
Sahand Sadjadee
Department of Information

and Computer Science
Linköping University

TDDD49
C# and .NET

Programming

(Lecture 03)

 Outline

1. The Business Logic Layer(BLL)
2. Multithreading
3. Networking

The Business Logic Layer

The Business Logic Layer https://docs.microsoft.com/en-us/previous-versions/msp-n-p/ee658103(v%3dpandp.10)

● Application façade. This optional component typically provides a
simplified interface to the business logic components, often by combining
multiple business operations into a single operation that makes it easier to
use the business logic.

● Business Workflow components. After the UI components collect the
required data from the user and pass it to the business layer, the
application can use this data to perform a business process. Many
business processes involve multiple steps that must be performed in the
correct order, and may interact with each other through an orchestration.

● Business Entity components. Business entities, or—more
generally—business objects, encapsulate the business logic and data
necessary to represent real world elements, such as Customers or Orders,
within your application.

https://docs.microsoft.com/en-us/previous-versions/msp-n-p/ee658103(v%3dpandp.10)

General Design Considerations

● Decide if you need a separate business layer. It is always a good idea to use a separate business layer where
possible to improve the maintainability of your application. The exception may be applications that have few or no
business rules (other than data validation).

● Identify the responsibilities and consumers of your business layer. This will help you to decide what tasks
the business layer must accomplish, and how you will expose your business layer. Use a business layer for
processing complex business rules, transforming data, applying policies, and for validation.

● Do not mix different types of components in your business layer. Use a business layer to avoid mixing
presentation and data access code with business logic code, to decouple business logic from presentation and
data access logic, and to simplify testing of business functionality.

● Reduce round trips when accessing a remote business layer.
● Avoid tight coupling between layers. Use the principles of abstraction to minimize coupling when creating an

interface for the business layer.

Relevant Design Patterns

● Anemic Model

○ Centralize and aggregate behavior to provide a uniform service layer.

○ Entities do not contain logic.

○ There are services/classes which contain the whole logic.

○ Criticism: “The fundamental horror of this anti-pattern is that it's so contrary to the basic idea of object-oriented designing;
which is to combine data and process them together. The anemic domain model is just a procedural style design, exactly
the kind of thing that object bigots like me ... have been fighting since our early days in Smalltalk. What's worse, many
people think that anemic objects are real objects, and thus completely miss the point of what object-oriented design is all
about.” https://martinfowler.com/bliki/AnemicDomainModel.html

● Domain Model

○ A set of business objects that represents the entities in a domain and the relationships between them.

○ Entities contain both logic and data.

https://en.wikipedia.org/wiki/Smalltalk
https://martinfowler.com/bliki/AnemicDomainModel.html

Project Structure
Business-Logic code

Multithreading

When to use multiple threads

● You use multiple threads to increase the responsiveness of your application.

● The key is to not use the main thread for performing time-consuming tasks.

● Dedicated threads can be used for network and device communication to be more responsive to incoming messages.

How To Create threads https://msdn.microsoft.com/en-us/library/btky721f.aspx

1. Declare the thread.
○ System.Threading.Thread myThread;

2. Create an instance of the thread with the appropriate delegate for the starting point of the thread.
○ myThread = new System.Threading.Thread(new System.Threading.ThreadStart(myStartingMethod));

3. When ready, call the Thread.Start method to start the thread.
○ myThread.Start();

System.Threading.Thread is a foreground thread.

https://msdn.microsoft.com/en-us/library/btky721f.aspx
https://msdn.microsoft.com/en-us/library/system.threading.thread.start.aspx

Background vs foreground threads

● Background threads can’t prevent the application from terminating while foreground threads continue execution even the

main thread has terminated.

● Once all foreground threads have been stopped in a managed process (where the .exe file is a managed assembly), the

system stops all background threads and shuts down.

● When the runtime stops a background thread because the process is shutting down, no exception is thrown in the thread.

● an unhandled exception in either foreground or background threads results in termination of the application.

● Threads that belong to the managed thread pool (that is, threads whose IsThreadPoolThread property is true) are

background threads.

● All threads that enter the managed execution environment from unmanaged code are marked as background threads.

● All threads generated by creating and starting a new Thread object are by default foreground threads.

https://docs.microsoft.com/en-us/dotnet/api/system.threading.thread.isthreadpoolthread
https://docs.microsoft.com/en-us/dotnet/api/system.threading.thread

ThreadPool https://docs.microsoft.com/en-us/dotnet/api/system.threading.threadpool?view=netframework-4.7.2

Provides a pool of background threads that can be used to:

● execute tasks

● post work items

● process asynchronous I/O

● wait on behalf of other threads

● process timers.

https://docs.microsoft.com/en-us/dotnet/api/system.threading.threadpool?view=netframework-4.7.2

ThreadPool https://docs.microsoft.com/en-us/dotnet/api/system.threading.threadpool?view=netframework-4.7.2

● Many applications create threads that spend a great deal of time in the sleeping state, waiting for an event to
occur. Other threads might enter a sleeping state only to be awakened periodically to poll for a change or update
status information.

● The thread pool enables you to use threads more efficiently by providing your application with a pool of worker
threads that are managed by the system.

https://docs.microsoft.com/en-us/dotnet/api/system.threading.threadpool?view=netframework-4.7.2

ThreadPool https://docs.microsoft.com/en-us/dotnet/api/system.threading.threadpool?view=netframework-4.7.2

Where thread pool is used:

● When you create a Task or Task<TResult> object to perform some task asynchronously, by default the task is scheduled to

run on a thread pool thread.

● Asynchronous timers use the thread pool. Thread pool threads execute callbacks from the System.Threading.Timer class and

raise events from the System.Timers.Timer class.

● When you use registered wait handles, a system thread monitors the status of the wait handles. When a wait operation

completes, a worker thread from the thread pool executes the corresponding callback function.

● When you call the QueueUserWorkItem method to queue a method for execution on a thread pool thread.

https://docs.microsoft.com/en-us/dotnet/api/system.threading.threadpool?view=netframework-4.7.2
https://docs.microsoft.com/en-us/dotnet/api/system.threading.tasks.task?view=netframework-4.7.2
https://docs.microsoft.com/en-us/dotnet/api/system.threading.tasks.task-1?view=netframework-4.7.2
https://docs.microsoft.com/en-us/dotnet/api/system.threading.timer?view=netframework-4.7.2
https://docs.microsoft.com/en-us/dotnet/api/system.timers.timer?view=netframework-4.7.2
https://docs.microsoft.com/en-us/dotnet/api/system.threading.threadpool.queueuserworkitem?view=netframework-4.7.2

ThreadPool https://docs.microsoft.com/en-us/dotnet/api/system.threading.threadpool?view=netframework-4.7.2

 public static void Main()

 {

 // Queue the task.

 ThreadPool.QueueUserWorkItem(ThreadProc);

 Console.WriteLine("Main thread does some work, then sleeps.");

 Thread.Sleep(1000);

 Console.WriteLine("Main thread exits.");

 }

 // This thread procedure performs the task.

 static void ThreadProc(Object stateInfo)

 {

 // No state object was passed to QueueUserWorkItem, so stateInfo is null.

 Console.WriteLine("Hello from the thread pool.");

 }

https://docs.microsoft.com/en-us/dotnet/api/system.threading.threadpool?view=netframework-4.7.2

Task-based Asynchronous Pattern (TAP)
https://docs.microsoft.com/en-us/dotnet/standard/asynchronous-programming-patterns/task-based-asynchronous-pattern-tap?view=netframework-4.7.2

The Task-based Asynchronous Pattern (TAP) is based on the System.Threading.Tasks.Task and

System.Threading.Tasks.Task<TResult> types in the System.Threading.Tasks namespace, which are used to represent arbitrary

asynchronous operations.

https://docs.microsoft.com/en-us/dotnet/standard/asynchronous-programming-patterns/task-based-asynchronous-pattern-tap?view=netframework-4.7.2
https://docs.microsoft.com/en-us/dotnet/api/system.threading.tasks.task
https://docs.microsoft.com/en-us/dotnet/api/system.threading.tasks.task-1
https://docs.microsoft.com/en-us/dotnet/api/system.threading.tasks

Tasks

● The Task class represents a single operation that does not return a value and that usually executes
asynchronously.

● Task objects are one of the central components of the task-based asynchronous pattern first introduced in the
.NET Framework 4.

● You can use the Status property, as well as the IsCanceled, IsCompleted, and IsFaulted properties, to determine
the state of a task.

● A lambda expression is used to specify the work that the task is to perform.

https://docs.microsoft.com/en-us/dotnet/api/system.threading.tasks.task?view=netframework-4.7.2
https://docs.microsoft.com/en-us/dotnet/api/system.threading.tasks.task?view=netframework-4.7.2
https://docs.microsoft.com/en-us/dotnet/standard/asynchronous-programming-patterns/task-based-asynchronous-pattern-tap?view=netframework-4.7.2
https://docs.microsoft.com/en-us/dotnet/api/system.threading.tasks.task.status?view=netframework-4.7.2
https://docs.microsoft.com/en-us/dotnet/api/system.threading.tasks.task.iscanceled?view=netframework-4.7.2
https://docs.microsoft.com/en-us/dotnet/api/system.threading.tasks.task.iscompleted?view=netframework-4.7.2
https://docs.microsoft.com/en-us/dotnet/api/system.threading.tasks.task.isfaulted?view=netframework-4.7.2

Tasks

Action<object> action = (object obj) =>

 {

 Console.WriteLine("Task={0}, obj={1}, Thread={2}",

 Task.CurrentId, obj,

 Thread.CurrentThread.ManagedThreadId);

 };

 // Create a task but do not start it.

 Task t1 = new Task(action, "alpha");

 // Construct a started task

 Task t2 = Task.Factory.StartNew(action, "beta");

 // Block the main thread to demonstrate that t2 is executing

 t2.Wait();

 // Launch t1

 t1.Start();

 Console.WriteLine("t1 has been launched. (Main Thread={0})",

 Thread.CurrentThread.ManagedThreadId);

 // Wait for the task to finish.

 t1.Wait();

Task<TResult> Class https://docs.microsoft.com/en-us/dotnet/api/system.threading.tasks.task-1?view=netframework-4.7.2

● The Task<TResult> class represents a single operation that returns a value and that usually executes asynchronously.

https://docs.microsoft.com/en-us/dotnet/api/system.threading.tasks.task-1?view=netframework-4.7.2
https://docs.microsoft.com/en-us/dotnet/api/system.threading.tasks.task-1?view=netframework-4.7.2

Task<TResult> Class https://docs.microsoft.com/en-us/dotnet/api/system.threading.tasks.task-1?view=netframework-4.7.2

var t = Task<int>.Run(() => {

 // Just loop.

 int max = 1000000;

 int ctr = 0;

 for (ctr = 0; ctr <= max; ctr++) {

 if (ctr == max / 2 && DateTime.Now.Hour <= 12) {

 ctr++;

 break;

 }

 }

 return ctr;

 });

 Console.WriteLine("Finished {0:N0} iterations.", t.Result);

https://docs.microsoft.com/en-us/dotnet/api/system.threading.tasks.task-1?view=netframework-4.7.2

System.Threading.Timer Class https://docs.microsoft.com/en-us/dotnet/api/system.threading.timer?view=netframework-4.7.2

● Provides a mechanism for executing a method on a thread pool thread at specified intervals.

● This class cannot be inherited.

https://docs.microsoft.com/en-us/dotnet/api/system.threading.timer?view=netframework-4.7.2

System.Timers.Timer Class https://docs.microsoft.com/en-us/dotnet/api/system.timers.timer?view=netframework-4.7.2

● Generates an event after a set interval, with an option to generate recurring events.

https://docs.microsoft.com/en-us/dotnet/api/system.timers.timer?view=netframework-4.7.2

BackgroundWorker Class https://docs.microsoft.com/en-us/dotnet/api/system.componentmodel.backgroundworker?view=netframework-4.7.2

● Executes an operation on a separate background thread.
● BackgroundWorker is used for keeping the UI responsive.
● Can be used for doing operations like downloading and database transactions.

https://docs.microsoft.com/en-us/dotnet/api/system.componentmodel.backgroundworker?view=netframework-4.7.2

ThreadPriority Enum https://docs.microsoft.com/en-us/dotnet/api/system.threading.threadpriority?view=netframework-4.7.2

● Specifies the scheduling priority of a Thread.
● Thread priorities specify the relative priority of one thread versus another.

https://docs.microsoft.com/en-us/dotnet/api/system.threading.threadpriority?view=netframework-4.7.2
https://docs.microsoft.com/en-us/dotnet/api/system.threading.thread?view=netframework-4.7.2

Threading model in WPF
https://docs.microsoft.com/en-us/dotnet/framework/wpf/advanced/threading-model

● WPF applications start with two threads: one for handling rendering and another for managing the UI.

● The UI thread receives input, handles events, paints the screen, and runs application code.

● The UI thread queues work items inside an object called a Dispatcher which selects work items on a priority basis and runs

each one to completion.

● It’s recommended to minimize the tasks’ size in order to increase the Dispatcher throughput and UI responsive.
● For big operations you need to use separate threads which report the result to the UI thread upon completion.
● Other threads than UI thread do not have the right to update the UI components directly.

https://docs.microsoft.com/en-us/dotnet/framework/wpf/advanced/threading-model
https://docs.microsoft.com/en-us/dotnet/api/system.windows.threading.dispatcher

WPF Dispatcher https://docs.microsoft.com/en-us/dotnet/framework/wpf/advanced/threading-model

● Dispatcher is a queue which is associated with the UI thread.

● Dispatcher queues method calls.

● Only Dispatcher can update the objects in the UI from non-UI thread.

● DispatcherObject allows access to the dispatcher.

● Most classes in WPF derive from DispatcherObject.

● At construction, a DispatcherObject stores a reference to the Dispatcher linked to the currently running thread.

https://docs.microsoft.com/en-us/dotnet/framework/wpf/advanced/threading-model
https://docs.microsoft.com/en-us/dotnet/api/system.windows.threading.dispatcherobject
https://docs.microsoft.com/en-us/dotnet/api/system.windows.threading.dispatcherobject
https://docs.microsoft.com/en-us/dotnet/api/system.windows.threading.dispatcher

WPF Architecture https://msdn.microsoft.com/en-us/library/ms750441(v=vs.110).aspx

Key classes:

System.Threading.DispatcherObject

System.Windows.DependencyObject

System.Windows.Media.Visual

System.Windows.UIElement

System.Windows.FrameworkElement

System.Windows.Controls.Control

https://msdn.microsoft.com/en-us/library/ms750441(v=vs.110).aspx

DispatcherObject
https://docs.microsoft.com/en-us/dotnet/framework/wpf/advanced/threading-model

● Dispatcher is a queue which is associated with the UI thread.

● Dispatcher queues method calls.

● Only Dispatcher can update the objects in the UI from non-UI thread.

● DispatcherObject allows access to the dispatcher.

● Most classes in WPF derive from DispatcherObject.

● At construction, a DispatcherObject stores a reference to the Dispatcher linked to the currently running thread.

https://docs.microsoft.com/en-us/dotnet/framework/wpf/advanced/threading-model
https://docs.microsoft.com/en-us/dotnet/api/system.windows.threading.dispatcherobject
https://docs.microsoft.com/en-us/dotnet/api/system.windows.threading.dispatcherobject
https://docs.microsoft.com/en-us/dotnet/api/system.windows.threading.dispatcher

DispatcherObject
https://docs.microsoft.com/en-us/dotnet/framework/wpf/advanced/threading-model

CheckAccess() Determines whether the calling thread has access to this DispatcherObject.

VerifyAccess() Enforces that the calling thread has access to this DispatcherObject.

Dispatcher Gets the Dispatcher this DispatcherObject is associated with.

https://docs.microsoft.com/en-us/dotnet/framework/wpf/advanced/threading-model
https://docs.microsoft.com/en-us/dotnet/api/system.windows.threading.dispatcherobject.checkaccess?view=netframework-4.7.2#System_Windows_Threading_DispatcherObject_CheckAccess
https://docs.microsoft.com/en-us/dotnet/api/system.windows.threading.dispatcherobject?view=netframework-4.7.2
https://docs.microsoft.com/en-us/dotnet/api/system.windows.threading.dispatcherobject.verifyaccess?view=netframework-4.7.2#System_Windows_Threading_DispatcherObject_VerifyAccess
https://docs.microsoft.com/en-us/dotnet/api/system.windows.threading.dispatcherobject?view=netframework-4.7.2
https://docs.microsoft.com/en-us/dotnet/api/system.windows.threading.dispatcherobject.dispatcher?view=netframework-4.7.2#System_Windows_Threading_DispatcherObject_Dispatcher
https://docs.microsoft.com/en-us/dotnet/api/system.windows.threading.dispatcher?view=netframework-4.7.2
https://docs.microsoft.com/en-us/dotnet/api/system.windows.threading.dispatcherobject?view=netframework-4.7.2

Dispatcher https://docs.microsoft.com/en-us/dotnet/api/system.windows.threading.dispatcher?view=netframework-4.7.2

BeginInvoke - executes code asynchronously

Invoke - executes code synchronously

https://docs.microsoft.com/en-us/dotnet/api/system.windows.threading.dispatcher?view=netframework-4.7.2
https://docs.microsoft.com/en-us/dotnet/api/system.windows.threading.dispatcher.begininvoke?view=netframework-4.7.2#System_Windows_Threading_Dispatcher_BeginInvoke_System_Delegate_System_Windows_Threading_DispatcherPriority_System_Object___
https://docs.microsoft.com/en-us/dotnet/api/system.windows.threading.dispatcher.invoke?view=netframework-4.7.2#System_Windows_Threading_Dispatcher_Invoke_System_Action_System_Windows_Threading_DispatcherPriority_

Managed threading best practices https://docs.microsoft.com/en-us/dotnet/standard/threading/managed-threading-best-practices

● You use multiple threads to increase the responsiveness of your application.
● The key is not use the main thread for performing time-consuming tasks.
● Dedicated threads can be used for network and device communication to be more responsive to incoming

messages.

https://docs.microsoft.com/en-us/dotnet/standard/threading/managed-threading-best-practices

Networking

System.Net.Sockets https://docs.microsoft.com/en-us/dotnet/framework/network-programming/sockets

● The System.Net.Sockets namespace contains a managed implementation of the Windows Sockets interface.

● All other network-access classes in the System.Net namespace are built on top of this implementation of sockets.

● The Socket class supports two basic modes, synchronous and asynchronous.

https://docs.microsoft.com/en-us/dotnet/framework/network-programming/sockets
https://docs.microsoft.com/en-us/dotnet/api/system.net.sockets
https://docs.microsoft.com/en-us/dotnet/api/system.net

How to: Create a Socket https://docs.microsoft.com/en-us/dotnet/framework/network-programming/how-to-create-a-socket

● Using TCP

○ Socket s = new Socket(AddressFamily.InterNetwork,

 SocketType.Stream, ProtocolType.Tcp);

● Using UDP

○ Socket s = new Socket(AddressFamily.InterNetwork,

 SocketType.Dgram, ProtocolType.Udp);

https://docs.microsoft.com/en-us/dotnet/framework/network-programming/how-to-create-a-socket

AddressFamily Enum https://docs.microsoft.com/en-us/dotnet/api/system.net.sockets.addressfamily?view=netframework-4.7.2

Specifies the addressing scheme that an instance of the Socket class can use.

InterNetwork Address for IP version 4.

InterNetworkV6 Address for IP version 6.

https://docs.microsoft.com/en-us/dotnet/api/system.net.sockets.addressfamily?view=netframework-4.7.2
https://docs.microsoft.com/en-us/dotnet/api/system.net.sockets.socket?view=netframework-4.7.2

SocketType Enum https://docs.microsoft.com/en-us/dotnet/api/system.net.sockets.sockettype?view=netframework-4.7.2

● Specifies the type of socket that an instance of the Socket class represents.

● If you try to create a Socket with an incompatible combination, Socket throws a SocketException.

https://docs.microsoft.com/en-us/dotnet/api/system.net.sockets.sockettype?view=netframework-4.7.2
https://docs.microsoft.com/en-us/dotnet/api/system.net.sockets.socket?view=netframework-4.7.2
https://docs.microsoft.com/en-us/dotnet/api/system.net.sockets.socket?view=netframework-4.7.2
https://docs.microsoft.com/en-us/dotnet/api/system.net.sockets.socket?view=netframework-4.7.2
https://docs.microsoft.com/en-us/dotnet/api/system.net.sockets.socketexception?view=netframework-4.7.2

ProtocolType Enum https://docs.microsoft.com/en-us/dotnet/api/system.net.sockets.protocoltype?view=netframework-4.7.2

● Specifies the type of socket that an instance of the Socket class represents.

● If you try to create a Socket with an incompatible combination, Socket throws a SocketException.

https://docs.microsoft.com/en-us/dotnet/api/system.net.sockets.protocoltype?view=netframework-4.7.2
https://docs.microsoft.com/en-us/dotnet/api/system.net.sockets.socket?view=netframework-4.7.2
https://docs.microsoft.com/en-us/dotnet/api/system.net.sockets.socket?view=netframework-4.7.2
https://docs.microsoft.com/en-us/dotnet/api/system.net.sockets.socket?view=netframework-4.7.2
https://docs.microsoft.com/en-us/dotnet/api/system.net.sockets.socketexception?view=netframework-4.7.2

Using Client Sockets https://docs.microsoft.com/en-us/dotnet/framework/network-programming/using-client-sockets

● A data pipe between your application and the remote device must be created before initiating a conversation.

● TCP/IP uses a network address and a service port number to uniquely identify a service which is combined called EndPoint .

○ IPEndPoint ipe = new IPEndPoint(ipAddress,11000);

● Dns.Resolve method queries a DNS server to map a user-friendly domain name (such as "host.contoso.com") to a numeric

Internet address (such as 192.168.1.1).

○ IPHostEntry ipHostInfo = Dns.Resolve("host.contoso.com");

IPAddress ipAddress = ipHostInfo.AddressList[0];

https://docs.microsoft.com/en-us/dotnet/framework/network-programming/using-client-sockets
https://docs.microsoft.com/en-us/dotnet/api/system.net.endpoint
https://docs.microsoft.com/en-us/dotnet/api/system.net.dns
https://docs.microsoft.com/en-us/dotnet/api/system.net.dns.resolve

Synchronous Communication https://docs.microsoft.com/en-us/dotnet/framework/network-programming/using-client-sockets

try {

 s.Connect(ipe);

} catch(ArgumentNullException ae) {

 Console.WriteLine("ArgumentNullException : {0}", ae.ToString());

} catch(SocketException se) {

 Console.WriteLine("SocketException : {0}", se.ToString());

} catch(Exception e) {

 Console.WriteLine("Unexpected exception : {0}", e.ToString());

}

https://docs.microsoft.com/en-us/dotnet/framework/network-programming/using-client-sockets

Synchronous Communication
https://docs.microsoft.com/en-us/dotnet/framework/network-programming/using-a-synchronous-client-socket

● Suspends execution.

● Not suitable for heavy usage if not used in a separate thread.

● Use Send and SendTo which receive a byte stream.

○ byte[] msg = System.Text.Encoding.ASCII.GetBytes("This is a test");

int bytesSent = s.Send(msg);

● Call Shutdown() and then close() method in the end to release both sockets.

○ s.Shutdown(SocketShutdown.Both);

s.Close();

https://docs.microsoft.com/en-us/dotnet/framework/network-programming/using-a-synchronous-client-socket
https://docs.microsoft.com/en-us/dotnet/api/system.net.sockets.socket.send
https://docs.microsoft.com/en-us/dotnet/api/system.net.sockets.socket.sendto

Asynchronous Communication
https://docs.microsoft.com/en-us/dotnet/framework/network-programming/using-an-asynchronous-client-socket

● Does not suspend execution.

● Creates a thread in background.

● Suitable for heavy usage.

● Requires a callback which is called when the response from the server is available.

● Use BeginConnect()

○ public static void Connect(EndPoint remoteEP, Socket client) {

 client.BeginConnect(remoteEP,

 new AsyncCallback(ConnectCallback), client);

 connectDone.WaitOne(); //ManualResetEvent

}

●

https://docs.microsoft.com/en-us/dotnet/framework/network-programming/using-an-asynchronous-client-socket
https://docs.microsoft.com/en-us/dotnet/api/system.net.sockets.socket.beginconnect?view=netframework-4.7.2

Asynchronous Communication
https://docs.microsoft.com/en-us/dotnet/framework/network-programming/using-an-asynchronous-client-socket

private static void ConnectCallback(IAsyncResult ar) {

 try {

 // Retrieve the socket from the state object.

 Socket client = (Socket) ar.AsyncState;

 // Complete the connection.

 client.EndConnect(ar);

 Console.WriteLine("Socket connected to {0}",

 client.RemoteEndPoint.ToString());

 // Signal that the connection has been made.

 connectDone.Set();

 } catch (Exception e) {

 Console.WriteLine(e.ToString());

 }

}

https://docs.microsoft.com/en-us/dotnet/framework/network-programming/using-an-asynchronous-client-socket

Asynchronous Communication
https://docs.microsoft.com/en-us/dotnet/framework/network-programming/using-an-asynchronous-client-socket

private static void Send(Socket client, String data) {

 // Convert the string data to byte data using ASCII encoding.

 byte[] byteData = Encoding.ASCII.GetBytes(data);

 // Begin sending the data to the remote device.

 client.BeginSend(byteData, 0, byteData.Length, SocketFlags.None,

 new AsyncCallback(SendCallback), client);

}

https://docs.microsoft.com/en-us/dotnet/framework/network-programming/using-an-asynchronous-client-socket

Asynchronous Communication
https://docs.microsoft.com/en-us/dotnet/framework/network-programming/using-an-asynchronous-client-socket

private static void SendCallback(IAsyncResult ar) {

 try {

 // Retrieve the socket from the state object.

 Socket client = (Socket) ar.AsyncState;

 // Complete sending the data to the remote device.

 int bytesSent = client.EndSend(ar);

 Console.WriteLine("Sent {0} bytes to server.", bytesSent);

 // Signal that all bytes have been sent.

 sendDone.Set();

 } catch (Exception e) {

 Console.WriteLine(e.ToString());

 }

}

https://docs.microsoft.com/en-us/dotnet/framework/network-programming/using-an-asynchronous-client-socket

Asynchronous Communication
https://docs.microsoft.com/en-us/dotnet/framework/network-programming/using-an-asynchronous-client-socket

private static void SendCallback(IAsyncResult ar) {

 try {

 // Retrieve the socket from the state object.

 Socket client = (Socket) ar.AsyncState;

 // Complete sending the data to the remote device.

 int bytesSent = client.EndSend(ar);

 Console.WriteLine("Sent {0} bytes to server.", bytesSent);

 // Signal that all bytes have been sent.

 sendDone.Set();

 } catch (Exception e) {

 Console.WriteLine(e.ToString());

 }

}

https://docs.microsoft.com/en-us/dotnet/framework/network-programming/using-an-asynchronous-client-socket

Asynchronous Communication
https://docs.microsoft.com/en-us/dotnet/framework/network-programming/using-an-asynchronous-client-socket

public class StateObject {

 // Client socket.

 public Socket workSocket = null;

 // Size of receive buffer.

 public const int BufferSize = 256;

 // Receive buffer.

 public byte[] buffer = new byte[BufferSize];

 // Received data string.

 public StringBuilder sb = new StringBuilder();

}

https://docs.microsoft.com/en-us/dotnet/framework/network-programming/using-an-asynchronous-client-socket

Asynchronous Communication
https://docs.microsoft.com/en-us/dotnet/framework/network-programming/using-an-asynchronous-client-socket

private static void Receive(Socket client) {

 try {

 // Create the state object.

 StateObject state = new StateObject();

 state.workSocket = client;

 // Begin receiving the data from the remote device.

 client.BeginReceive(state.buffer, 0, StateObject.BufferSize, 0,

 new AsyncCallback(ReceiveCallback), state);

 } catch (Exception e) {

 Console.WriteLine(e.ToString());

 }

}

https://docs.microsoft.com/en-us/dotnet/framework/network-programming/using-an-asynchronous-client-socket

Thanks for listening!

