

TDDD56 Multicore and GPU Programming

Christoph Kessler

IDA Linköping University Sweden

2024

Staff 2024

- Christoph Kessler, IDA christoph.kessler (at) liu. se
 - Organization, most lectures, examinator
- Ingemar Ragnemalm, ISY ingemar.ragnemalm (at) liu. se
 - Lectures on GPU programming, GPU labs
- August Ernstsson, IDA august.ernstsson (at) liu.se
 - Guest lecture in Lesson 2
- Sehrish Qummar, IDA
 - Course assistant, lessons, CPU + GPU labs
- Sajad Khosravi, IDA sajad.khosravi (at) liu. se
 - Additional assistant in Labs 1 and 3
- Elena Larsson, IDA elena.larsson (at) liu. se
 - Course secretary (Ladok reporting)
- Martin Sjölund, IDA martin.sjolund (at) liu. se
 - Director of undergraduate studies

sehrish.qummar (at) liu. se

Course Moments

- Lectures
- Lessons
 - Lab introduction lessons, mandatory for the labs
 - Exam training lessons at the end of the course
- Labs (mandatory presence)
- Credits:
 - Written exam, 3 hp
 - Lab series attended and completed by deadlines, 3 hp
 - No guarantee for completing / correcting labs after the deadlines

Lectures (1)

- Lecture 1: Organization, Overview.
 Motivation, Multicore architectural concepts and trends (CK)
- Lecture 2: Shared memory architecture concepts* (CK)
- Lecture 3a: Parallel programming with threads (CK)
- Lecture 4: Non-blocking synchronization (CK)
- Lecture 3b: Parallel programming with tasks (CK, 45min)
 Lesson 1: CPU lab 1+2 introduction (SQ, 45min)
- Lectures 5-6: Design and analysis of parallel algorithms* (CK)
- Lecture 7: Parallel sorting algorithms (CK)
- Lecture 8: Parallel algorithmic design patterns and skeletons. (CK, 45min)
 - Lesson 2: Introduction to skeleton programming in SkePU / Lab 3 introduction (AE / SQ, 45min)

* Similar as in TDDC78

Lectures (2)

- - -

- Lecture 9: GPU architecture and trends (IR)
- Lecture 10: Introduction to CUDA programming. (IR)
- Lecture 11: CUDA programming. GPU lab introduction. (IR)
- Lecture 12: Sorting on GPU. Advanced CUDA issues. (IR)
- Lecture 13: Introduction to OpenCL. (IR)
- Lesson 3: OpenCL. Shader programming. Exercises. (IR)
- Lesson 4: Selected theory exercises, exam training. (CK)
- Lecture 14: Optimization and parallelization of loop-based sequential programs* (CK)

Lab Series (1)

- **CPU-labs** (week 46, 47, 48)
- Lab 1: Load balancing (warm-up)
- Lab 2: Nonblocking synchronization
- Lab 3: Skeleton programming; Median filtering

GPU-labs (week 49, 50, 51)

- Lab 4: CUDA 1
- Lab 5: CUDA 2
- Lab 6: OpenCL and Shader programming

Lab Series (2)

- 2 groups in 2 passes (A, B)
 - Group A (A1, A2), ~30 students in total
 - v45,46,47: Sehrish Qummar, Sajad Khosravi
 - v48,49,50: Ingemar Ragnemalm, Sajad Khosravi
 - Group B (B1, B2), ~30 students in total
 - v46-50: Sehrish Qummar, Sajad Khosravi
- We use the computers in *Olympen* (B-house, entry 25, upper floor)
- Work in pairs.
 - No singletons, please the course is quite full this year
- Sign up in webreg (www.ida.liu.se/webreg) by this friday
 - We reserve the right to compact and balance lab groups

Lab Series (3)

- Mandatory presence! (ISY-style labs)
- The lab room (Olympen) is reserved (and paid!) for our course during scheduled lab hours.
 - No guarantees of access/availability of Olympen / its computers outside scheduled lab hours.
- Demonstration / lab reports to lab assistant by the **deadlines**
 - CPU labs: last CPU lab session 27/11 resp. 29/11/2024 (soft), latest 18/12 resp. 19/12/2024 (hard)
 - GPU labs: last GPU lab session, **18/12** resp. **19/12/2024**
- Be well-prepared!
 Supervised lab time is too costly for reading the instructions ...
- No copying!

Changes Since 2023

- No major changes in contents / structure
 - The course evaluation was very good (4.12)

- Two new chapters in the compendium
 - Loop optimization and parallelization
 - Parallel computer architecture concepts

Course material and homepage

- All information available on the **course homepage:** www.ida.liu.se/~TDDD56
 - We do *NOT* use LISAM!
- Course books / compendia:
 - C. Kessler: Design and Analysis of Parallel Algorithms: An Introduction. Compendium, (c) 2024.
 - PDF available for registered course participants. Not for general distribution.
 - Covers the lectures on analysis of parallel algorithms and on parallel sorting, parallel architecture concepts, loop parallelization, and the patterns introduction.
 - I. Ragnemalm: Attack in Packs. Compendium, (c) 2018.
 - PDF available for registered course participants. Not for general distribution.
 - Covers the GPU lectures.
- Some slide sets and other material require login/password
 - Sent out to registered participants + guest participants
 - Please keep it secret
- Lab assignments on the course homepage

Design and Analysis of Parallel Algorithms An Introduction Water due There the in TBCC wat TBCC is used of the There the in TBCC is an ISBN entropy of the TBCC is an ISBN entropy of the TBCC is an ISBN entropy of the ISBN entropy of the ISBN entropy of the ISBN entropy of the ISBN entropy of the ISBN entropy of the ISBN entropy of the ISBN entropy of the ISBN entropy of the ISBN entropy of the ISBN entropy of the ISBN entr
<text><section-header><text><text><text><text><text></text></text></text></text></text></section-header></text>

Introductory Literature (Selection)

If you already attended TDDE65, you need no other textbook on the general parallel computing / CPU part.

Otherwise, one of the following introductory books might be useful (available in the LiU library as refcopy and for loan):

- B. Wilkinson, M. Allen: *Parallel Programming, 2e.* Prentice Hall, 2005. (general introduction; Pthreads, OpenMP, MPI; also used in TDDE65)
- C. Lin, L. Snyder: *Principles of Parallel Programming*. Addison Wesley, 2008. (general introduction; Pthreads)
 - Errata for the first printing: https://www.cs.utexas.edu/~lin/errata.html

PARALLEL PROGRAMMING

CALVIN LIN LAWRENGE SNYDER

GPU Programming Literature

Focus on CUDA. One of the following books might be useful:

- J. Sanders, E. Kandrot: *CUDA by example*. Addison-Wesley, 2011. (recommended)
- David B. Kirk and Wen-mei W. Hwu: *Programming Massively Parallel Processors: A Hands-on Approach.* Morgan Kaufmann, 2010. Second edition 2012. Third edition 2016. Fourth edition 2022.

Available in the LiU library

Further Reading

- M. Herlihy, N. Shavit: *The Art of Multiprocessor Programming*. Morgan Kaufmann, 2008. (threads; nonblocking synchronization)
- A. Grama, G. Karypis, V. Kumar, A. Gupta: Introduction to Parallel Computing, 2nd Edition. Addison-Wesley, 2003. (design and analysis of parallel algorithms)

See the course homepage for further references

- Available in the LiU library
- **On-line references** on the course homepage

Another Master-Level Course ...

TDDE65 Programming of Parallel Computers, 6hp

- VT2 (March–May) every year
- Topics include:
 - Parallel computer architecture concepts, esp. clusters
 - Parallel algorithms for High-Performance Computing
 - Parallel thread programming with OpenMP (Labs)
 - Message passing programming of clusters with MPI (Labs)
 - Tools for performance analysis (Labs)
- Labs on Swedens largest (academic) supercomputer (or equivalent), at NSC
- A good complement of TDDD56