
Linköpings universitet
IDA Department of Computer and Information Sciences
Prof. Dr. Christoph Kessler

TENTAMEN / EXAM

TDDD56
Multicore and GPU Programming

17 dec 2011, 14:00–18:00 TER4

Jour: Christoph Kessler (070-3666687, 013-282406), visiting ca. 16:00.

Ingemar Ragnemalm (070-6262628)

Hjälpmedel / Admitted material:

– Engelsk ordbok / Dictionary from English to your native language

General instructions

• This exam has 8 assignments and 5 pages, including this one.
Read all assignments carefully and completely before you begin.

• It is recommended that you use a new sheet of paper for each assignment, because they will be
corrected by different persons.
Sort the pages by assignment, number them consecutively and mark each one on top with your
exam ID and the course code.

• You may answer in either English or Swedish. English is preferred because not all correcting
assistants understand Swedish.

• Write clearly. Unreadable text will be ignored.

• Be precise in your statements. Unprecise formulations may lead to a reduction of points.

• Motivate clearly all statements and reasoning.

• Explain calculations and solution procedures.

• The assignments are not ordered according to difficulty.

• The exam is designed for 40 points. You may thus plan about 5 minutes per point.

• Grading: U, 3, 4, 5. The preliminary threshold for passing is 20 points.

Students in international master programs and exchange students will receive ECTS grades. Due
to the anonymization of written exam correction, ECTS grades will be set by one-to-one trans-
lation from swedish grades (5=A, 4=B, 3=C, U=FX), according to the regulations by Linköping
university.

1

1. (7 p.) Multicore Architecture Concepts

(a) What is the power wall in (single-core) processor architecture, and why does it lead
to the development of multicore architectures? (2p)

(b) Define and explain the following technical terms:

i. SIMD instructions
ii. Hardware multithreading

iii. Cache coherence
iv. Heterogeneous multicore system
v. Sequential (memory) consistency

(Remember that an example is not a definition. Be general and thorough.) (5p)

2. (5 p.) Non-blocking Synchronization

(a) Name 2 problems of lock-based synchronization that are removed by non-blocking
synchronization. (1p)

(b) A bounded push buffer is a data structure consisting of an array B dimensioned for
a capacity of N elements and an unsigned integer counter top, initially 0, which
indicates the next free insert position at index top. B and top reside in shared
memory.
A number of threads push elements into the buffer concurrently. Use the atomic
compare-and-swap (CAS) instruction to implement the operation push, such that a
call push(e) atomically inserts an element e at the current top position. If a thread
tries to push to a full buffer, push returns an error code. The application guarantees
that not more than MAXINT−1 push operations will be performed in total, so that
the counter top will never overflow.
Use C or equivalent pseudocode. Make clear which of your variables are shared
and which are thread-local.
Explain your code!
In particular, explain what CAS does and what its parameters mean.
Explain why, with your solution, concurrent push operations can not lead to ”gaps”
or lost entries in the buffer. (4p)

2

Algorithm FFT (array x[0..n− 1])
returns array y[0..n− 1]

{
if n = 2 then

y[0]← x[0] + x[1]; y[1]← x[0]− x[1];
else

allocate temporary arrays u, v, r, s
of n/2 elements each;

for l in { 0.. n/2-1} do
u[l]← x[l] + x[l + n/2];
v[l]← ωl ∗ (x[l]− x[l + n/2]);

od
r ← FFT (u[0..n/2− 1]);
s← FFT (v[0..n/2− 1]);
for i in { 0.. n-1} do

if i is even then y[i]← r[i/2] fi
if i is odd then y[i]← s[(i− 1)/2] fi

od
fi
return y[0..n− 1]

}

x x x x x0 1 n/2−1 n/2 xn/2+1 n−1

FFT (n) :

FFT (n / 2) FFT (n / 2)

u u v vu0 1 vn/2−1 0 1 n/2−1

+ + + − − −

* * *

...

...

...

...

...

...

...

y y y y y0 1 n/2−1 n/2 yn/2+1 n−1yn−2y2 ...

... ...

...

Figure 1: The sequential FFT algorithm.

3. (6.5 p.) Design and Analysis of Parallel Algorithms

(a) Formulate Brent’s Theorem (explained formula), give its interpretation, and de-
scribe its implications for parallel algorithm design and analysis. (2p)

(b) The Fast-Fourier-Transform (FFT) is a (sequential) algorithm for computing the
Discrete Fourier Transform of an array x of n elements (usually, complex numbers)
that might represent sampled input signal values, and a special complex number
ω that is a nth root of unit, i.e., wn = 1. The result y is again an array of n
elements, now representing amplitude coefficients in the frequency domain for the
input signal x. Assume for simplicity that n is a power of 2. A single complex
addition, subtraction, multiplication and copy operation each take constant time.
Figure 1 shows the pseudocode of a recursive formulation of the FFT algorithm and
gives a graphical illustration of the data flow in the algorithm.

i. Which fundamental algorithmic design pattern is used in the FFT algorithm?
(0.5p)

ii. Identify which calculations could be executed in parallel, and sketch a parallel
FFT algorithm for n processors in pseudocode (shared memory). (0.5p)

iii. Analyze your parallel FFT algorithm for its parallel execution time, parallel
work and parallel cost (each as a function in n, using big-O notation) for a
problem size n using n processors. (A solid derivation of the formulas is ex-
pected; just guessing the right answer gives no points.) (2.5p)

iv. Is your parallel FFT algorithm work-optimal? Justify your answer (formal ar-
gument). (1p)

v. How would you adapt the algorithm for p < n processors cost-effectively? (1p)

3

[In case of questions about the following 3 assignments, ask I. Ragnemalm in the first hand.]

4. (5 p.) GPU Algorithms and Coding
The following CUDA kernel performs a rank sort (as in lab 6). However, the code is
inefficient. Rewrite it for better performance. For full score, the code should be able to
accept any length. Make comments to clarify what you do and why.

You may make any assumptions you like about block size, document as necessary.

Minor bugs, syntax errors, as well as mistakes in names of built-in symbols are generally
ignored, no point deductions for things that you would easily look up in documentation
(like, how many underscores you should use for that particular modifier or exact names
on function calls) or that is trivial to fix on the first compilation (within reason). Your
effort should be on describing your algorithm properly, including important concepts.
Relevant pseudo-code qualifies for score (partial or even full depending on detail and
relevance).

__global__ void gpu_Sort (unsigned int *data,
unsigned int *outdata, int length)

{
unsigned int pos = 0;
unsigned int i, ix;

ix = blockIdx.x * blockDim.x + threadIdx.x;

//find out how many values are smaller
for (i = 0; i < length; i++)

if (data[ix] > data[i])
pos++;

outdata[pos] = data[ix];
}

5. (5 p.) GPU Conceptual Questions

(a) A GPU computation calculates 2048 elements. Each element can be computed in
its own thread. The algorithm is not sensitive to any particular block size. It may
run on many different GPUs. What number of threads and blocks would you use in
such a case? Motivate your answer. (2p)

(b) Describe how computing is mapped onto graphics in shader-based computing (ex-
pressed as kernel, input data, output data and iterations over the same data). What
limitations are imposed on your kernels compared to CUDA or OpenCL? (3p)

6. (5 p.) GPU Quickies

(a) In what way(s) is a texturing unit more than just another memory? (1p)

4

(b) List and briefly explain (short comments of a few words) the importance of two
major features of the Fermi architecture that were not available in earlier GPUs.
(1p)

(c) How can a non-coalesced memory access be converted to a coalesced memory ac-
cess? (1p)

(d) What concept in OpenCL corresponds to a thread processor? (1p)

(e) Explain why the G80 architecture had significantly higher performance than earlier
GPUs. (1p)

7. (3.5 p.) Optimization and Parallelization

(a) Describe the program transformation Loop interchange (for a sequential program).
How does it affect performance on modern processor architectures? Give a general
rule for when its application should be beneficial for performance, and a general
rule for when it is safely applicable. (2.5p)

(b) Consider the following sequential loop:

void seqfolr(float *x, float *a, float *b, int N)
{

int i;
x[0] = b[0];
for (i=1; i<N; i++)

x[i] = b[i] + a[i] * x[i-1];
}

Could the iterations of this loop be run in parallel? Justify your answer (formal
argument). (If you need to make additional assumptions, state them carefully.) (1p)

8. (3 p.) High-level parallel programming
Explain the main idea of parallel and accelerator programming using algorithmic skele-
tons. Make sure to explain what skeletons are and how they are used. Give two main
advantages and two main drawbacks of skeleton programming. (3p)

Good luck!

5

