Sorin Manolache

Compilers and Interpreters
Tutorial 1

Sorin Manolache, sorma@da. | i u. se

e flex and bison documentation available at
http://ww. ida.liu.sel/~TDDB44/

* online version of this tutorial;

http://ww. ida.liu.sel/~sornal/teachi ng/
conpi nterp/tutorial 1. pdf

) RG] U“’ll@
S PRy
November 30, 2005 . I <
oy JA@Q
NQ SOF

Sorin Manolache

Flex

e IS a scanner generator

 the input is a file (specification file) containing mainly a set of
rules for the token construction

 the output is a C source file containing the scanner code
 the entry point is the function

I nt yyl ex()
e yyl ex scans tokens from the FI LE *yyin (stdin) until

— arule matches and the associated action executes a
r et ur n statement

— EOF is reached. yyl ex then returns O

) RG] U“’ll@

AL

"o

November 30, 2005 % IS
Ui o

Sorin Manolache

Flex — Input File Specification

» 3 parts separated by %®60n a new line

optional definitions

%0

optional rules

%0

optional additional C code

* rules section
— format
<uni ndent ed pattern><whi t espace><acti on>

— everything different from the above pattern is copied
verbatim to the output file

— actionis C code

) RG] U“’ll@

"o

November 30, 2005 % IS
Ui o

Sorin Manolache

X

[xyz]
[C X5- 9]

[A Z]
r*
r +

r?
r|s

s

Flex — Patterns (1)

matches the character * x’
matches any character except newline

matches any (one) of the characters between
the brackets

matches any (one) character different from
the characters between the brackets
matches zero or more (unbounded)
occurrences of r. r is itself a regexp

matches one or more (unbounded)
occurrences of r. r is itself a regexp

matches zero or one r. r is itself a regexp
matches either r or s. r and s are themselves
regexps

matches r followed by s. r and s are

themselves regexps

November 30, 2005

GS UN,

& e,

) %5,
& " %,
5 @
3
5 N 5
%, 5

%, o

“Ung o

Sorin Manolache

Flex — Patterns (2)

(r) matches r. Used for priority overriding

Y matches r occurring at the beginning of line
r$ matches r at the end of line

<<ECF>> matches the end of file

<S>r matches r in the context s. r is a regexp.

s denotes a context (start condition)
« use ““ or\ for avoiding the special meaning of some symbols
» special characterscanbe used:\n \r \t \a \b \f \v \O

e operator priorities:

- 0,0 highest
- *1 +1 ’)

— concatenation

= lowest

) RG] U“’ll@

"o

November 30, 2005 % IS
Ui o

Sorin Manolache

Flex — Matching (1)

 “greedy”, matches as much as possible

 if more than one rule can be applied, then the first appearing in
the flex specification file is preferred

* if no rule matches, then the default rule applies: it copies the
character to the output

e after matching

— yytext (extern char yytext[];) contains the
matched text

— yyleng (extern int yyl eng;) contains the
matched text length

) RG] U“’ll@

"o

November 30, 2005 % IS
Ui o

Sorin Manolache

Flex — Matching (2)

e Special actions, macros and handy functions:

ECHO

REJECT, choose next best rule, either a “later” one
matching the same text, or another rule matching a
the largest prefix of the matched text

yynor e(), do another match and append its result to
the current match

yyl ess(i nt n), push all but the first n characters
back to the input stream (to be matched next time).
yyt ext will contain only the first n of the matched
characters.

YY_USER _ACTI ON denotes an action to be taken
before the matched rule action

November 30, 2005

GS UN,

& e,

O %5,
& t’ Y,
g @
3
z ey -
%, 5

%, o

“Ung o

Sorin Manolache

Flex — Definitions Section

format:

<uni ndent ed nane><whi t espace><definition>
similar to macros, referred later in the rules section
reference to a definition: { nanme}
example:

DAT [0- 9]
%0
{DIA@T}* return INT;

everything between %4 and % is copied verbatim to the gener-
ated C source file, both in the definitions and in the rules section

November 30, 2005

GS UN,

& e,

) %5,
& t’ Y,
5 @
3
Z ey -
%, 5

%, o

“np s

Sorin Manolache

Flex — Contexts (Start Conditions)

handy for matching some rules only if the scanner is in some
state (context), for instance, when parsing inside comments or
inside quotes

the context (start condition) is defined in the definitions section

the scanner enters a particular context after executing the
action BEG N(start _condi ti on_nane)

iIf the start condition is exclusive then only those rules match
that are specific to this context, i.e. those rules prefixed with
<start_condition_nane>

If the start condition is inclusive then non-prefixed rules may
match also

prefixed rules cannot match if the scanner is not in the corre-
sponding context (the start condition is false)

November 30, 2005

GS UN,
& e,
kS s,
& " %,
g e}
5
5 _N g
%, §
%, o
“Unp §9™

Sorin Manolache

Flex — Contexts (2)

« the scanner exits a particular context either by entering another
one or by entering the initial “start condition”

(BEG N(1 NI Tl AL))

« syntax of start condition declaration:

" exclusive start _condition_nane
% i1 nclusive start _condition_nane

e example:

W html _tag

%80

["<]*

“ on

<htm tag>[">]*
<html _tag>">"

BEGA N(html _tag) ;
printf(“9%\n”, yytext);
BEQ N(I NI TI AL) ;

November 30, 2005

10

Sorin Manolache

Flex — Running and Compiling

- | case insensitive, or %casel ess
%yl ineno

Wywr ap or ¥moyyw ap

%rai n or %monai n

- 0 output file, or Yout put =" nane”

If mai n or yywr ap have to be provided (no %snonmai n or no
% oyywr ap) and are not provided by the user, then one has to
link with the - | f I

November 30, 2005

11

	Compilers and Interpreters Tutorial 1
	Sorin Manolache, sorma@ida.liu.se
	. flex and bison documentation available at http://www.ida.liu.se/~TDDB44/
	. online version of this tutorial: http://www.ida.liu.se/~sorma/teaching/ compinterp/tutorial1.pdf

	Flex
	. is a scanner generator
	. the input is a file (specification file) containing mainly a set of rules for the token construction
	. the output is a C source file containing the scanner code
	. the entry point is the function
	int yylex()

	. yylex scans tokens from the FILE *yyin (stdin) until
	- a rule matches and the associated action executes a return statement
	- EOF is reached. yylex then returns 0

	Flex - Input File Specification
	. 3 parts separated by %% on a new line
	optional definitions %% optional rules %% optional additional C code

	. rules section
	- format
	<unindented pattern><whitespace><action>
	- everything different from the above pattern is copied verbatim to the output file
	- action is C code

	Flex - Patterns (1)
	x matches the character ‘x’ . matches any character except newline [xyz] [C-X5-9] matches any (one) of the characters between th...

	Flex - Patterns (2)
	(r) matches r. Used for priority overriding ^r matches r occurring at the beginning of line r$ matches r at the end of line <<EOF>> matches the end of file <s>r matches r in the context s. r is a regexp. s denotes a context (start condition)
	. use ““ or \ for avoiding the special meaning of some symbols
	. special characters can be used: \n \r \t \a \b \f \v \0
	. operator priorities:
	- (), [] highest
	- *, +, ?
	- concatenation
	- | lowest

	Flex - Matching (1)
	. “greedy”, matches as much as possible
	. if more than one rule can be applied, then the first appearing in the flex specification file is preferred
	. if no rule matches, then the default rule applies: it copies the character to the output
	. after matching
	- yytext (extern char yytext[];) contains the matched text
	- yyleng (extern int yyleng;) contains the matched text length

	Flex - Matching (2)
	. Special actions, macros and handy functions:
	- ECHO
	- REJECT, choose next best rule, either a “later” one matching the same text, or another rule matching a the largest prefix of the matched text
	- yymore(), do another match and append its result to the current match
	- yyless(int n), push all but the first n characters back to the input stream (to be matched next time). yytext will contain only the first n of the matched characters.
	- YY_USER_ACTION denotes an action to be taken before the matched rule action

	Flex - Definitions Section
	. format:
	<unindented name><whitespace><definition>

	. similar to macros, referred later in the rules section
	. reference to a definition: {name}
	. example:
	DIGIT [0-9] %% {DIGIT}* return INT;

	. everything between %{ and %} is copied verbatim to the generated C source file, both in the definitions and in the rules section

	Flex - Contexts (Start Conditions)
	. handy for matching some rules only if the scanner is in some state (context), for instance, when parsing inside comments or inside quotes
	. the context (start condition) is defined in the definitions section
	. the scanner enters a particular context after executing the action BEGIN(start_condition_name)
	. if the start condition is exclusive then only those rules match that are specific to this context, i.e. those rules prefixed with <start_condition_name>
	. if the start condition is inclusive then non-prefixed rules may match also
	. prefixed rules cannot match if the scanner is not in the corresponding context (the start condition is false)

	Flex - Contexts (2)
	. the scanner exits a particular context either by entering another one or by entering the initial “start condition” (BEGIN(INITIAL))
	. syntax of start condition declaration:
	%x exclusive_start_condition_name %s inclusive_start_condition_name

	. example:
	%x html_tag %% [^<]* “<” BEGIN(html_tag); <html_tag>[^>]* printf(“%s\n”, yytext); <html_tag>”>” BEGIN(INITIAL);

	Flex - Running and Compiling
	. -i case insensitive, or %caseless
	. %yylineno
	. %yywrap or %noyywrap
	. %main or %nomain
	. -o output file, or %output=”name”
	. if main or yywrap have to be provided (no %nomain or no %noyywrap) and are not provided by the user, then one has to link with the -lfl

