviews; (3) manually
inspected and classified the content of 570 comments in
discussions contained within code reviews; and (4) surveyed
165 managers and 873 programmers.

Our results show that, although the top motivation driving
code reviews is finding defects, the practice and the actual
outcomes are less about finding errors than expected: Defect
related comments comprise a small proportion and mainly
cover small logical low-level issues. On the other hand, code
review additionally provides a wide spectrum of benefits to
software teams, such as knowledge transfer, team awareness,
and improved solutions to problems. Moreover, we found that
context and change understanding is the key of any review.
According to the outcomes they want to achieve, developers
employ many mechanisms to fulfill their understanding needs,
most of which are not currently met by any code review tool.

This paper makes the following contributions:

• Characterizing the motivations of developers and managers
for code review and compare with actual outcomes.

• Relating the outcomes to understanding needs and discuss
how developers achieve such needs.

Based on our findings, we provide recommendations for
practitioners and implications for researchers as well as outline
future avenues for research.

978-1-4673-3076-3/13/$31.00 c© 2013 IEEE ICSE 2013, San Francisco, CA, USA712

II. RELATED WORK

Previous studies have examined the practices of code inspec-
tion and code review. Stein et al. conducted a study focusing
specifically on distributed, asynchronous code inspections [33].
The study included evaluation of a tool that allowed for
identification and sharing of code faults or defects. Participants
at separated locations can then discuss faults via the tool.
Laitenburger conducted a survey of code inspection methods,
and presented a taxonomy of code inspection techniques [22].
Johnson conducted an investigation into code review practices
in OSS development and their effect on choices made by
software project managers [18].

Porter et al. [26] reported on a review of studies on code
inspection in 1995 that examined the effects of factors such
as team size, type of review, and number of sessions on code
inspections. They also assessed costs and benefits across a
number of studies. These studies differ from ours in that they
were not tool-based and were the majority involved planned
meetings to discuss the code.

However, prior research also sheds light on why review today
is more often tool-based, informal, and often asynchronous.
The current state of code review might be due to the time
required for more formal inspections. Votta found that 20%
of the interval in a “traditional inspection” is wasted due to
scheduling [38]. The ICICLE tool [11], or “Intelligent Code
Inspection in a C Language Environment,” was developed after
researchers at Bellcore observed how much time and work was
expended before and during formal code inspections. Many
of todays review tools are based on ideas that originated in
ICICLE. Other similar tools have been developed in an effort
to reduce time for inspection and allow asynchronous work on
reviews. Examples include CAIS [25] and Scrutiny [15].

More recently, Rigby has done extensive work examining
code review practices in OSS development [29], [30], [28]. For
example in a study of practices in the Apache project [29],
they data-mined the email archives and found that reviews
were typically small and frequent, and that the contributions to
a review were often brief and independent from one another.

Sutherland and Venolia conducted a study at Microsoft re-
garding using code review data for later information needs [34].
They hypothesized that the knowledge exchanged during code
reviews could be of great value to engineers later trying to
understand or modify the discussed code. They found that “the
meat of the code review dialog, no matter what medium, is the
articulation of design rationale” and, thus, “code reviews are
an enticing opportunity for capturing design rationale.”

When studying developer work habits, Latoza et al. found
that many problems encountered by developers were related to
understanding the rationale behind code changes and gathering
knowledge from other members of their team [23].

III. METHODOLOGY

In this section we define the research questions, describe
the research settings, and outline our research method.

A. Research Questions
Our investigation of code review revolves around the

following research questions (iteratively refined during our
initial in-field observations and interviews):

1) What are the motivations and expectations for modern
code review? Do they change from managers to developers
and testers?

2) What are the actual outcomes of modern code review?
Do they match the expectations?

3) What are the main challenges experienced when perform-
ing modern code reviews relative to the expectations and
outcomes?

B. Research Setting
Our study took place with professional developers, testers,

and managers. Microsoft develops software in diverse domains,
from high end server enterprise data management solutions such
as SQL Server to mobile phone applications and smart phone
apps to search engines. Each team has its own development
culture and code review policies. Over the past two years,
a common tool for code review at Microsoft has achieved
wide-spread adoption. As it represents a common and growing
solution for code review (over 40,000 developers used it so
far), we focused on developers using this tool for code review—
CodeFlow.

CodeFlow is a collaborative code review tool that allows
users to directly annotate source code in its viewer and interact
with review participants in a live chat model. The functionality
of CodeFlow is similar to other review tools such Google’s
Mondrian [19], Facebook’s Phabricator [36] or open-source
Gerrit [40]. Developers who want their code to be reviewed
create a package with the changed (new, deleted, and modified)
files, select the reviewers, write a message to describe the
code review, and submit everything to the CodeFlow service.
CodeFlow then notifies the reviewers about the incoming task
via email.

Once reviewers open a CodeFlow review, they interact with
it through a single desktop window (Figure 1). On the top left
(1), they see the list of files changed in the current submission,
plus a ‘description.txt’ file, which contains a textual explanation
of the change, written by the author. On bottom left, CodeFlow
shows the list of reviewers and their status (2). We see that
Christian is the review author and Alberto, Tom, and Nachi
are the reviewers. Alberto has reviewed and is waiting for the
author to act, as the clock icon suggests, while Nachi already
signed off on the changes. CodeFlow’s main view (3) shows
the diff-highlighted content of the file currently under review.
Both the reviewers and the author can highlight portions of
the code and add comments inline (4). These comments can
start threads of discussion and are the interaction points for
the people involved in the review. Each user viewing the same
review in CodeFlow sees events as they happen. Thus, if an
author and reviewer are working on the review at the same
time, the communication is synchronous and comment threads
act similar to instant messaging. The comments are persisted
so that if they work at different times, the communication

713

1

2

3

4

5

Fig. 1. CodeFlow, the main code review tool used by developers at Microsoft.

becomes asynchronous. The bottom right pane (5) shows the
summary of all the comments in the review.

CodeFlow records all the information on code reviews on a
central server. This provides an additional data source that we
used to analyze real code review comments without incurring
the Hawthorne effect [3].

C. Research Method

Our research method followed a mixed qualitative and
quantitative approach [12] (depicted in Figure 2), which collects
data from different sources for triangulation: (1) analysis of
previous study, (2) observations and interviews with developers,
(3) card sort on interview data, (4) card sort on code review
comments, (5) the creation of an affinity diagram, and (6)
survey to managers and programmers.

1. Analysis of previous study: Our research started with
the analysis of a study commissioned by Microsoft, between
April and May 2012 carried out by an external vendor. The
study investigated how different product teams were using
CodeFlow. It consisted of structured interviews (lasting 30-50
minutes) to 23 people with different roles.

Most of the interview questions revolved around topics
that were very specific to usage of the tool, and were only
tangentially related to this work. We found one relevant as a
starting point for our study: “What do you hope to accomplish
when you submit a code review?” We analyzed the transcript
of this answer, for each interview, through the process of
coding [9] (also used in grounded theory [4]): breaking up the
answers into smaller coherent units (sentences or paragraphs)
and adding codes to them. We organized codes into concepts,
which in turn were grouped into more abstract categories.

From this analysis, four motivations emerged for code review:
finding defects, maintaining team awareness, improving code
quality, and assessing the high-level design. We used them to
draw an initial guideline for our interviews.

2. Observations and interviews with developers: Subse-
quently, we conducted a series of one-to-one meetings with

developers who use CodeFlow, each taking 40-60 minutes.
We contacted 100 randomly selected candidates who signed-

off between 50 and 250 code reviews since the CodeFlow
release and sampled across different product teams to address
our research questions from a multi-point perspective. We wrote
developers who used CodeFlow in the past and asked them to
contact us, giving us 30 minute notice when they received their
next review task so that we could observe. The respondents
that we interviewed comprised five developers, four senior
developers, six testers, one senior tester, and one software
architect. Their time in the company ranged from 18 months
to almost 10 years, with a median of five years.

Each meeting was comprised of two parts: In the first part, we
observed them performing the code review that they had been
assigned. To minimize invasiveness and the Hawthorne effect,
we used only one observer, and to encourage the participant to
narrate their work, we asked the participants to consider him as
a newcomer to the team. In this way, most developers thought
aloud without need of prompting. With consent, we recorded
the audio, assuring the participants of anonymity. Since we,
as observers, have backgrounds in software development and
practices at Microsoft, we could understand most of the work
and where and how information was obtained without inquiry.

The second part of the meeting was a semi-structured
interview [35]. This form of interviews makes use of an
interview guide that contains general groupings of topics and
questions rather than a pre-determined exact set and order of
questions. They are often used in an exploratory context to
“find out what is happening [and] to seek new insights” [39].
The guideline was iteratively refined after each interview, in
particular when developers started providing answers very
similar to the earlier ones, thus reaching a saturation effect.

After the first 5-6 meetings, the observations reached a
saturation point [16]: They were providing insights very similar
to the earlier ones. For this, we adjusted the meetings to have
shorter observations, which we used as a starting point for our
meetings and as a hook to talk about topics in our guideline.

The audio of each interview was then transcribed and broken
up into smaller coherent units for subsequent analysis.

3. Card sort (meetings): To group codes that emerged from
interviews and observations into categories, we conducted a
card sort. Card sorting is a sorting technique that is widely
used in information architecture to create mental models and
derive taxonomies from input data [7]. In our case it helped to
organize the codes into hierarchies to deduce a higher level of
abstraction and identify common themes. A card sort involves
three phases: In the (1) preparation phase, participants of
the card sort are selected and the cards are created; in the
(2) execution phase, cards are sorted into meaningful groups
with a descriptive title; and in the (3) analysis phase, abstract
hierarchies are formed to deduce general categories.

We applied an open card sort: There were no predefined
groups. Instead, the groups emerged and evolved during the
sorting process. In contrast, a closed card sort has predefined
groups and is typically applied when themes are known in
advance, which was not the case for our study.

714

ValidationData AnalysisData Collection

CodeFlow
Service

Code
Reviews

Commit
Comments

Review
Comment

Commit
Comments

Review
Thread

Commit
Comments

Review
Comment

Commit
Comments

Interview
Transcript

Commit
Comments

Commit
CommentsTranscripts

Previous Study

Card Sorting on
570 Review Comments

Card Sorting on
1,047 Logical Units

Affinity Diagram

Interview
Guideline Managers' Survey

165 Respondents

Commit
Comme

nts

Commit
Comme

nts

Commit
Comme

nts

Commit
Comme

nts

Programmers' Survey
873 Respondents

Observations &
Interviews

17 Participants

1

2
3

4

5

6

Fig. 2. The mixed approach research method applied.

The first author of this paper created all of the cards, from
the 1,047 coherent units in the interviews (an example card
is shown in a technical report [6]). Throughout our further
analysis other researchers (the second author and external
people) were involved in developing categories and assigning
cards to categories, so as to strengthen the validity of the
result. The first author played a special role of ensuring that
the context of each question was appropriately considered in
the categorization, and creating the initial categories. To ensure
the integrity of our categories, the cards were sorted by the first
author several times to identify initial themes. To reduce bias
from the first author sorting the cards to form initial themes, all
researchers reviewed and agreed on the final set of categories.

4. Card sort (code review comments): The same method
was applied to group code review comments into categories:
We randomly sampled 200 threads with at least two comments
(e.g., Point 4 of Figure 2), from the entire dataset of CodeFlow
reviews, which embeds data from dozens of independent
software products at Microsoft. We printed one card for each
comment (along with the entire discussion thread to give the
context), totaling 570 cards, and conducted a card sort, as
performed for the interviews, to identify common themes.

5. Affinity Diagram: We used an affinity diagram to
organize the categories that emerged from the card sort. This
tool allows large numbers of ideas to be sorted into groups for
review and analysis [31]. We used it to generate an overview of
the topics that emerged from the card sort, in order to connect
the related concepts and derive the main themes. For generating
the affinity diagram, we followed the five canonical steps: we
(1) recorded the categories on post-it-notes, (2) spread them
onto a wall, (3) sorted the categories based on discussions,
until all are sorted and all participants agreed, (4) named each
group, and (5) captured and discussed the themes.

6. Surveys: The final step of our study was aimed at
validating the concepts that emerged from the previous phases.
Towards this goal, we created two surveys to reach a significant
number of participants and to challenge our conclusions (the
full surveys are available as a technical report [6]). For the
design of the surveys, we followed Kitchenham and Pfleeger’s
guidelines for personal opinion surveys [20]. Both surveys

were anonymous to increase response rates [37].
We sent the first survey to a cross section of managers.

We considered managers for which at least half of their team
performed code reviews regularly (on average, one per week or
more) and sampled along two dimensions. The first dimension
was whether or not the manager had participated in a code
review himself since the beginning of the year and the second
dimension was whether the manager managed a single team
or multiple teams (a manager of managers). Thus, we had
one sample of first level managers who participated in review,
another sample of second level managers who participated in
reviews, etc. The first survey was a short survey comprising 6
questions (all optional), which we sent to 600 managers that
had at least 10 direct or indirect reporting developers who used
CodeFlow. The central focus was the open question asking to
enumerate the main motivations for doing code reviews in their
team. We received 165 answers (28% response rate), which
we analyzed before devising the second survey.

The second survey comprised 18 questions, mostly closed
with multiple choice answers, and was sent to 2,000 randomly
chosen developers who signed off on average at least one code
review per week since the beginning of the year. We used the
time frame of January to June of 2012 to minimize the amount
of organizational churn during the time period and identify
employees’ activity in their current role and team. We received
873 answers (44% response rate). Both response rates were
high, as other online surveys in software engineering have
reported response rates ranging from 14% to 20% [27].

IV. WHY DO PROGRAMMERS DO CODE REVIEWS?
Our first research question seeks to understand what mo-

tivations and expectations drive code reviews, and whether
managers and developers share the same opinions.

Based on the responses that we coded from observations of
developers performing code review as well as interviews, there
are various motivations for code review. Overall, the interviews
revealed that finding defects, even though prominent, is just one
of the many motivations driving developers to perform code
reviews. Especially when reinforced by a strong team culture
around reviews, developers see code reviews as an activity
that has multiple beneficial influences not only on the code,

715

but also for the team and the entire development process. In
this vein, one senior developer’s comment summarized many
of the responses: “[code review] also has several beneficial
influences: (1) makes people less protective about their code,
(2) gives another person insight into the code, so there is
(3) better sharing of information across the team, (4) helps
support coding conventions on the team, and [...] (5) helps
improving the overall process and quality of code. ”

Through the card sort on both meetings and code review
comments, we found several references to motivations for code
review and identified six main topics. To complete this list,
in the survey for managers, we included an open question on
why they perform code reviews in their team. We analyzed
the responses to create a comprehensive list of high-level
motivations. We included this list in the developers’ survey and
asked them to rank the top three main reasons that described
why they do code reviews.

In the rest of this section, we discuss the motivations that
emerged as the most prominent. We order them according to
the importance they were given by the 873 developers and
testers who responded to the final survey.

A. Finding Defects

One interviewed senior tester explains that he performs code
reviews because they “are a great source of bugs;” he goes
even further stating: “sometimes code reviews are a cheaper
form of bug finding than testing.” Moreover, the tool seems not
to have an impact on this main motivation: “using CodeFlow
or using any other tool makes a little difference to us; it’s
more about being able to identify flaws in the logic.”

Almost all the managers included finding defects as one of
the reasons for doing code reviews; for 44% of the managers, it
is the top reason. Managers considered defects to be both low
level issues (e.g., “correct logic is in place”) and high level
concerns (e.g., “catch errors in design”). Concerning surveyed
developers/testers, finding defects is the first motivation for code
review for 383 of the programmers (44%), second motivation
for 204 (23%), and third for 96 (11%).

This is in-line with the reason why code inspections were
devised in the first place: reducing software defects [2].

Nevertheless, even though finding defects emerged from
our data as a strong motivation (the first for almost half of
the programmers and managers), interviews and survey results
indicate that this only tells part of the story of why practitioners
do code reviews and the outcomes they expect.

B. Code Improvement

Code improvements are comments or changes about code
in terms of readability, commenting, consistency, dead code
removal, etc., but do not involve correctness or defects.

Programmers ranked code improvement as an important
motivation for code review, close to finding defects: This is the
primary motivation for 337 (39%) programmers, the second
for 208 (24%), and the third for 135 (15%). Managers reported
code improvement as their primary motivation in 51 (31%)
cases. One manager wrote how code review in her view is a

Ranked Motivations From Developers

Responses

Team Assessment

Track Rationale

Avoid Build Breaks

Share Code Ownership

Improving Dev Process

Team Awareness

Knowledge Transfer

Alternative Solutions

Code Improvement

Finding defects

0 200 400 600

Top Second Third

Fig. 3. Developers’ motivations for code review.

“discipline of explaining your code to your peers [that] drives
a higher standard of coding. I think the process is even more
important than the result.”

Most interviewed programmers mentioned that at least one
of the reviewers involved in each code review takes care
of checking whether the code follows the team conventions,
for example in terms of code formatting and in terms of
function and variable naming. Some programmers use a “code
improvement” check as a first step when doing code review:
“the first basic pass on the code is to check whether it is
standard across the team.”

The interviews also gave us a glimpse of the connection
between the quality of code reviews and code improvement
comments. Such comments seem easier to write and sometimes
interviewees mentioned them as the way reviewers use to avoid
spending time to conduct good code reviews. An observation
by a senior developer, in the company for more than nine years,
summarizes the opinions we received from many interviewees:
“I’ve seen quite a few code reviews where someone commented
on formatting while missing the fact that there were security
issues or data model issues.”

C. Alternative Solutions

Alternative solutions regard changes and comments on
improving the submitted code by adopting an idea that leads to
a better implementation. This is one of the few motivations in
which developers and managers do not agree. While 147 (17%)
developers put this as the first motivation, 202 (23%) as the
second, and 152 (17%) as the third, only 4 (2%) managers
even mentioned it (e.g., “Generate better ideas, alternative
approaches” and “Collective wisdom: Someone else on the
project may have a better idea to solve a problem”). The
outcome of the interviews was similar to the position of
managers: Interviewees vaguely mentioned this motivation,
and mostly in terms of generic “better ways to do things.”

D. Knowledge Transfer

All the interviewees but one motivated their code reviews
also from a learning—or knowledge transfer—perspective. With
the words of a senior developer: “one of the things that should

716

be happening with code reviews over time is a distribution
of knowledge. If you do a code review and did not learn
anything about the area and you still do not know anything
about the area, then that was not as good code review as
it could have been.” Although we did not include questions
related to knowledge transfer in our interview guideline, this
topic kept emerging spontaneously from each meeting, thus
underscoring its value for practitioners.

Sometimes programmers told us that they follow code
reviews explicitly for learning purposes. For example, a tester
explained: “[I read code reviews because] from a code review
you can learn about the different parts you have to touch to
implement a certain feature.”

According to interviewees, code review is a learning oppor-
tunity for both the author of the change and the reviewers:
There is a bidirectional knowledge transfer about APIs usage,
system design, best practices, team conventions, “additional
code tricks,” etc. Moreover code reviews are recognized for
educating new developers about code writing.

Managers included knowledge transfer as one of the reasons
for code review, although never as the top motivation. They
mostly wrote about code review as an education means by
mentioning among the motivations: “developer education,”
“education for junior developers who are learning the codebase,”
and “learning tool to teach more junior team members.”

Programmers answering the survey declared knowledge
transfer to be their first motivation for code review in 73 (8%)
cases, their second in 119 (14%), and their third in 141 (16%).

E. Team Awareness and Transparency

During one of our observations, one developer was preparing
a code review submission as an author: He wanted other
developers to “double check” his changes before committing
them to the repository. After preparing the code, he specified
the developers he wanted to review his code; he required
not only two specific people, but he also put a generic email
distribution group as an “optional” reviewer. When we inquired
about this choice, he explained us: “I am adding [this alias],
so that everybody [in the team] is notified about the change I
want to do before I check it in.” In the subsequent interviews,
this concept of using an email list as optional reviewer, or
including specific optional reviewers exclusively for awareness
emerged again frequently, e.g., “Code reviews are good FYIs
[for your information].”

Managers often mentioned the concept of team awareness
as a motivation for code review, frequently justifying it with
the notion of “transparency:” Not only must the team be kept
aware of the directions taken by the code, but also nobody
should be allowed to “secretly” make changes that might break
the code or alter functionalities.

The 873 programmers answering the survey ranked team
awareness and transparency very close to knowledge transfer.
In fact, the two concepts appeared logically related also in the
interviews; for example one tester, while reviewing some code
said: “oh, this guy just implemented this feature, and now let me
back and use it somewhere else.” Showing that he both learned

about the new feature and he was now aware of the possibility
to use it in his own code. 75 (9%) developers considered team
awareness their first motivation for code review, 108 (12%)
their second, and 149 (17%) their third.

Although team awareness and transparency emerged from
our data as clearly promoted by the code review process,
academic research seems to have given little attention to it.

F. Share Code Ownership

The concept of shared code ownership is closely related
to team awareness and transparency, but it has a stronger
connotation toward active collaboration and overlapping coding
activities. Programmers and managers believe that code review
is not only an occasion to notify other team members about
incoming changes, but also a means to have more than one
knowledgeable person about specific parts of the codebase.
A manager put the following as her second motivation for
code review: “Broaden knowledge & understanding of how
specific features/areas are designed and implemented (e.g.,
grooming “backup developers” for areas where knowledge is
too concentrated on one or two expert developers).”

Moreover, both developers and managers have the opinion
that practicing code review also improves the personal per-
ception of team members about shared code ownership. On
this note, a senior developer, with more than 30 years in the
software industry, explained: “In the past people did not use to
do code reviews and were very reluctant to put themselves in
positions where they were having other people critiquing their
code. The fact that code reviews are considered as a normal
thing helps immensely with making people less protective about
their code.” Similarly a manager wrote us explaining that she
deems code reviews important because they “Dilute any “rigid
sense of ownership” that might develop over chunks of code.”

In the programmers’ survey, 51 (6%) respondents marked
share code ownership as their first motivation, 100 (11%) as
their second, and 91 (10%) as their third.

G. Summary

In this section, we analyzed the motivations that developers
and managers have for doing code review. We abstracted them
into a list, which we finally included in the programmers’
survey. Figure 3 reports the answers given to this question:
The black bar is the number of developers that put that row
as their top motivation, the gray bar is the number that put it
as the second motivation, etc. We have ordered the factors by
giving 3 points for a first motivation response, 2 points for a
second motivation, etc. and then sorting by the sum.

We discussed the five most prominent motivations, which
show that finding defects is the top motivation, although
participants believe that code review brings other benefits.
The first two motivations were already popular in research
and their effectiveness have been evaluated in the context of
code inspections; on the contrary, the other motivations are still
unexplored, especially those regarding more social benefits on
the team, such as shared code ownership.

717

Comments in each Category

Percentage of Comments

Misc

Knowledge Transfer

Review Tool

Testing

External Impact

Defects

Social Communication

Understanding

Code Improvement

0% 10% 20% 30%

Fig. 4. Proportion of comments by card sort category.

Although motivations are well defined, we still have to verify
whether they actually translate into real outcomes of a modern
code review process.

V. THE OUTCOMES OF CODE REVIEWS

A. Motivations vs. Outcomes

Our second research question seeks to understand what
the actual outcomes of code reviews are, and whether they
match the motivations and expectations outlined in the previous
section. To that end, we conducted indirect field research [24]
by analyzing the content of 200 threads (corresponding to
570 comments) recorded by CodeFlow. Figure 4 shows the
categories of comments found through the card sort.

Code Improvements: The most frequent category, with
165 (29%) comments, is code improvements. In detail, among
code improvements comments we find 58 on using better code
practices, 55 on removing not necessary or unused code, and
52 on improving code readability.

Defect Finding: Although defect finding is the top mo-
tivation and expected outcome of code review for many
practitioners, the category defect is the only the fourth most
frequent, out of nine items, with 78 (14%) comments. Among
defect comments, 65 are on logical issues (e.g., a wrong
expression in an if clause), 6 on high-level issues, 5 on security,
and 3 on wrong exception handling.

Knowledge Transfer: Concerning the other expected out-
comes of code reviews, we did not expect to find evidence
about them, because of their more “social”–thus harder to
quantifynature. Nevertheless, we found some (12) comments
specifically about knowledge transfer, where the reviewers
were directing the code change author to external resources
(e.g., internal documentation or websites) for learning how to
tackle some issues. This provides additional evidence on the
importance of this aspect of reviews.

B. Finding Defects: When Expectations Do Not Meet Reality

Why do we see this significant gap in frequency between
code improvements and defects comments? Possible reasons
may be that our sample of 570 comments is too small to
represent the population, that the submitted changes might

require less need fixing of “real” defects than of small
code improvements, or that programmers could consider code
improvements as actual defects. However, by triangulating these
numbers with the interview discussions, the survey answers,
and the other categories of comments, another reason seems
to justify this situation. First, we start by noting that most
of the comments on defects regard uncomplicated logical
errors, e.g., corner cases, common configuration values, or
operator precedence. Then, from interview data, we see that:
(1) most interviewees explained how, with tool-based code
reviews, most of the found defects regard “logic issues–where
the author might not have considered a particular or corner
case”; (2) some interviewees complained that the quality of
code reviews is low, because reviewers only look for easy errors:
“[Some reviewers] focus on formatting mistakes because they
are easy [...], but it doesn’t really help. [...] In some ways it’s
kind of embarrassing if someone asks you to do a code review
and all you can find are formatting mistakes when there are
real mistakes to be found”; and (3) other interviewees admitted
that if the code is not among their codebase, they look at
“obvious bugs (such as, exception handling).” Finally, managers
mentioned “catching early obvious bugs” or “finding obvious
inefficiencies or errors” as reasons for doing code review.
These points illustrate that the reason for the gap between the
number of comments on code improvements and on defects is
not to be found in problems in the sample or in classification
misconceptions, but it is rather just additional corroborating
evidence that the outcome of code review does not match the
main expectation of both programmers and managersfinding
defects. Review comments about defects are few, comprising
one-eighth of the total in our sample, and mostly address
“micro” level and superficial concerns; while programmers and
managers would expect more insightful remarks on conceptual
and design level issues. Why does this happen? The high
frequency of understanding comments hints at the answer to
our question, addressed in the next section.

VI. WHAT ARE THE CHALLENGES OF CODE REVIEW?

Our third research question seeks to understand the main
challenges faced by reviewers when performing modern code
reviews, also with respect to the expected outcomes. We also
seek to uncover the reasons behind the mismatch between
expectations and actual outcomes on finding defects in reviews.

A. Code Review is Understanding

Even though we did not ask any specific question concerning
understanding, the theme emerged clearly from our interviews.
Many interviewees eventually acknowledged that understanding
is their main challenge when doing code reviews. For example,
a senior developer autonomously explained to us: “the most
difficult thing when doing a code review is understanding the
reason of the change;” a tester, in the same vein: “the biggest
information need in code review: what instigated the change;”
and another senior developer: “in a successful code review
submission the author is sure that his peers understand and
approve the change.” Although the textual description should

718

Level of Understanding Needed

Responses

Avoid Build Breaks

Track Rationale

Team Awareness

Improve Dev Process

Code Improvement

Team Assessment

Knowledge Transfer

Share Code Ownership

Alternative Solutions

Finding Defects

500 0 500

None Low High Complete

Fig. 5. Developers responses in surveys of the amount of code understanding
for code review outcomes.

help reviewers understanding, some developers do not find
it useful: “people can say they are doing one thing, while
they are doing many more of them,” or “the description is
not enough;” in general, developers seem to confirm that “not
knowing files (or [dealing with] new ones) is a major reason
for not understanding a change.”

From interviews, no other code review challenge emerged
as clearly as understanding the submitted change. Even though
scheduling and time issues also appeared challenging, we
could always trace them back to the first challenge through
the words of a tester: “understanding the code takes most of
the reviewing time.” On the same note, in the code review
comments we analyzed, the second most frequent category
concerns understanding. This category includes clarification
questions and doubts raised by the reviewers who want to
grasp the rationale of the changes done on the code, and the
corresponding clarification answers. This is also in line with the
evidence delivered by Sutherland & Venolia on the relevance
of rationale articulation in reviews [34].

Do understanding needs change with the expected outcome
of code review? We included a question in the programmers’
survey to know how much understanding they needed to achieve
each of the motivations listed in Figure 3. The outcome of
the question is summarized in Figure 5. The respondents
could answer with a four values Likert’s scale, by selecting
the understanding of the change they felt was required to
achieve the specific outcome. The most difficult task from
the understanding perspective is finding defects, immediately
followed by alternative solutions. Both clearly stand out from
the other items. The gap in understanding needs between
finding defects and code improvement seems to corroborate
our hypothesis that the difference in the number of comments
about these two items in review comments is mostly due to
understanding issues. Thus, if managers and developers want
code review to match their need for finding defects, context
and change understanding must be improved.

B. Code Review is Understanding

By observing developers performing code reviews, we
noticed that some started code reviews by thoroughly reading

the accompanying textual description, while others went directly
to a specific changed file. In the first group, the time required
for putting the first review comments and understanding the
change rationale was noticeably longer, and some of the
comments were asking to clarify the reasons for a change. To
better comprehend this situation, we included in our interview
guideline a question about how the interviewees start code
reviews. Participants explained that when they own or are very
familiar with the files being changed, they have a better context
and it is easier for them to understand the change submitted:
“when doing code review I start with things I am familiar with,
so it is easier to see what is going on.” When they are file
owners, they often do not need to read the description, but
they “go directly to the files they own.” On the contrary, when
they do not own files, or have to review new files, they need
more information and try to get it from the description, which
is deemed good when it states “what was changed and why.”

To better understand this aspect we included two questions in
the programmers’ survey to know (1) whether it takes longer to
review files they are not familiar with, and why; and (2) whether
reviewers familiar with the changed files give different feedback,
and how.

Most of the respondents (798, i.e., 91%) answered positively
to the first question, motivating it with the fact that it takes time
to familiarize with the code and “learn enough about the files
being modified to understand their purpose, invariants, APIs,
etc.,” because “big-picture impact analysis requires contextual
understanding. When reviewing a small, unfamiliar change, it is
often necessary to read through much more code than that being
reviewed.” The comment of a developer anticipates the answer
to the second question: “It takes a lot longer to understand
unknown code, but even then understanding isn’t very deep.
With code I am familiar with I have more to say. I know what
to say faster. What I have to say is deeper. And I can be more
insistent on it.” In fact, the answer to the second question is
positive in 716 (82%) cases. The main difference with file owner
comments is that they are substantially deeper, more detailed
and insightful. A respondent explained: “Comments reflect
their deeper understanding – more likely to find subtle defects,
feedback is more conceptual (better ideas, approaches) instead
of superficial (naming, mechanical style, etc.)” another tried to
boldly summarize the concept: “Difference between algorithmic
analysis and comments on coding style. The difference is big.”
In fact, when the context is clear and understanding is very
high, as in the case when the reviewer is the owner of changed
files, code review authors receive comments that explore
“deeper details,” are “more directed” and “more actionable
and pertinent,” and find “more subtle issues.”

C. Dealing with Understanding Needs

From the interviews, we found that, in the current situation,
reviewers try different paths to understand the context and
the changes: They read the change description, try to run the
changed code, send emails for understanding high level details
about the review, and often (from 20% to 40% of the times)
even go to talk in person to have a “higher communication

719

bandwidth” for asking clarifications to the author. All code
review tools that we see in practice today deliver only basic
support for the understanding needs of reviewers – providing
features such as diffing capabilities, inline commenting, or
syntax highlighting, which are limited when dealing with
complex code understanding.

VII. RECOMMENDATIONS AND IMPLICATIONS

A. Recommendations for Practitioners

Although our work was revolving around a specific code
review context (i.e., code reviews with CodeFlow at Microsoft),
we derive useful recommendations to developers, which can
be generalized to other contexts:

Quality Assurance: There is a mismatch between the
expectations and the actual outcomes of code reviews. From
our study, review does not result in identifying defects as often
as project members would like and even more rarely detects
deep, subtle, or “macro” level issues. Relying on code review
in this way for quality assurance may be fraught.

Understanding: When reviewers have a priori knowledge
of the context and the code, they complete reviews more quickly
and provide more valuable feedback to the author. Teams should
aim to increase the breadth of understanding of developers (if
the author of a change is the only expert, she has no potential
reviewers) and change authors should include code owners and
others with understanding as much as possible when using
review to identify defects. Developers indicated that when the
author provided context and direction to them in a review, they
could respond better and faster.

Beyond Defects: Modern code reviews provide benefits
beyond finding defects. Code review can be used to improve
code style, find alternative solutions, increase learning, share
code ownership, etc. This should guide code review policies.

Communication: Despite the growth of tools for supporting
code reviews, developers still have need of richer commu-
nication than comments annotating the changed code when
reviewing. Teams should provide mechanisms for in-person or,
at least, synchronous communication.

B. Implications for Researchers

Our work uncovered aspects of code review—beyond our
research questions—that deserve further study:

Automate Code Review Tasks: We observed that many
code review comments were related to code improvement
concerns and low-level “micro” defects. Identifying both of
these are problems that research has begun to solve. Tools
for enforcing team code conventions, checking for typos, and
identifying dead code already exist. Even more advanced tasks
such as checking boundary conditions or catching common
mistakes have been shown to work in practice on real code. For
example Google experimented with adding FindBugs to their
review process, though little is reported about the results [5].
Automating these tasks frees reviewers to look for deeper, more
subtle defects. Code review is fertile ground to have an impact
with code analysis tools.

Program Comprehension in Practice: We identified con-
text and change understanding as challenges that developers
face when reviewing, with a direct relationship to the quality
of review comments. Interestingly, modern IDEs ship with
many tools to aid context and understanding, and there is an
entire conference (ICPC) devoted to code comprehension, yet
all current code review tools we know of show a highlighted
diff of the changed files to a reviewer with no additional tool
support. The most common motivation that we have seen for
code comprehension research is a developer that is working on
new code, but we argue that reviewers reviewing code they have
not seen before may be more common than a developer working
on new code. This is a ripe opportunity for code understanding
researchers to have impact on real world scenarios.

Socio-technical Effects: Awareness and learning were cited
as motivations for code review, but these outcomes are difficult
to observe from traces in reviews. We did not investigate these
further, but studies can be designed and carried out to determine
if and how awareness and learning increase as a result of being
involved in code review.

VIII. LIMITATIONS

As a qualitative study, gauging the validity of our findings
is a difficult undertaking [17]. While we have endeavored to
uncover and report the expectations, outcomes, and challenges
of code review, limitations may exist. We describe them with
the steps that we took to increase confidence and validity.

To achieve a comprehensive view of code review, we
triangulated by collecting and comparing results from multiple
sources. For example, we found strong agreement among
the results of expectations collected from interviews, surveys
of manager, and surveys of developers. By starting with
exploratory interviews of a smaller set of subjects (17) followed
by open coding to extract themes, we identified core questions
that we addressed to a larger audience via survey.

One potential criticism is that empirical research within one
company or one project provides little value for the academic
community, and does not contribute to scientific development.
Historical evidence shows otherwise. Flyvbjerg provides several
examples of individual cases that contributed to discovery
in physics, economics, and social science [14]. Beveridge
observed for social sciences: “More discoveries have arisen
from intense observation than from statistics applied to large
groups” (as quoted in Kuper and Kuper [21], page 95). This
should not be interpreted as a criticism of research that focuses
on large samples. For the development of an empirical body of
knowledge as championed by Basili [8], both types of research
are essential. To understand code review across many contexts,
we observed, interviewed, surveyed, and examined code reviews
from developers across a diverse group of software teams that
work with codebases in various domains, of varying sizes, and
with varying processes.

Concerning the representativeness of our results in other
contexts, other companies and OSS use tools similar to
CodeFlow [40], [36], [19]. However, team dynamics may
differ. The need for code understanding may already be met

720

in contexts where projects are smaller or there is shared
code ownership and a broad system understanding across the
team. We found that higher levels of understanding lead to
more informative comments, which identify defects or aid the
author in other ways so review in these contexts may uncover
more defects. In OSS contexts, project-specific expertise often
must be demonstrated prior to being accepted as a “core
committer” [10], so learning may not be as important or
frequent an outcome for review.

In this work, we have used discussions within CodeFlow to
identify and quantify outcomes of code review. However, some
motivations that managers and developers described are not
easily observable because they leave little trace. For example,
determining how often code review improves team awareness
or transfers knowledge is difficult to assess from the discussions
in reviews. For these outcomes, we have responses indicating
that they occur, but not “hard evidence.”

Based on review comments, survey responses, and interviews,
we know that in-person discussions occurred frequently. While
we cannot compare frequency of these events to other outcomes
as we can with events recorded in CodeFlow, we know that
they most often occurred to address understanding needs.

IX. CONCLUSION

We investigated modern, tool-based code review, uncovering
both a wide range of motivations for review and that the
outcomes do not always match those motivations. We identified
understanding as a key component and provided recommen-
dations to both practitioners and researchers. It is our hope
that the insights we have discovered lead to more effective
review in practice and improved tools, based on research, to
aid developers perform code reviews.

REFERENCES

[1] A. Ackerman, L. Buchwald, and F. Lewski. Software inspections: An
effective verification process. Software, IEEE, 6(3):31–36, 1989.

[2] A. Ackerman, P. Fowler, and R. Ebenau. Software inspections and
the industrial production of software. In Proc. of a symposium on
Software validation: inspection-testing-verification-alternatives, pages
13–40. Elsevier North-Holland, Inc., 1984.

[3] J. Adair. The hawthorne effect: A reconsideration of the methodological
artifact. Journal of applied psychology, 69(2):334, 1984.

[4] S. Adolph, W. Hall, and P. Kruchten. Using grounded theory to study the
experience of software development. Empirical Software Engineering,
16(4):487–513, 2011.

[5] N. Ayewah, W. Pugh, J. Morgenthaler, J. Penix, and Y. Zhou. Using
findbugs on production software. In Companion to the 22nd ACM
SIGPLAN conference on Object-oriented programming systems and
applications companion, pages 805–806. ACM, 2007.

[6] A. Bacchelli and C. Bird. Appendix to expectations,
outcomes, and challenges of modern code review.
http://research.microsoft.com/apps/pubs/?id=171426, Aug. 2012.
Microsoft Research, Technical Report MSR-TR-2012-83 2012.

[7] I. Barker. What is information architecture? http://www.steptwo.com.au/,
May 2005.

[8] V. Basili, F. Shull, and F. Lanubile. Building knowledge through families
of experiments. IEEE Trans. on Software Eng., 25(4):456–473, 1999.

[9] B. Berg and H. Lune. Qualitative research methods for the social
sciences. Pearson Boston, 2004.

[10] C. Bird, A. Gourley, P. Devanbu, A. Swaminathan, and G. Hsu. Open
borders? immigration in open source projects. In The Fourth International
Workshop on Mining Software Repositories, 2007.

[11] L. Brothers, V. Sembugamoorthy, and M. Muller. Icicle: groupware
for code inspection. In Proceedings of the 1990 ACM conference on
Computer-supported cooperative work, pages 169–181. ACM, 1990.

[12] J. Creswell. Research design: Qualitative, quantitative, and mixed
methods approaches. Sage Publications, 3rd edition, 2009.

[13] M. Fagan. Design and code inspections to reduce errors in program
development. IBM Systems Journal, 15(3):182–211, 1976.

[14] B. Flyvbjerg. Five misunderstandings about case-study research.
Qualitative inquiry, 12(2):219–245, 2006.

[15] J. Gintell, J. Arnold, M. Houde, J. Kruszelnicki, R. McKenney, and
G. Memmi. Scrutiny: A collaborative inspection and review system.
Software EngineeringESEC’93, pages 344–360, 1993.

[16] B. Glaser. Doing Grounded Theory: Issues and Discussions. Sociology
Press, 1998.

[17] N. Golafshani. Understanding reliability and validity in qualitative
research. The qualitative report, 8(4):597–607, 2003.

[18] J. Johnson. Collaboration, peer review and open source software.
Information Economics and Policy, 18(4):477–497, 2006.

[19] N. Kennedy. How google does web-based code reviews with mondrian.
http://www.test.org/doe/, Dec. 2006.

[20] B. Kitchenham and S. Pfleeger. Personal opinion surveys. Guide to
Advanced Empirical Software Engineering, pages 63–92, 2008.

[21] A. Kuper. The social science encyclopedia. Routledge, 1995.
[22] O. Laitenberger. A survey of software inspection technologies. Handbook

on Software Engineering and Knowledge Engineering, 2:517–555, 2002.
[23] T. LaToza, G. Venolia, and R. DeLine. Maintaining mental models: a

study of developer work habits. In Proceedings of the 28th international
conference on Software engineering, pages 492–501. ACM, 2006.

[24] T. Lethbridge, S. Sim, and J. Singer. Studying software engineers: Data
collection techniques for software field studies. Empirical Software
Engineering, 10(3):311–341, 2005.

[25] V. Mashayekhi, C. Feulner, and J. Riedl. Cais: collaborative asynchronous
inspection of software. In ACM SIGSOFT Software Engineering Notes,
volume 19, pages 21–34. ACM, 1994.

[26] A. Porter, H. Siy, and L. Votta. A review of software inspections.
Advances in Computers, 42:39–76, 1996.

[27] T. Punter, M. Ciolkowski, B. Freimut, and I. John. Conducting on-
line surveys in software engineering. In International Symposium on
Empirical Software Engineering. IEEE, 2003.

[28] P. Rigby, B. Cleary, F. Painchaud, M. Storey, and D. German. Open
source peer review–lessons and recommendations for closed source. IEEE
Software, 2012.

[29] P. Rigby, D. German, and M. Storey. Open source software peer review
practices: a case study of the apache server. In Proceedings of the 30th
international conference on Software engineering. ACM, 2008.

[30] P. C. Rigby and M.-A. Storey. Understanding broadcast based peer
review on open source software projects. In Proceedings of ICSE 2011
(33rd International Conference on Software Engineering), pages 541–550.
ACM, 2011.

[31] J. E. Shade and S. J. Janis. Improving Performance Through Statistical
Thinking. Mcgraw-Hill, 2000.

[32] F. Shull and C. Seaman. Inspecting the history of inspections: An example
of evidence-based technology diffusion. Software, IEEE, 25(1):88–90,
2008.

[33] M. Stein, J. Riedl, S. J. Harner, and V. Mashayekhi. A case study of
distributed, asynchronous software inspection. In Proceedings of the
international conference on Software engineering. ACM, 1997.

[34] A. Sutherland and G. Venolia. Can peer code reviews be exploited
for later information needs? In International Conference on Software
Engineering, New Ideas and Emerging Results Track, 2009.

[35] B. Taylor and T. Lindlof. Qualitative communication research methods.
Sage Publications, Incorporated, 2010.

[36] A. Tsotsis. Meet phabricator, the witty code review tool built inside
facebook. http://techcrunch.com/2011/08/07/oh-what-noble-scribe-hath-
penned-these-words/, Aug. 2006.

[37] P. Tyagi. The effects of appeals, anonymity, and feedback on mail survey
response patterns from salespeople. Journal of the Academy of Marketing
Science, 17(3):235–241, 1989.

[38] L. Votta Jr. Does every inspection need a meeting? ACM SIGSOFT
Software Engineering Notes, 18(5):107–114, 1993.

[39] R. Weiss. Learning from strangers: The art and method of qualitative
interview studies. Simon and Schuster, 1995.

[40] Wikipedia. Gerrit (software). http://en.wikipedia.org/wiki/Gerrit (software),
June 2012.

721

