
Linköpings universitet
IDA Department of Computer and Information Sciences
Prof. Dr. Christoph Kessler

TENTAMEN / EXAM

TDDD56
Multicore and GPU Programming

20 dec 2012, 14:00–18:00 TER4

Jour: Christoph Kessler (070-3666687, 013-282406), visiting ca. 16:00.

Ingemar Ragnemalm (070-6262628)

Hjälpmedel / Admitted material:

– Engelsk ordbok / Dictionary from English to your native language

General instructions

• This exam has 8 assignments and 5 pages, including this one.
Read all assignments carefully and completely before you begin.

• It is recommended that you use a new sheet of paper for each assignment, because they will be
corrected by different persons.
Sort the pages by assignment, number them consecutively and mark each one on top with your
exam ID and the course code.

• You may answer in either English or Swedish. English is preferred because not all correcting
assistants understand Swedish.

• Write clearly. Unreadable text will be ignored.

• Be precise in your statements. Unprecise formulations may lead to a reduction of points.

• Motivate clearly all statements and reasoning.

• Explain calculations and solution procedures.

• The assignments are not ordered according to difficulty.

• The exam is designed for 40 points. You may thus plan about 5 minutes per point.

• Grading: U, 3, 4, 5. The preliminary threshold for passing is 20 points.

• We expect to have the exam corrected by mid of january 2013. An exam review session will be
announced on the course homepage.

1

1. (7 p.) Multicore Architecture Concepts

(a) There are three main technical limits that prevent a further significant increase of
single-thread performance, which finally led to the development of multicore archi-
tectures. Name and explain two of these limits. (2p)

(b) Define and explain the following technical terms:
i. SIMD (vector) instructions

ii. Symmetric multiprocessor (SMP)
iii. Hardware multithreading
iv. Bus snooping
v. Sequential (memory) consistency

(Remember that an example is not a definition. Be general and thorough.) (5p)

2. (7 p.) Non-blocking Synchronization

(a) Name 2 problems of lock-based synchronization that are removed by non-blocking
synchronization. (1p)

(b) In a doubly linked list, each list element has two pointers, prev and next, that
point to the preceding and subsequent list element respectively. For a multithreaded
execution environment (e.g., pthreads), give a thread-safe solution using ordinary
mutex locks (pseudocode) to protect concurrent insertion of elements into a doubly
linked list in shared memory. (0.5p)
Give a simple argument (sketch of a scenario) that concurrent insertion without the
mutex protection can lead to an incorrect result. (0.5p)

(c) Assume now that you are given a multicore processor that provides a double-word
compare and swap (DCAS) instruction:

int DCAS(struct ddescr * pd);

where the DCAS descriptor stored in thread-local memory, referenced by pd, has
the following structure:

struct ddescr {
word *ptr1, *ptr2; // pointers to two shared memory locations
word old1, old2, new1, new2; // old and new values for these
word res; // error code

}

If the DCAS instruction applied to pd succeeds, its effect is the same as two (suc-
cessful) simultaneous CAS (compare-and-swap) operations CAS(ptr1,old1,new1)
and CAS(ptr2,old2,new2) executed atomically, and it returns 0 (no error).
If either of the two CAS operations cannot be committed, both will not take effect,
and the DCAS instruction returns an error code.
Write a non-blocking implementation (pseudocode) of concurrent insertion in a
doubly linked list, using DCAS instead of locks. Explain your code.
Explain how your solution will handle cases of conflicting concurrent insertions
(see your counterexample in the previous question) correctly. (4p)

(d) What is the ABA problem (in the context of CAS operations)? (1p)

2

odd/evenP (n/2)

x x x x x x1 2 3 4 5 6

1 2 3 4 5 6y y y y y y

+ +

+

+ + +

+ +

+

+

+

+

x x x x x x1 2 3 4 5 6 x x

1 2 3 4 5 6y y y y y y y y7 8

7 8

P

= P

(4)

(4)

oe

ul

....

....

...

...

+ + + +

++++

Figure 1: The odd-even parallel prefix sums algorithm. Left: the general recursive case. Right:
Recursion unrolled for n = 8; the base case for n = 4 is taken from lower-upper parallel prefix
sums.

3. (7 p.) Design and Analysis of Parallel Algorithms

(a) Give an example of a speedup anomaly that may occur on a multicore computer,
and explain its technical cause. (1p)

(b) Odd-even parallel prefix sums
The odd-even parallel prefix sums algorithm (see Fig. 1) transforms a prefix sums
problem of size n into one subproblem of size n/2, solves that one recursively
and re-transforms its solution into a solution of the original problem instance. For
problems of size ≤ 4, for instance the upper-lower algorithm from the lecture (as in
the figure on the right) or the sequential algorithm can be taken as base case.

i. Even though it is a degenerated special case, the high-level structure of the
algorithm follows a well-known (parallel) algorithmic paradigm. Which one?
(0.5p)
(Hint: it is not ”recursion”)

ii. Analyze where there is parallelism in the algorithm (and when, and how much)
and what kind of parallelism it is, and express it appropriately in parallel pseu-
docode. (2p)

iii. Analyze the algorithm for its parallel execution time, parallel work and par-
allel cost (each as a function in n, using big-O notation) for a problem size n
using up to n processors. Explain your calculations. Assume that the base case
for n ≤ 4 can be solved on one or a few processors using constant time and
work. (1.5p)

iv. Is the algorithm (asymptotically) work-optimal? Justify your answer (calcula-
tion). (1p)

v. Given n processing elements, is the algorithm (asymptotically) cost-optimal?
(calculation)
If yes, explain why.
If not, sketch a way to reduce its cost asymptotically. (1p)

3

[In case of questions about the following 3 assignments, ask I. Ragnemalm in the first hand.]

4. (5 p.) GPU Algorithms
Matrix transposing is an operation with no computations, but its efficiency depends heav-
ily on a certain GPU computing feature. Which feature, why is it important? With code
or pseudo code, describe an efficient way to implement matrix transposing. (5p)

(Hint: The operand matrix is given in global device memory of the GPU. The matrix
transpose needs not be done in-place.)

5. (5 p.) GPU Concepts

(a) Motivate why GPUs can give significantly better computing performance than or-
dinary CPUs. Is there any reason to believe that this advantage will be reduced over
time? (2p)

(b) Describe how computing is mapped onto graphics in shader-based computing (ex-
pressed as kernel, input data, output data and iterations over the same data). What
limitations are imposed on your kernels compared to CUDA or OpenCL? (3p)

6. (5 p.) GPU Quickies

(a) Describe how multiple CUDA streams can be used to accelerate a computation.
(1p)

(b) Translate the following CUDA concepts to corresponding concepts in OpenCL: (1p)

i. shared memory
ii. block

iii. thread

(c) Texture memory provides interpolation in hardware. Why is this a questionable
feature to rely on? (1p)

(d) Give one argument each in favor of using

i. CUDA
ii. OpenCL

iii. GLSL

for a general computing task (which can benefit from a parallel implementation).

(e) When can constant memory give a performance advantage? (1p)

4

7. (2 p.) Optimization and Parallelization

(a) Consider the following sequential loop:

#define N 100000
double x[N]; // array of double precision floats
...
for (i=8; i<N; i++) {

x[i] = veryexpensivefunction(x[i-8]);
}

i. Can the above for loop be simply rewritten into a parallel forall loop?
Give a formal argument. (1p)

ii. Bonus question (optional): Suggest a method to parallelize the computation
as far as possible.
(Hint: Assume shared memory and a multithreaded execution environment.
Draw the iteration dependence graph. Consider only parallelism, ignore pos-
sible cache performance problems for now. Assume that the time taken by
veryexpensivefunction is large but independent of its argument. Do
you need special synchronization?)
Show the resulting pseudocode. How much speedup can you expect in the best
case? (+2p)

(b) Why is it, in general, so hard for C/C++ compilers to statically analyze a given
sequential legacy program and parallelize it automatically? (1p)

8. (2 p.) Parallel algorithmic design patterns and High-level parallel programming
Give two main advantages and two main drawbacks of skeleton-based parallel program-
ming.

Good luck!

5

