
N

Sorin Manolache

1

rs

.se

eaching/
ovember 30, 2005

Compilers and Interprete
Tutorial 1

Sorin Manolache, sorma@ida.liu

• flex and bison documentation available at
http://www.ida.liu.se/~TDDB44/

• online version of this tutorial:
http://www.ida.liu.se/~sorma/t
compinterp/tutorial1.pdf

N

Sorin Manolache

2

ning mainly a set of

e scanner code

in (stdin) until

ted action executes a

turns 0
ovember 30, 2005

Flex

• is a scanner generator

• the input is a file (specification file) contai
rules for the token construction

• the output is a C source file containing th

• the entry point is the function

int yylex()

• yylex scans tokens from the FILE *yy

– a rule matches and the associa
return statement

– EOF is reached. yylex then re

N

Sorin Manolache

3

ion

espace><action>

ove pattern is copied
ovember 30, 2005

Flex – Input File Specificat

• 3 parts separated by %% on a new line

optional definitions
%%
optional rules
%%
optional additional C code

• rules section

– format

 <unindented pattern><whit

– everything different from the ab
verbatim to the output file

– action is C code

N

Sorin Manolache

4

 ‘x’
r except newline

he characters between

racter different from
n the brackets
 (unbounded)
self a regexp
(unbounded)
self a regexp
 r is itself a regexp
 and s are themselves

s. r and s are
ovember 30, 2005

Flex – Patterns (1)
x matches the character
. matches any characte
[xyz]
[C-X5-9] matches any (one) of t
 the brackets
[^A-Z] matches any (one) cha
 the characters betwee
r* matches zero or more
 occurrences of r. r is it
r+ matches one or more
 occurrences of r. r is it
r? matches zero or one r.
r|s matches either r or s. r
 regexps
rs matches r followed by
 themselves regexps

N

Sorin Manolache

5

riority overriding
t the beginning of line

 of line
le
ext s. r is a regexp.
tart condition)

g of some symbols

t \a \b \f \v \0
ovember 30, 2005

Flex – Patterns (2)
(r) matches r. Used for p
^r matches r occurring a
r$ matches r at the end
<<EOF>> matches the end of fi
<s>r matches r in the cont
 s denotes a context (s

• use ““ or \ for avoiding the special meanin

• special characters can be used: \n \r \

• operator priorities:

– (), [] highest

– *, +, ?

– concatenation

– | lowest

N

Sorin Manolache

6

 the first appearing in

pplies: it copies the

xt[];) contains the

g;) contains the
ovember 30, 2005

Flex – Matching (1)

• “greedy”, matches as much as possible

• if more than one rule can be applied, then
the flex specification file is preferred

• if no rule matches, then the default rule a
character to the output

• after matching

– yytext (extern char yyte
matched text

– yyleng (extern int yylen
matched text length

N

Sorin Manolache

7

ons:

, either a “later” one
ther rule matching a
d text

nd append its result to

the first n characters
matched next time).
st n of the matched

 action to be taken
ovember 30, 2005

Flex – Matching (2)

• Special actions, macros and handy functi

– ECHO

– REJECT, choose next best rule
matching the same text, or ano
the largest prefix of the matche

– yymore(), do another match a
the current match

– yyless(int n), push all but
back to the input stream (to be
yytext will contain only the fir
characters.

– YY_USER_ACTION denotes an
before the matched rule action

N

Sorin Manolache

8

n

definition>

s section

verbatim to the gener-
nd in the rules section
ovember 30, 2005

Flex – Definitions Sectio

• format:

<unindented name><whitespace><

• similar to macros, referred later in the rule

• reference to a definition: {name}

• example:

DIGIT [0-9]
%%
{DIGIT}* return INT;

• everything between %{ and %} is copied
ated C source file, both in the definitions a

N

Sorin Manolache

9

ions)
 scanner is in some
 inside comments or

he definitions section

ter executing the
)

 those rules match
 rules prefixed with

prefixed rules may

r is not in the corre-
lse)
ovember 30, 2005

Flex – Contexts (Start Condit
• handy for matching some rules only if the

state (context), for instance, when parsing
inside quotes

• the context (start condition) is defined in t

• the scanner enters a particular context af
action BEGIN(start_condition_name

• if the start condition is exclusive then only
that are specific to this context, i.e. those
<start_condition_name>

• if the start condition is inclusive then non-
match also

• prefixed rules cannot match if the scanne
sponding context (the start condition is fa

N

Sorin Manolache

10

er by entering another
on”

ame
ame

tml_tag);
(“%s\n”, yytext);
NITIAL);
ovember 30, 2005

Flex – Contexts (2)

• the scanner exits a particular context eith
one or by entering the initial “start conditi
(BEGIN(INITIAL))

• syntax of start condition declaration:

%x exclusive_start_condition_n
%s inclusive_start_condition_n

• example:

%x html_tag
%%
[^<]*
“<” BEGIN(h
<html_tag>[^>]* printf
<html_tag>”>” BEGIN(I

N

Sorin Manolache

11

ing

o %nomain or no
 user, then one has to
ovember 30, 2005

Flex – Running and Compil

• -i case insensitive, or %caseless

• %yylineno

• %yywrap or %noyywrap

• %main or %nomain

• -o output file, or %output=”name”

• if main or yywrap have to be provided (n
%noyywrap) and are not provided by the
link with the -lfl

	Compilers and Interpreters Tutorial 1
	Sorin Manolache, sorma@ida.liu.se
	. flex and bison documentation available at http://www.ida.liu.se/~TDDB44/
	. online version of this tutorial: http://www.ida.liu.se/~sorma/teaching/ compinterp/tutorial1.pdf

	Flex
	. is a scanner generator
	. the input is a file (specification file) containing mainly a set of rules for the token construction
	. the output is a C source file containing the scanner code
	. the entry point is the function
	int yylex()

	. yylex scans tokens from the FILE *yyin (stdin) until
	- a rule matches and the associated action executes a return statement
	- EOF is reached. yylex then returns 0

	Flex - Input File Specification
	. 3 parts separated by %% on a new line
	optional definitions %% optional rules %% optional additional C code

	. rules section
	- format
	<unindented pattern><whitespace><action>
	- everything different from the above pattern is copied verbatim to the output file
	- action is C code

	Flex - Patterns (1)
	x matches the character ‘x’ . matches any character except newline [xyz] [C-X5-9] matches any (one) of the characters between th...

	Flex - Patterns (2)
	(r) matches r. Used for priority overriding ^r matches r occurring at the beginning of line r$ matches r at the end of line <<EOF>> matches the end of file <s>r matches r in the context s. r is a regexp. s denotes a context (start condition)
	. use ““ or \ for avoiding the special meaning of some symbols
	. special characters can be used: \n \r \t \a \b \f \v \0
	. operator priorities:
	- (), [] highest
	- *, +, ?
	- concatenation
	- | lowest

	Flex - Matching (1)
	. “greedy”, matches as much as possible
	. if more than one rule can be applied, then the first appearing in the flex specification file is preferred
	. if no rule matches, then the default rule applies: it copies the character to the output
	. after matching
	- yytext (extern char yytext[];) contains the matched text
	- yyleng (extern int yyleng;) contains the matched text length

	Flex - Matching (2)
	. Special actions, macros and handy functions:
	- ECHO
	- REJECT, choose next best rule, either a “later” one matching the same text, or another rule matching a the largest prefix of the matched text
	- yymore(), do another match and append its result to the current match
	- yyless(int n), push all but the first n characters back to the input stream (to be matched next time). yytext will contain only the first n of the matched characters.
	- YY_USER_ACTION denotes an action to be taken before the matched rule action

	Flex - Definitions Section
	. format:
	<unindented name><whitespace><definition>

	. similar to macros, referred later in the rules section
	. reference to a definition: {name}
	. example:
	DIGIT [0-9] %% {DIGIT}* return INT;

	. everything between %{ and %} is copied verbatim to the generated C source file, both in the definitions and in the rules section

	Flex - Contexts (Start Conditions)
	. handy for matching some rules only if the scanner is in some state (context), for instance, when parsing inside comments or inside quotes
	. the context (start condition) is defined in the definitions section
	. the scanner enters a particular context after executing the action BEGIN(start_condition_name)
	. if the start condition is exclusive then only those rules match that are specific to this context, i.e. those rules prefixed with <start_condition_name>
	. if the start condition is inclusive then non-prefixed rules may match also
	. prefixed rules cannot match if the scanner is not in the corresponding context (the start condition is false)

	Flex - Contexts (2)
	. the scanner exits a particular context either by entering another one or by entering the initial “start condition” (BEGIN(INITIAL))
	. syntax of start condition declaration:
	%x exclusive_start_condition_name %s inclusive_start_condition_name

	. example:
	%x html_tag %% [^<]* “<” BEGIN(html_tag); <html_tag>[^>]* printf(“%s\n”, yytext); <html_tag>”>” BEGIN(INITIAL);

	Flex - Running and Compiling
	. -i case insensitive, or %caseless
	. %yylineno
	. %yywrap or %noyywrap
	. %main or %nomain
	. -o output file, or %output=”name”
	. if main or yywrap have to be provided (no %nomain or no %noyywrap) and are not provided by the user, then one has to link with the -lfl

