TDDD49/725G66
C# and .NET

Programming

(Lecture 02)

Sahand Sadjadee
Linkoping University

Iz
5 Outline

An introduction to Camedin

A deeper look into object-oriented programming in C#
3 tier architecture

Exception handling

B wnN e

LINKOPINGS
II." UNIVERSITET

Camedin

Camedin is a tool used during the lab sessions to facilitate the assistance process.

1. Open the following link when you are in the lab room:s.
http://www.camedin.com/live/b651b7af532c43b6abf458e083a9cc27

2. Page one of the assistants by clicking on the page button.

3. Provide a complete set of information as requested upon paging.

® Try to page the assistant with the least number of students in his queue!
e No loginis required.

LINKOPINGS
II." UNIVERSITET

http://www.camedin.com/live/b651b7af532c43b6abf458e083a9cc27

Camedin

DEMO

LINKOPINGS
II." UNIVERSITET

=

Object-oriented Programming
in C#

I n h e rlta n Ce https://msdn.microsoft.com/en-us/library/ms173149.aspx

Inheritance, together with encapsulation and polymorphism, is one of the three primary characteristics (or pillars)
of object-oriented programming. Inheritance enables you to create new classes that reuse, extend, and modify the
behavior that is defined in other classes. The class whose members are inherited is called the base class, and the
class that inherits those members is called the derived class.

1. Aderived class can have only one direct base class
2. Inheritance is transitive

LINKOPINGS
II." UNIVERSITET

https://msdn.microsoft.com/en-us/library/ms173149.aspx

I n h e rlta n Ce https://msdn.microsoft.com/en-us/library/27db6csx(v=vs.90).aspx

A class can inherit from other classes and interfaces defined by the programmer itslef,
provided by the .Net framework or a third party.

Inheritance is a good choice when:
® Your inheritance hierarchy represents an "is-a" relationship and not a "has-a" relationship.

® You can reuse code from the base classes.
® You need to apply the same class and methods to different data types.
e The class hierarchy is reasonably shallow, and other developers are not likely to add many more levels.

® You want to make global changes to derived classes by changing a base class.

LINKOPINGS
II." UNIVERSITET

https://msdn.microsoft.com/en-us/library/27db6csx(v=vs.90).aspx

Inheritance- System.Object

Supports all classes in the .NET Framework class hierarchy and provides low-level services to derived classes. This is
the ultimate base class of all classes in the .NET Framework; it is the root of the type hierarchy.

https://msdn.microsoft.com/en-us/library/system.object(v=vs.110).aspx

LINKOPINGS
II." UNIVERSITET

https://msdn.microsoft.com/en-us/library/system.object(v=vs.110).aspx

1.
2.
3.
4.
5.

Inheritance- class hierarchy

Class hierarchies are defined from the general to the specific.

Be generous in defining data types and storage to avoid difficult changes later on.

Only expose items that are needed by derived classes.

Members that are only needed by derived classes should be marked as Protected.

Make sure that base class methods do not depend on Overridable members, whose functionality can be

changed by inheriting classes.

https://msdn.microsoft.com/en-us/library/6csyy24x(v=vs.90).aspx

LINKOPINGS
II." UNIVERSITET

https://msdn.microsoft.com/en-us/library/6csyy24x(v=vs.90).aspx

Inheritance- syntax

Class Creature
{
public int LifeSpan;

Class Human : Creature

{
Public void walk(int meters)
{
}

https://msdn.microsoft.com/en-us/library/6csyy24x(v=vs.90).aspx

LINKOPINGS
II." UNIVERSITET

https://msdn.microsoft.com/en-us/library/6csyy24x(v=vs.90).aspx

Inheritance- Sealed classes https://msdn.microsoft.com/en-us/library/88c54tsw.aspx

When applied to a class, the sealed modifier prevents other classes from inheriting from it.

class A {}
sealed class B : A {}

LINKOPINGS
II." UNIVERSITET

https://msdn.microsoft.com/en-us/library/88c54tsw.aspx

I nte rfa CES https://msdn.microsoft.com/en-us/library/6csyy24x(v=vs.90).aspx

® Aninterface contains definitions for a group of related functionalities that a class or a struct can implement.
e Asolution to the limitation of single inheritance in classes.

e Asolution to the limitation of no inheritance in structs.

e Aclass/struct can inherit from multiple interfaces.

e Interfaces contain abstract methods which do not have any implementation.

° Interfaces cannot be instantiated.

interface IEquatable<T> Generic interface
{ bool Equals(T obj); /
}
Class Text : IEquatable<Text>
public bool Equals(Text obj) //implementing Equals

{
}

LINKOPINGS
II." UNIVERSITET

https://msdn.microsoft.com/en-us/library/6csyy24x(v=vs.90).aspx
https://msdn.microsoft.com/en-us/library/0b0thckt.aspx
https://msdn.microsoft.com/en-us/library/ah19swz4.aspx

I nte rfa CES https://msdn.microsoft.com/en-us/library/6csyy24x(v=vs.90).aspx

e Any class or struct that implements the interface must implement all its members.

® Aclass or struct can implement multiple interfaces. A class can inherit a base class and also implement one
or more interfaces.

Interface A
{

}

Interface B
{

}

Class Base
{

}

Class Derived : Base, A, B
{

}

LINKOPINGS
II." UNIVERSITET

https://msdn.microsoft.com/en-us/library/6csyy24x(v=vs.90).aspx

Abstract cIasses/Methods _https://msdn.microsoft.com/en-us/library/k535acbf(v=vs.71).aspx

® An abstract class is a class which is declared using the keyword abstract.
® An abstract class has usually at least one abstract method.

® An abstract method is a method which does not have any implementation and is declared using the abstract
keyword.

e |tis possible to have an abstract class without any abstract methods.
e Like interfaces, abstract classes cannot be instantiated.

LINKOPINGS
II." UNIVERSITET

https://msdn.microsoft.com/en-us/library/k535acbf(v=vs.71).aspx

Virtual methods https://msdn.microsoft.com/en-us/library/aa645767(v=vs.71).aspx

Virtual methods are declared using the virtual keyword.

Unlike abstract methods, virtual methods do have an implementation but the implementation might not be
useful for the derived classes.

Virtual methods usually need to be overridden using the override keyword in the derived classes.

A base class can implement a method, inherited from an interface, using the virtual keyword. In result the
derived class can also override the inherited method from the base class,.

LINKOPINGS
II." UNIVERSITET

https://msdn.microsoft.com/en-us/library/aa645767(v=vs.71).aspx

Ove rriding VS hldlng https://msdn.microsoft.com/en-us/library/ms173153.aspx

e Concrete and non-virtual methods can only be hidden using the new keyword in the derived class.
e Concrete and Virtual methods can only be overridden by using the override keyword in the derived class.

Difference? Please check the provided link for more information?

LINKOPINGS
II." UNIVERSITET

https://msdn.microsoft.com/en-us/library/ms173153.aspx

Polymorphism(many-shaped) https://msdn.microsoft.com/en-us/library/ms173152.aspx

® At run time, objects of a derived class may be treated as objects of a base class in places such as method
parameters and collections or arrays. When this occurs, the object's declared type is no longer identical to its
run-time type.

e Base classes may define and implement virtual methods, and derived classes can override them, which
means they provide their own definition and implementation. At run-time, when client code calls the
method, the CLR looks up the run-time type of the object, and invokes that override of the virtual method.

Thus in your source code you can call a method on a base class, and cause a derived class's version of the

method to be executed.

LINKOPINGS
II." UNIVERSITET

https://msdn.microsoft.com/en-us/library/ms173152.aspx
https://msdn.microsoft.com/en-us/library/9fkccyh4.aspx
https://msdn.microsoft.com/en-us/library/ebca9ah3.aspx

Polymorphism

An array of creatures

Interface Animal{

int move (int meter); C C D C D C

Class Cat : Animal({

Public override int move (int meter)

{ Creature[] cr = new Creaturel[6];
System.Console.Write (“Cat is moving...”) Cr[0] = new Cat{();
// implementation Cr[l] = new Cat{();

= new Dog
= new Cat

Class Dog : Animal{ Cr

()
[()

[2] = new Dog();
} Cr[3] = new Cat()
[4] ()
Public override int move (int meter) [5] ()

{

System.Console.Write (“Dog is moving...”) For (int 1 =0 ;7 1 < cr.Length ; 1i++)

// implementation .
cr[i] .move() ;

LINKOPINGS
II." UNIVERSITET

Casting

Implicit conversions
Explicit conversions (casts)
User-defined conversions

Conversions with helper classes

Check the provided link for more information!

https://msdn.microsoft.com/en-us/library/ms173105.aspx

class Test

{
static void Main()
{
double x = 1234.7;
int a;
// Cast double to int.
a = (int)x;
System.Console.WriteLine(a);
}
// Output: 1234
|/===

// Create a new derived type.
Giraffe g = new Giraffe();

// Implicit conversion to base type is safe.
Animal a = g;

// Explicit conversion is required to cast back
// to derived type. Note: This will compile but will
// throw an exception at run time if the right-side

// object is not in fact a Giraffe.
LINKOPINGS
II." UNIVERSITET

Giraffe g2 = (Giraffe) a;

https://msdn.microsoft.com/en-us/library/ms173105.aspx

I S O pe ratO r https://msdn.microsoft.com/en-us/library/scekt9xw.aspx

e Checks if an object is compatible with a given type.
® Anis expression evaluates to true if the provided expression is non-null, and the provided object can be
cast to the provided type without causing an exception to be thrown.

LINKOPINGS
II." UNIVERSITET

https://msdn.microsoft.com/en-us/library/scekt9xw.aspx

Composition/Aggregation

In a composition relationship, an object holds a reference to another object. In other
words ObjectA has ObjectB.

Composition/Aggregation are considered a “has-a” relationship.

Composition and aggregation are almost similar concepts except for that a composited
object’s existence is tied with the owning object.

LINKOPINGS
II." UNIVERSITET

Class Human

{

Composition/Aggregation - example

Class Hand

Public Hand RightHand = null; ————«+ . {

Public Hand LeftHand = null;
Public Human () {
RightHand = new Hand();
LeftHand = new Hand() ;

//Notes:

// Composition or aggregation?

// No encapsulation

// No dependency injection => tight
coupling

Public Finger[] Fingers = new
Finger[5];
Public Hand ()
{
for(int i = 0; 1 <
Fingers.Length; ++1i)
{

Fingers[i] = new Finger();

Class Finger

{

- LINKOPINGS
Ilo" UNIVERSITET

E I"I Ca p S U I a t | O I"I https://msdn.microsoft.com/en-us/library/dd460654(v=vs.110).aspx

Encapsulation means that a group of related properties, methods, and other members are treated as a single
unit or object.

There shall be limited and controlled access to the fields.

Avoid using public access modifier for non-static fields.

Use properties, setter/getter methods and/or constructors for allowing access to the fields.

LINKOPINGS
II." UNIVERSITET

https://msdn.microsoft.com/en-us/library/dd460654(v=vs.110).aspx

Encapsulation

Class Human

{

private Hand RightHand = null;

private Hand LeftHand = null;

Public Human () {
RightHand = new Hand();
LeftHand = new Hand() ;

}

Public Hand GetRightHand() {
Return RightHand;

}

Public Hand GetLeftHand () {
Return LeftHand;

https://msdn.microsoft.com/en-us/library/dd460654(v=vs.110).aspx

Some points:

1. As no setters are provided then the
hands cannot be replaced and will be
permanent.

2. Properties can be used instead

LINKOPINGS
II." UNIVERSITET

https://msdn.microsoft.com/en-us/library/dd460654(v=vs.110).aspx

Dependency InjECtio https://msdn.microsoft.com/en-us/library/hh323705(v=vs.100).aspx

Dependency Injection (DI) is a design pattern that demonstrates how to create loosely coupled classes.

[J
e Anobject can be dependent on other objects or even primitive values (Composition/Aggregation)
e The dependency shall be first created and then injected into the object via the setter methods and/or the
constructors.
Example:

A car is dependent on the engine in order to move.
The engine is created first and then injected into the car in the factory.

LINKOPINGS
II." UNIVERSITET

https://msdn.microsoft.com/en-us/library/hh323705(v=vs.100).aspx

Class Human

{

private Hand RightHand = null;
private Hand LeftHand = null;
Public Human (Hand 1h, Hand, rh){
RightHand = rh;
LeftHand = 1h;
}
Public Hand GetRightHand () {
Return RightHand;

Public Hand GetLeftHand () {
Return LeftHand;

}

Main:
Fingers[] fsl = new Fingers|[5];
Fingers[] fs2 = new Fingers|[5];

Hand LeftHand = new Hand(fsl);
Hand RightHand = new Hand (fs2);
Human Sahand = new Human (LeftHand, RightHand);

//Notes:

// Composition or aggregation?

// Encapsulation and programming to interface is in place!
// Dependency Injection implemented => Loose coupling

Class Hand

_ {

Public Finger/[]

Public Hand (Fingers/[]

{

Fingers =

Class Finger

Fingers =

fs

fs)

Dependency Injection + Encapsulation = correct impl

null;

LINKOPINGS
UNIVERSITET

Programming to interface

The focus shall be on what the object does, not how it is done.

The public methods form the interface of the object.

“Interfaces” shall be used to define the interface of the object.

Interfaces contain what is going to be available to the outside

The inheriting classes override the interface and implement how the methods are
going to do the tasks.

Example:
In case of a setter method, we don’t care how the data is stored in the class. What we do
care that the setter method does the storage and the getter method retrieves the data

ithout any loss. "
without any loss II U es
oY UNIVERSITET

Boxing and un boxing https://msdn.microsoft.com/en-us/library/yz2be5wk.aspx

Boxing is the process of converting a value type to the type object or to any interface type implemented by
this value type. When the CLR boxes a value type, it wraps the value inside a System.Object and stores it on
the managed heap. Unboxing extracts the value type from the object.

Boxing is implicit; unboxing is explicit.

int 1 = 123;
// The following line boxes 1i.
object o = 1i;

Object o = 123;
i = (int)o; // unboxing

LINKOPINGS
II." UNIVERSITET

https://msdn.microsoft.com/en-us/library/yz2be5wk.aspx
https://msdn.microsoft.com/en-us/library/s1ax56ch.aspx
https://msdn.microsoft.com/en-us/library/system.collections(v=vs.110).aspx

G e I"I e rl CS https://msdn.microsoft.com/en-us/library/512aeb7t.aspx

by using a generic type parameter T you can write a single class that other client code can use without incurring the

cost or risk of runtime casts or boxing operations, as shown here:

// Declare the generic class.
public class GenericlList<T>

void Add(T input) { }

class TestGenericlList

{
private class ExampleClass { }
static void Main()
{
// Declare a list of type int.
GenericlList<int> listl = new GenericList<int>();
// Declare a list of type string.
GenericList<string> 1list2 = new GenericList<string>();
// Declare a list of type ExampleClass.
GenericlList<ExampleClass> list3 = new GenericList<ExampleClass>();
}
}

LINKOPINGS
UNIVERSITET

https://msdn.microsoft.com/en-us/library/512aeb7t.aspx

G e I"I e rl CS https://msdn.microsoft.com/en-us/library/512aeb7t.aspx

Use generic types to maximize code reuse, type safety, and performance.

The most common use of generics is to create collection classes.

The .NET Framework class library contains several new generic collection classes in the
System.Collections.Generic namespace. These should be used whenever possible instead of classes such as
ArrayList in the System.Collections namespace.

You can create your own generic interfaces, classes, methods, events and delegates.

Generic classes may be constrained to enable access to methods on particular data types.

LINKOPINGS
II." UNIVERSITET

https://msdn.microsoft.com/en-us/library/512aeb7t.aspx
https://msdn.microsoft.com/en-us/library/system.collections.generic.aspx
https://msdn.microsoft.com/en-us/library/system.collections.arraylist.aspx
https://msdn.microsoft.com/en-us/library/system.collections.aspx

System.Collections namespace

The System.Collections namespace contains interfaces and classes that define various collections of objects, such

as lists, queues, bit arrays, hash tables and dictionaries.

https://msdn.microsoft.com/en-us/library/system.collections(v=vs.110).aspx

LINKOPINGS
II." UNIVERSITET

https://msdn.microsoft.com/en-us/library/system.collections(v=vs.110).aspx

>

Three-Tier Architecture

Three-Tier Architecture

https://msdn.microsoft.com/en-us/library/windows/desktop/ms685068(v=vs.85).aspx

The three-tier architecture model, which is the fundamental framework for the logical
design model, segments an application's components into three tiers of services. These

tiers do not necessarily correspond to physical locations on various computers on a
network, but rather to logical layers of the application.

1. The presentation tier, or user services layer, gives a user access to the application.
The middle tier, or business services layer, consists of business and data rules.

3. The data tier, or data services layer, interacts with persistent data usually stored in a database or in
permanent storage.

N

LINKOPINGS
II." UNIVERSITET

https://msdn.microsoft.com/en-us/library/windows/desktop/ms685068(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/ms682280(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/ms682280(v=vs.85).aspx

Three-Tier Architecture https://msdn.microsoft.com/en-us/library/windows/desktop/ms685068(v=vs.85).aspx

LINKOPINGS
II.“ UNIVERSITET

https://msdn.microsoft.com/en-us/library/windows/desktop/ms685068(v=vs.85).aspx

Th ree'Tier ArChitectu F@ https://msdn.microsoft.com/en-us/library/windows/desktop/ms685068(v=vs.85).aspx

How Composition can help to implement
the Three-Tire architecture?

LINKOPINGS
II.“ UNIVERSITET

https://msdn.microsoft.com/en-us/library/windows/desktop/ms685068(v=vs.85).aspx

Three-Tier Architecture

https://msdn.microsoft.com/en-us/library/windows/desktop/ms685068(v=vs.85).aspx

How Composition can help to implement the Three-Tire architecture?

Some sketchings...

class Presentation

class Logic class Data
{ { {
private Logic logic = null; private Data datal null; File xml = null
public Presentation(Logic 1) public Logic (Data d) public Data(File f)

{ {
Logic = 1; Data = d;
} } }

{
Xml = f£;

Main:

Presentation p = new Presentation(new Logic(new Data(new File (“c:\temp\database.xml”))));

_— II " LINKOPINGS
Dependency injection to have loosely coupled layers! o UNIVERSITET

https://msdn.microsoft.com/en-us/library/windows/desktop/ms685068(v=vs.85).aspx

Passing data among layers/tiers

Methods:
1. Non-uniform
2. Uniform
3. DTO
4. Hybrid(DTO + Entity)

http://www.codeproject.com/Articles/493389/Four-ways-of-passing-data-between-layers
https://msdn.microsoft.com/en-us/library/ff649585.aspx

LINKOPINGS
II." UNIVERSITET

http://www.codeproject.com/Articles/493389/Four-ways-of-passing-data-between-layers
https://msdn.microsoft.com/en-us/library/ff649585.aspx

Exception Handling
(Why is it called an “Exception”?)

EXCe ptiO n h a n d I i I"Ig https://msdn.microsoft.com/en-us/library/ms173160.aspx

The C# language's exception handling features help you deal with any unexpected or exceptional situations that
occur when a program is running. Exception handling uses the try, catch, and finally keywords to try actions that
may not succeed, to handle failures when you decide that it is reasonable to do so, and to clean up resources
afterward.

Exceptions can be generated by:
e The Common Language Runtime (CLR)
e The .NET Framework
e Any third-party libraries
e The application code

LINKOPINGS
II." UNIVERSITET

https://msdn.microsoft.com/en-us/library/ms173160.aspx

EXCe ptiO n h a n d I i I"Ig https://msdn.microsoft.com/en-us/library/ms173160.aspx

Exceptions are types that all ultimately derive from System.Exception.

Use a try block around the statements that might throw exceptions.

Once an exception occurs in the try block, the flow of control jumps to the first associated exception handler that is present
anywhere in the call stack. In C#, the catch keyword is used to define an exception handler.

If no exception handler for a given exception is present, the program stops executing with an error message.

Do not catch an exception unless you can handle it and leave the application in a known state. If you catchSystem.Exception,
rethrow it using the throw keyword at the end of the catch block.

If a catch block defines an exception variable, you can use it to obtain more information about the type of exception that
occurred.

Exceptions can be explicitly generated by a program by using the throw keyword.

Exception objects contain detailed information about the error, such as the state of the call stack and a text description of the
error.

Code in a finally block is executed even if an exception is thrown. Use a finally block to release resQurces, for example to close
any streams or files that were opened in the try block. I

LINKOPINGS
I." UNIVERSITET

https://msdn.microsoft.com/en-us/library/ms173160.aspx

EXCe ptiO n h a n d I i I"Ig https://msdn.microsoft.com/en-us/library/ms173160.aspx

try
{

// Code to try goes here.
}

catch (SomeSpecificException ex)

{

// Code to handle the exception goes here.

}

catch (SomeSpecificException2 ex)

{
// Code to handle the exception goes here.

}

catch (SomeSpecificException3 ex)

{
// Code to handle the exception goes here.

}
finally

{
// Code to execute after the try (and possibly catch) blocks

// goes here. L|NKOP|NGS
J II." UNIVERSITET

https://msdn.microsoft.com/en-us/library/ms173160.aspx

Exception handling - System.Exception

The StackTrace property.

. =] Bl i
The InnerException property VEEETL APRRRRIRN

The Message property. ‘/\

The HelpLink property.

System.SystemException System.lpplicationException

!

System. StackCverflowException
System. InvalidCastException
System. IndexOutOfRangeException
System.FormatException

System. DivideEyZeroException

https://msdn.microsoft.com/en-us/library/5whzhsd2(v=vs.110).aspx

LINKOPINGS
II." UNIVERSITET

https://msdn.microsoft.com/en-us/library/system.exception.stacktrace(v=vs.110).aspx
https://msdn.microsoft.com/en-us/library/system.exception.innerexception(v=vs.110).aspx
https://msdn.microsoft.com/en-us/library/system.exception.message(v=vs.110).aspx
https://msdn.microsoft.com/en-us/library/system.exception.helplink(v=vs.110).aspx
https://msdn.microsoft.com/en-us/library/5whzhsd2(v=vs.110).aspx

Exception handling - creating user-defined exceptions

Inherit from ApplicationException or Exception.
Each layer or component has its own problems and shall have a set of custom designed exceptions.
Exceptions are used for controlling the execution flow, upon a problem, and passing some information about

the occurred exception.

https://msdn.microsoft.com/en-us/library =

[UNIVERSITET

https://msdn.microsoft.com/en-us/library/87cdya3t(v=vs.110).aspx

Exception handling - creating user-defined exceptions

using System;

public class EmployeelistNotFoundException: Exception

{
public EmployeelistNotFoundException()
{
}
public EmployeelListNotFoundException(string message)
: base(message)
{
}
public EmployeelListNotFoundException(string message, Exception inner)
: base(message, inner)
{
}
}

https://msdn.microsoft.com/en-us/library/87cdya3t(v=vs.110).aspx

LINKOPINGS
II." UNIVERSITET

https://msdn.microsoft.com/en-us/library/87cdya3t(v=vs.110).aspx

Exception handling - Three-Tier architecture

http://www.codeproject.com/Articles/85569/Exception-Handling-in-Tier-Architecture

LINKOPINGS
II." UNIVERSITET

http://www.codeproject.com/Articles/85569/Exception-Handling-in-Tier-Architecture

L

\

Thanks for listening!

LINKOPINGS
II." UNIVERSITET

