
TDDD55- Compilers and Interpreters
Lesson 3

Zeinab Ganjei (zeinab.ganjei@liu.se)

Department of Computer and Information Science
Linköping University

1. Grammars and Top-Down Parsing

• Some grammar rules are given
• Your task:

₋ Rewrite the grammar (eliminate left recursion, etc.)
₋ Add attributes and attribute rules to the grammar
₋ Implement your grammar in a C++ class named Parser.

The Parser class should contain a method named Parse
that returns the value of a single statement in the
language.

2. Scanner Specification

• Finish a scanner specification given in a scanner.l
flex file, by adding rules for C and C++ style
comments, identifiers, integers, and floating point
numbers.

3. Parser Generators

• Finish a parser specification given in a parser.y bison
file, by adding rules for expressions, conditions and
function definitions, You also need to augment
the grammar with error productions.

4. Intermediate Code Generation

• The purpose of this assignment to learn about how
abstract syntax trees can be translated into
intermediate code.

• You are to finish a generator for intermediate code
by adding rules for some language statements.

Laboratory Skeleton

~TDDD55

/lab

/doc

Documentation for the assignments.

/lab1

Contains all the necessary files to complete the first
assignment

/lab2

Contains all the necessary files to complete the second
assignment

/lab3-4

Contains all the necessary files to complete assignment
three and four

Bison – Parser Generator

Purpose of a Parser

• The parser accepts tokens from the scanner and verifies the
syntactic correctness of the program.

₋ Syntactic correctness is judged by verification against a formal
grammar which specifies the language to be recognized.

• Along the way, it also derives information about the program
and builds a fundamental data structure known as parse tree
or abstract syntax tree (ast).

• The abstract syntax tree is an internal representation of the
program and augments the symbol table.

Bottom-Up Parsing

• Recognize the components of a program and then combine
them to form more complex constructs until a whole
program is recognized.

• The parse tree is then built from the bottom and up, hence
the name.

Bottom-Up Parsing(2)

:=

x *

+

a b

c

X := (a + b) * c;

LR Parsing

• A Specific bottom-up parsing technique
₋ LR stands for Left to right scan, Rightmost derivation.
₋ Probably the most common & popular parsing technique.
₋ yacc, bison, and many other parser generation tools utilize LR

parsing.
₋ Great for machines, not so great for humans

Pros and Cons of LR parsing

• Advantages of LR:
₋ Accepts a wide range of grammars/languages
₋ Well suited for automatic parser generation
₋ Very fast
₋ Generally easy to maintain

• Disadvantages of LR:
₋ Error handling can be tricky
₋ Difficult to use manually

Bison

• Bison is a general-purpose parser generator that converts a
grammar description of a context-free grammar into a C
program to parse that grammar

• Similar idea to flex

Bison (2)

• Input: a specification file containing mainly the grammar
definition

• Output: a C source file containing the parser
• The entry point is the function int yyparse();

₋ yyparse reads tokens by calling yylex and parses until
• end of file to be parsed, or
• unrecoverable syntax error occurs

₋ returns 0 for success and 1 for failure

Bison Usage

Bison
Compiler

C Compiler

a.out

Bison source
program

parser.y

y.tab.c

a.out

Parse tree

y.tab.c

Token stream

Bison Specification File

• A Bison specification is composed of 4 parts.

%{
/* C declarations */

%}
/* Bison declarations */

%%

/* Grammar rules */

%%

/* Additional C code */

1.1. C Declarations

• Contains macro definitions and declarations of functions and
variables that are used in the actions in the grammar rules

• Copied to the beginning of the parser file so that they
precede the definition of yyparse

• Use #include to get the declarations from a header file. If C
declarations isn’t needed, then the %{ and %} delimiters can
be omitted

1.2. Bison Declarations

• Contains:
₋ declarations that define terminal and non-terminal

symbols
₋ Data types of semantic values of various symbols
₋ specify precedence

Bison Specification File

• A Bison specification is composed of 4 parts.

%{
/* C declarations */

%}
/* Bison declarations */

%%

/* Grammar rules */

%%

/* Additional C code */

2. Grammar Rules

• Contains one or more Bison grammar rules

• Example:
₋ expression : expression ‘+’ term { $$ = $1 + $3; } ;

• There must always be at least one grammar rule, and the
first %% (which precedes the grammar rules) may never be
omitted even if it is the first thing in the file.

Bison Specification File

• A Bison specification is composed of 4 parts.

%{
/* C declarations */

%}
/* Bison declarations */

%%

/* Grammar rules */

%%

/* Additional C code */

3. Additional C Code

• Copied verbatim to the end of the parser file, just as the C
declarations section is copied to the beginning.

• This is the most convenient place to put anything that should
be in the parser file but isn’t needed before the definition of
yyparse().

• The definitions of yylex() and yyerror() often go here.

Bison Example 1 – Parsing simple
mathematical expressions

%{

#include <ctype.h> /* standard C declarations here */

double int yylex();

}%

%token DIGIT /* bison declarations */

%%

/* Grammar rules */

line : expr ‘\n’ { printf { “%d\n”, $1 }; };

expr : expr ‘+’ term { $$ = $1 + $3; }

| term { $$ = $1; } ;

term : term ‘*’ factor { $$ = $1 * $3; }

| factor { $$ = $1; } ;

factor : ‘(‘ expr ’)’ { $$ = $2; }
| DIGIT ;

Bison Example 1 (cont)

%%
/* Additional C code */

int yylex () {
/* A really simple lexical analyzer */
int c = getchar ();
if (isdigit (c)) {

yylval = c - ’0’ ;
return DIGIT;

}
return c;

}

Bison Example 2 – Mid-Rules

thing: A { printf(“seen an A”); } B ;

The same as:

thing: A fakename B ;

fakename: /* empty */ { printf(“seen an A”); } ;

Bison Example 3 – Simple Calculator

%{

#define YYSTYPE double

#include <math.h>

%}

/* BISON Declarations */

%token NUM

/*introduce precedence and associativity */

%left '-' '+'

%left '*' '/‘

%right '^' /* exponentiation */

%%

Bison Example 3 (cont)

input: /* empty string */

| input line ;

line: '\n'

| expr '\n' { printf ("\t%.10g\n", $1); };

expr : NUM { $$ = $1; }

| expr '+' expr { $$ = $1 + $3; }

| expr '-' expr { $$ = $1 - $3; }

| expr '*' expr { $$ = $1 * $3; }

| expr '/' expr { $$ = $1 / $3; }

| expr '^' expr { $$ = pow ($1, $3); }

| '(' expr ')‘ { $$ = $2; }

;

%%

Syntax Errors

• Error productions can be added to the specification
• They help the compiler to recover from syntax errors and to

continue to parse
• In order for the error productions to work we need at least

one valid token after the error symbol
• Example:

₋ functionCall : ID ‘(‘ paramList ‘)’
| ID ‘(‘ error ‘)’

• Recover from syntax errors by discarding tokens until it reaches
the valid token.

Using Bison With Flex

• Bison and flex are designed to work together
• Bison produces a driver program called yylex()

₋ #include “lex.yy.c” in the last part of bison specification
₋ this gives the program yylex access to bisons’ token

names

Using Bison with Flex (2)

• Thus, do the following:
₋ flex scanner.l
₋ bison parser.y
₋ cc y.tab.c -ly -ll

• This will produce an a.out which is a parser with an
integrated scanner included

Laboratory Assignment 3

Parser Generation

• Finnish a parser specification given in a parser.y bison file, by
adding rules for expressions, conditions and function
definitions,

Functions

•Outline:
function : funcnamedecl parameters ‘:’ type variables functions block ‘;’

{

// Set the return type of the function

// Set the function body

// Set current function to point to the parent again

} ;

funcnamedecl : FUNCTION id

{

// Check if the function is already defined, report error if so

// Create a new function information and set its parent to current function

// Link the newly created function information to the current function

// Set the new function information to be the current function

} ;

Expressions

•For precedence and associativity you can
factorize the rules for expressions …

•Or specify precedence and associativy at the
top of the Bison specification file, in the
Bison Declarations section. Read more about
this in the Bison reference.

Expressions (2)

•Example with factoring:
expression : expression ‘+’ term

{

// If any of the sub-expressions is NULL, set $$ to NULL

// Create a new Plus node and return in $$

//IntegerToReal casting might be needed

}

|

...

Laboratory Assignment 4

Intermediate code

Intermediate Code

•Closer to machine code, but not machine
specific

•Can handle temporary variables.
•Means higher portability, intermediate code
can easier be expanded to assembly code.

•Offers the possibility of performing code
optimizations such as register allocation.

Intermediate Code

•Why do we use intermediate languages?
• Retargeting - build a compiler for a new
machine by attaching a new code generator
to an existing front-end and middle-part

• Optimization - reuse intermediate code
optimizers in compilers for different
languages and different machines

• Code generation - for different source
languages can be combined

Intermediate Languages

•Infix notation
•Postfix notation
•Three address code

₋Triples
₋Quadruples

Quadruples

•You will use quadruples as intermediate
language where an instruction has four
fields:

operator operand1 operand2 result

Generation of Intermediate Code

instr_list

:=

b

a

+

PI

NULL

program example;
const

PI = 3.14159;
var

a : real;
b : real;

begin
b := a + PI;

end.

q_rplus A PI $1

q_rassign $1 - B

q_labl 4 - -

Quadruples

T4ET3-

T3T2T1*

T2DC+

T1BA+

resultoperand2operand1operator

(A + B) * (C + D) - E

Intermediate Code Generation

•The purpose of this assignment is to learn
how abstract syntax trees can be translated
into intermediate code.

•You are to finish a generator for intermediate
code (quadruples) by adding rules for some
language constructs.

•You will work in the file codegen.cc.

Binary Operations

•In function BinaryGenerateCode:
₋ Generate code for left expression and right

expression.
₋ Generate either a realop or intop quadruple

• Type of the result is the same as the type of the operands
• You can use currentFunction->TemporaryVariable

Array References

•The absolute address is computed as follows:
₋ absAdr = baseAdr + arrayTypeSize * index

•Generate code for the index expression
•You must then compute the absolute address

₋ You will have to create several temporary variables
(of integer type) for intermediate storage

₋ Generate a quadruple iaddr with id variable as input
for getting the base address

₋ Create a quadruple for loading the size of the type in
question to a temporary variable

₋ Then generate imul and iadd quadruples
₋ Finally generate either a istore or rstore quadruple

If Statement
•S  if E then S1

•S  if E then S1 else S2

WHILE Statement

•S  while E do S1

