
N

Sorin Manolache

1

rs

.se

.se/~sorma/
pdf
ovember 30, 2005

Compilers and Interprete
Tutorial 2

Sorin Manolache, sorma@ida.liu

• online version at http://www.ida.liu
teaching/compinterp/tutorial2.

N

Sorin Manolache

2

ike language using the

onstructed as result of
rogram)

he ASTs
ovember 30, 2005

Overview

• lab 3 – to generate a parser for a Pascal-l
Bison parser generator

• a forest of abstract syntax trees (AST) is c
the parsing (one tree per function/main p

• lab4 – to generate intermediate code for t

N

Sorin Manolache

3

ainly the grammar

er

and parses until

urs
ovember 30, 2005

Bison
• a parser generator

• input: a file (specification file) containing m
definition

• output: a C source file containing the pars

• the entry point is the function

int yyparse();

• yyparse reads tokens by calling yylex

– end of file to be parsed, or

– unrecoverable syntax error occ

• returns 0 for success and 1 for failure

N

Sorin Manolache

4

2> {opt ac>} ...

non-terminals that
left
ovember 30, 2005

Bison – Input File

• 3 parts separated by %% on a new line

optional definitions
%%
optional rules
%%
optional additional C code

• rules section

– format

<nonterm>:<comp1> {<opt ac>} <comp
;

– comp denotes the terminals or
compose the nonterm on the

N

Sorin Manolache

5

es

ve one semantic

t types, the possible
 and the mapping
inals on one part and

part
ovember 30, 2005

Bison – Semantic Attribut

• both terminals and non-terminals may ha
attribute attached to it

• if there are semantic attributes of differen
types have to be enumerated (YYSTYPE)
specified between terminals and non-term
the semantic attribute types on the other

N

Sorin Manolache

6

factor

rm

);
ovember 30, 2005

Example
%union {
 int i_val;
 double r_val;
}
%token <i_val> I_NUM
%token <r_val> R_NUM
%type <r_val> expression term
%%
expression : expression ‘+’ te
 {
 $$ = $1 + $3;
 }
 ;
factor : I_NUM
 {
 $$ = (double)($1
 }

N

Sorin Manolache

7

ontext ();
); }

text>5); }

ent

ribute of itself

he declaration section
ovember 30, 2005

Mid-Rule Actions
stmt: LET ’(’ var ’)’
 { $<context>$ = push_c
 declare_variable ($3
 stmt { $$ = $6;
 pop_context ($<con
 ;

• a mid-rule action is a anonymous compon

• $$ in a mid-rule denotes the semantic att

• being anonymous, one cannot specify in t
the mapping between it and its type

• therefore, it has to be done in situ:

$<type>$ =
= $<type>n

N

Sorin Manolache

8

 productions

ntax errors and to con-

t ‘)’

’
ovember 30, 2005

Syntax Errors

• the specification can be stuffed with error

• they help the compiler to recover from sy
tinue to parse

• example:

functionCall : ID ‘(‘ paramLis
 |
 ID ‘(‘ error ‘)
 ;

N

Sorin Manolache

9

ibutes

rime */ e_prime

 to e_prime */
ovember 30, 2005

Synthesized and Inherited Attr

expr : term /* send $1 as an arg to e_p
 { $$ = $2; }
 ;
e_prime : ‘+’ /* send the arg as an arg
 e_prime
 { $$ = arg + $2; }
 |
 { $$ = arg; }
 ;

	Compilers and Interpreters Tutorial 2
	Sorin Manolache, sorma@ida.liu.se
	. online version at http://www.ida.liu.se/~sorma/ teaching/compinterp/tutorial2.pdf

	Overview
	. lab 3 - to generate a parser for a Pascal-like language using the Bison parser generator
	. a forest of abstract syntax trees (AST) is constructed as result of the parsing (one tree per function/main program)
	. lab4 - to generate intermediate code for the ASTs

	Bison
	. a parser generator
	. input: a file (specification file) containing mainly the grammar definition
	. output: a C source file containing the parser
	. the entry point is the function
	int yyparse();

	. yyparse reads tokens by calling yylex and parses until
	- end of file to be parsed, or
	- unrecoverable syntax error occurs

	. returns 0 for success and 1 for failure

	Bison - Input File
	. 3 parts separated by %% on a new line
	optional definitions %% optional rules %% optional additional C code

	. rules section
	- format
	<nonterm>:<comp1> {<opt ac>} <comp2> {opt ac>} ... ;
	- comp denotes the terminals or non-terminals that compose the nonterm on the left

	Bison - Semantic Attributes
	. both terminals and non-terminals may have one semantic attribute attached to it
	. if there are semantic attributes of different types, the possible types have to be enumerated (YYSTYPE) and the mapping specified between terminals and non-terminals on one part and the semantic attribute types on the other part

	Example
	%union { int i_val; double r_val; } %token <i_val> I_NUM %token <r_val> R_NUM %type <r_val> expression term factor %% expression : expression ‘+’ term { $$ = $1 + $3; } ; factor : I_NUM { $$ = (double)($1); }

	Mid-Rule Actions
	stmt: LET ’(’ var ’)’ { $<context>$ = push_context (); declare_variable ($3); } stmt { $$ = $6; pop_context ($<context>5); } ;
	. a mid-rule action is a anonymous component
	. $$ in a mid-rule denotes the semantic attribute of itself
	. being anonymous, one cannot specify in the declaration section the mapping between it and its type
	. therefore, it has to be done in situ:
	$<type>$ = = $<type>n

	Syntax Errors
	. the specification can be stuffed with error productions
	. they help the compiler to recover from syntax errors and to continue to parse
	. example:
	functionCall : ID ‘(‘ paramList ‘)’ | ID ‘(‘ error ‘)’ ;

	Synthesized and Inherited Attributes
	expr : term /* send $1 as an arg to e_prime */ e_prime { $$ = $2; } ; e_prime : ‘+’ /* send the arg as an arg to e_prime */ e_prime { $$ = arg + $2; } | { $$ = arg; } ;

