Linköping University

Automated Planning

Planning under Uncertainty

Jonas Kvarnström
Department of Computer and Information Science Linköping University

Restritted State Transition System

- Recall the classical state transition system $\Sigma=(S, A, \gamma)$
- $S=\left\{s_{0}, s_{1}, \ldots\right\}$:
- $A=\left\{a_{0}, a_{1}, \ldots\right\}:$
- $\gamma: S \times \mathrm{A} \rightarrow 2^{\mathrm{S}}$:
- If $\gamma(s, a)=\left\{s^{\prime}\right\}$, then whenever you are in state s, you can execute action a and you end up in state s '
- If $\gamma(s, a)=\emptyset$ (the empty set), then a cannot be executed in s

Often we also add a cost function:

$$
\mathbf{c}: S \times A \rightarrow \mathbb{R}
$$

Classical Planning Problem

- Recall the classical planning problem
- Let $\Sigma=(S, A, \gamma)$ be a state transition system satisfying the assumptions A0 to A7 (called a restricted state transition system in the book)
- Let $s_{0} \in S$
- Let $S_{g} \subseteq S$ be the initial state
be the set of goal states
- Then, find a sequence of transitions labeled with actions [$a_{1}, a_{2}, \ldots, a_{n}$] that can be applied starting at s_{0} resulting in a sequence of states $\left[\mathrm{s}_{1}, \mathrm{~s}_{2}, \ldots, \mathrm{~s}_{\mathrm{n}}\right.$] such that $\mathrm{s}_{\mathrm{n}} \in \mathrm{S}_{\mathrm{g}}$

Planning with Complete Information

- This assumes we know in advance:
- The state of the world when plan execution starts
- The outcome of any action, given the state where it is executed
- State + action \rightarrow unique resulting state
- Solution exists \rightarrow Unconditional solution exists

Planning

Model says: we end up in this specific state!

Start
here...

Execution

No new information can be relevant (at least in theory!)

Just follow the unconditional plan...

Multiple Outcomes

- In reality, actions may have multiple outcomes
- Some outcomes can indicate faulty / imperfect execution
- pick-up(object)

Intended outcome: carrying(object) is true
Unintended outcome: carrying(object) is false

- move(100,100)

Intended outcome: $\quad x p o s(r o b o t)=100$
Unintended outcome: \quad xpos(robot) $!=100$

- jump-with-parachute

Intended outcome: alive is true
Unintended outcome: alive is false

- Some outcomes are more random, but clearly desirable / undesirable

To a planner, there is generally no difference between these cases!

- Pick a present at random - do I get the one I longed for?
- Toss a coin - do I win?
- Sometimes we have no clear idea what is desirable
- Outcome will affect how we can continue, but in less predictable ways

Non-Deterministic Planning

Nondeterministic Planning

- Nondeterministic planning:
- $S=\left\{s_{0}, s_{1}, \ldots\right\}$:
- $A=\left\{a_{0}, a_{1}, \ldots\right\}:$
- $\gamma: S \times A \rightarrow 2^{S}:$

Finite set of world states
Finite set of actions
State transition function, where $|\gamma(s, a)|$ is finite

Planning

Model says: we end up in one of these states

Start

Execution

Will we find out more when we execute?

FOND Planning

- FOND: Fully Observable Non-Deterministic
- After executing an action, sensors determine exactly which state we are in

Planning

Model says: we end up in one of these states

Start here...

A1

FOND Planning: Plan Structure (1)

- Example state transition system:

- Intuitive strategy:
- while (not in s2) \{ move-to(pos2); if (fallen) stand-up; \}

FOND \rightarrow The action to execute should depend on the current state, which depends on previous outcomes

There may be no upper bound on how many actions we may have to execute!

FOND Plamning: Plan Structure (2)

- Examples of formal plan structures:
- Conditional plans (with if/then/else statements)
- Policies $\pi: S \rightarrow A$
- Defining, for each state, which action to execute whenever we end up there
- $\pi(s 0)=$ move-to(pos2)
- $\pi(s 1)=$ stand-up
- $\pi(s 2)=$ wait
- $\pi(s 3)=$ stand-up

Solution Types 1

- Assume our objective is still to reach a state in S_{g}
- And then remain there (executing "wait" actions forever)
- A policy never terminates...
- A weak solution:

For some outcomes, the goal is reached in a finite number of steps

- $\pi(s 0)=$ move-to(pos2)
- $\pi(s 1)=$ wait
- $\pi(s 2)=$ wait
- $\pi(s 3)=$ stand-up

Initial state s 0 : at posl, standing

Solution Types 2

- Assume our objective is still to reach a state in S_{g}
- A strong solution:

For every outcome, the goal is reached in a finite number of steps

- Not possible for this example problem
- Could fall every time

Solution Types 3

- Assume our objective is still to reach a state in S_{g}
- A strong cyclic solution will reach a goal state in a finite number of steps given a fairness assumption:
Informally, "if we can exit a loop, we eventually will"
- $\pi(s 0)=$ move-to(pos2)
- $\pi(s 1)=$ stand-up
- $\pi(s 2)=$ wait
- $\pi(s 3)=$ stand-up

Solutions and Costs

- The cost of a FOND policy is undefined
- We don't know in advance which actions we must execute
- And we have no estimate of how likely different outcomes are

NOND Planning

- NOND: Non-Observable Non-Deterministic
- Also called conformant non-deterministic
- Only predictions can guide us - no sensors to use during execution
- May still give sufficient information for solving a problem

Planning
Model says: we end up in one of these states

Start here...

Execution

We still only know that we're in one of these states

Start here...

POND Planning

- POND: Partially Observable Non-Deterministic

Execution

We know we ended up in one of these states

Start here...

Non-Observable:
No information gained after action

Fully Observable: Exact outcome known after action

Partially Observable: Some information gained after action

Deterministic: Exact outcome known in advance

Non:

deterministic: Multiple outcomes, no probabilities

Classical planning (possibly with extensions)
Information dimension is meaningless!

NOND:

Conformant Planning

FOND:

Conditional (Contingent) Planning

POND:

Partially Observable, Non-Deterministic

We will not discuss non-deterministic planning algorithms!

Probabilistic Planning:

Defining the World as a Stochastic System

Stochastic Systems

- Probabilistic planning uses a stochastic system $\Sigma=(S, A, P)$
- $S=\left\{s_{0}, s_{1}, \ldots\right\}$:
- $A=\left\{a_{0}, a_{1}, \ldots\right\}:$
- $P\left(s, a, s^{\prime}\right)$:

Finite set of world states
Finite set of actions
Given that we are in s and execute a, the probability of ending up in s '

- For every state s and action a, we have $\sum_{s^{\prime} \in S} P\left(s, a, s^{\prime}\right)=1$: The world gives us 100% probability of ending up in some state

Planning

Model says: we end up
in one of these states
Start
here...

Stochastic Systems (2)

Example with "desirable outcome"

Stochastic Systems (3)

- May have very unlikely outcomes...

Very unlikely, but may still be important to consider, if it has great impact on goal achievement!

Stochastic Systems (4)

Uncertain how much fuel will be consumed

S125,203
At location 5 Fuel level 980

S125,104
At location 6
Fuel level 650

S125,204
At location 6 Fuel level 750

S125,222
Intermediate
location

As always, one state for every combination of properties

S247,129
Broken

Stochastic Systems (5)

- Like before, often many executable actions in every state

Stochastic System Example

- Example: A single robot
- Moving between 5 locations
- For simplicity, states correspond directly to locations
- s1: at(r1, l1)
- s2: at(r1, 12)
- s3: at(r1, l3)
- s4: at(r1, 14)
- s5: at(r1, 15)

- Some transitions are deterministic, some are stochastic
- Trying to move from 12 to 13 :You may end up at 15 instead (20% risk)
- Trying to move from 11 to 14 :You may stay where you are instead (50\% risk)

Non-Observable:
 No information gained after action

Partially Observable:
Some information gained after action

Deterministic:
Exact outcome known in advance

Non-deterministic:
Multiple outcomes, no probabilities

Probabilistic:

Multiple outcomes with probabilities

Classical planning (possibly with extensions)
Information dimension is meaningless!

NOND:		
Conformant Planning	FOND: Conditional (Contingent) Planning	POND: Partially Observable, Non-Deterministic
Probabilistic Conformant Planning	Probabilistic Conditional Planning	Partially Observable MDPs (POMDPs)
(Non-observable MDPs: Special case of POMDPs)	Stochastic Shortest Path Problems	
	Markov Decision Processes (MDPs)	
	To be discussed now!	

Fully Observable Probabilistic Planning: Policies and Histories

Important concepts, before we define the planning problem itself!

Policy Example 1

- Example 1
- $\quad \pi 1=\{(s 1$, move(11,12$)$), (s2, move(12,13)), (s3, move(l3,14)), (s4, wait), (s5, wait)\}

Reaches $s 4$ or $s 5$, waits there infinitely many times

Polity Example 2

- Example 2
- $\quad \pi 2=\{(s 1, \operatorname{move}(11,12))$,

$$
\begin{aligned}
& \text { (s2, move(12,13)), } \\
& (s 3, \operatorname{move}(13,14)), \\
& \text { (s4, wait), } \\
& \text { (s5, move(15,14))\} }
\end{aligned}
$$

Always reaches state $\mathbf{s 4}$, waits there infinitely many times

Polity Example3

- Example 3
- $\quad \pi 3=\{(\mathbf{s} 1$, move $(\mathbf{1 1}, \mathbf{1 4})$), (s2, move(12,11)),
(s3, move(13,14)),
(s4, wait),
(s5, move(15,14)\}

Reaches state s 4 with 100\% probability "in the limit"
(it could happen that you never reach 54 , but the probability is 0)

Policies and Histories

- The outcome of sequentially executing a policy:
- A state sequence, called a history
- Infinite, since policies do not terminato
- $h=\left\langle s_{0}, s_{1}, s_{2}, s_{3}, s_{4}, \ldots\right\rangle$
- For classical planning:
s_{0} (index zero): Variable used in histories, etc
$s 0$: concrete state name used in diagrams
We may have $s_{0}=s 27$
- A plan yields a single history (last state repeated infinitely), known in advance
- For probabilistic planning:
- We may not know the initial state with certainty
- For every state s, there will be a probability $P(s)$ that we begin in the state s
- Actions can have multiple outcomes
$-\rightarrow$ A policy can yield many different histories
- Which one? Gradually discovered at execution time!

History Example 1

- Even if we only consider starting in s1:Two possible histories
- $h_{1}=\langle s 1, s 2, s 3, s 4, s 4, \ldots\rangle \quad-$ Reached $s 4$, waits indefinitely
$h_{2}=\langle\mathrm{s} 1, \mathrm{~s} 2, \mathrm{~s} 5, \mathrm{~s} 5 \ldots\rangle \quad-$ Reached s 5 , waits indefinitely
How probable are these histories?

Probabilities: Initial States, Transitions

- Each policy has a probability distribution over histories/outcomes
- With unknown initial state:
- $P\left(\left\langle\boldsymbol{s}_{0}, \boldsymbol{s}_{1}, \boldsymbol{s}_{2}, \boldsymbol{s}_{3}, \ldots\right\rangle \mid \pi\right)=$ $P\left(s_{0}\right) \cdot \prod_{i \geq 0} P\left(s_{i}, \pi\left(s_{i}\right), s_{i+1}\right)$

Probabilities
for each required state transition
Probability of starting in this specific S_{0}

- The book:
- Assumes you start in a known state s_{0}
- So all histories start with the same state
- $\boldsymbol{P}\left(\left\langle\mathbf{s}_{\mathbf{0}}, \mathbf{s}_{\mathbf{1}}, \mathbf{s}_{\mathbf{2}}, \mathbf{s}_{\mathbf{3}}, \ldots\right\rangle \mid \boldsymbol{\pi}\right)=\prod_{\mathbf{i} \geq \mathbf{0}} \boldsymbol{P}\left(\boldsymbol{s}_{\boldsymbol{i}}, \boldsymbol{\pi}\left(\boldsymbol{s}_{\boldsymbol{i}}\right), \boldsymbol{s}_{\boldsymbol{i}+\mathbf{1}}\right)$ if s_{0} is the known initial state $\boldsymbol{P}\left(\left\langle\mathbf{s}_{\mathbf{0}}, \mathbf{s}_{\mathbf{1}}, \mathbf{s}_{\mathbf{2}}, \mathbf{s}_{\mathbf{3}}, \ldots\right\rangle \mid \boldsymbol{\pi}\right)=\mathbf{0} \quad$ if s_{0} is any other state

History Example 1

- Two possible histories, if $P(s 1)=1$:
- $h_{1}=\langle s 1, s 2, s 3, s 4, s 4, \ldots\rangle-P\left(h_{1} \mid \pi_{1}\right)=1 \times 1 \times 0.8 \times 1 \times \ldots=0.8$
$h_{2}=\langle\mathrm{s} 1, \mathrm{~s} 2, \mathrm{~s} 5, \mathrm{~s} 5 \ldots\rangle \quad-P\left(h_{2} \mid \pi_{1}\right)=1 \times 1 \times 0.2 \times 1 \times \ldots=0.2$
$-P\left(h \mid \pi_{1}\right)=1 \times 0=0$ for all other h

History Example 2

Example 2

- $\quad \pi 2=\{(s 1$, move(11,12$))$, (s2, move(12,13)), (s3, move(l3,14)), wait (s4, wait), (s5, move($\mathbf{1 5 , 1 4)}$)\}

- $h_{1}=\langle s 1, s 2, \mathrm{~s} 3, \mathrm{~s} 4, \mathrm{~s} 4, \ldots\rangle \quad P\left(h_{1} \mid \pi_{2}\right)=1 \times 1 \times 0.8 \times 1 \times \ldots=0.8$ $h_{3}=\langle\mathrm{s} 1, \mathrm{~s} 2, \mathrm{~s} 5, \mathrm{~s} 4, \mathrm{~s} 4, \ldots\rangle \quad P\left(h_{3} \mid \pi_{2}\right)=1 \times 1 \times 0.2 \times 1 \times \ldots=0.2$ $P\left(h \mid \pi_{2}\right)=1 \times 0$ for all other h

History Example3

- Example 3
- $\quad \pi 3=\{(\mathbf{s} 1$, move $(\mathbf{1 1}, \mathbf{1 4})$), (s2, move(12,11)), (s3, move(13,14)), wait (s4, wait), (s5, move(15,14)\}

- $h_{4}=\langle s 1, s 4, s 4, \ldots\rangle$
$h_{5}=\langle s 1, s 1, s 4, s 4, \ldots\rangle$
$h_{6}=\langle s 1, s 1, s 1, s 4, s 4, \ldots\rangle$
$h_{\infty}=\langle\ddot{s} 1, s 1, s 1, s 1, s 1, s 1, \ldots\rangle P\left(h_{\infty} \mid \pi_{3}\right)=0.5 \times 0.5 \times 0.5 \times 0.5 \times 0.5 \times \ldots=0$

Costs and Expected Costs

Cost of an Action

- Part of the specification: A cost function $\mathrm{c}(s, a)$
- Representing the known cost of executing a in state s
- $c(s, a)=1$ for each "horizontal" action
- $c(s, a)=100$ for each "vertical" action: Far away, difficult, ...
- $c(s$, wait $)=1$

Cost of a History

- Assume as given:
- A policy π
- An outcome, an infinite history $h=\left\langle s_{0}, s_{1}, \ldots\right\rangle$ resulting from executing π
- We can then calculate the cost of execution for the given history / outcome:

$$
\mathrm{C}(h \mid \pi)=\sum_{i \geq 0} c\left(s_{i}, \pi\left(s_{i}\right)\right)
$$

Given what happened, this is how much it cost us!

"Cost of history given policy":
Using the same actions in different states \Rightarrow different cost! Using other actions to reach the same states \rightarrow different cost!

Expected Cost of a Policy

- We want to choose a good = "cheap" policy
- Actual cost depends on outcome, which we can't choose
- For each possible history (outcome), we can calculate:
- The probability that the history will occur
- The resulting cost
- So: calculate the statistically expected cost (\sim "average" cost) for the entire policy:

$$
E_{C}(\pi)=\sum_{h \in\{\text { all possible histories for } \pi\}} P(h \mid \pi) C(h \mid \pi)
$$

- Later, we will calculate costs without the need to explicitly find all histories - examples then!

Stochastic Shortest Path Problems

Stochastic Shortest Path Problem

- Closest to classical planning: Stochastic Shortest Path Problem
- Let $\Sigma=(S, A, P)$ be a stochastic system
- Let $c:(S, A) \rightarrow R$ be a cost function
- Let $s_{0} \in S$ be an initial state
- Let $S_{g} \subseteq S \quad$ be a set of goal states
- Then, find a policy of minimal expected cost that can be applied starting at s_{0} and that reaches a state in S_{g} with probability 1

Stochastic outcomes \rightarrow
only expected costs can be calculated

Probability 1: "Infinitely unlikely" that we don't reach a goal state

SSPP: Termination?

- But policies never terminate!
- Even in a goal state, $\pi(s)$ specifies an action to execute
- Histories are infinitely long
- \rightarrow Cost calculations include infinitely many actions!
- Why define policies this way, when we do want to stop at the goal?
- We are using more general "machinery" that is also used for non-terminating execution!

SSPP: Absorbing Goal State

- How to solve the problem?
- Make every goal state g absorbing - state s4 below
- For every action a,

$$
\begin{aligned}
& P(g, a, g)=1 \rightarrow \text { returns to the same goal state (we'll stop anyway) } \\
& c(g, a)=0 \quad \rightarrow \text { no more cost accumulates }
\end{aligned}
$$

- Solve the problem using general methods, generate a policy
- How to execute?
- Follow the policy
- When you reach a goal state, stop!

Utility Functions and SSPP

- The SSPP:
- Strictly positive action cost (>0) except in goal states (=0)
- If infinite history h visits a goal state, it consists of:
- Finitely many actions of finite positive cost
- Followed by infinitely many actions of cost 0
- \rightarrow Finite total cost
- If infinite history h does not visit a goal state:
- Infinitely many actions of strictly positive cost
- \rightarrow Infinite total cost

Policy π has finite expected cost $\stackrel{\rightharpoonup}{7}$
π visits a goal state with probability 1 \rightarrow
π solves the SSPP

- If any history that does not visit a goal state has non-zero probability:

$$
E_{C}(\pi)=\sum_{h \in\{\text { all possible histories for } \pi\}} P(h \mid \pi) C(h \mid \pi)=\infty
$$

Stochastic Shortest Path Problems: Domain Examples

Action Representations and PPDDL

- Action representations:
- The book only deals with the underlying semantics: "Unstructured" probability distribution $P\left(s, a, s^{\prime}\right)$
- Several "convenient" representations possible, such as Bayes networks, probabilistic operators
- Probabilistic PDDL: new constructs for effects, initial state
- (probabilistic $p_{1} e_{1} \ldots p_{\mathrm{k}} e_{\mathrm{k}}$)
- Effect e_{1} takes place with probability p_{1}, etc.
- Sum of probabilities $=s \leq 1$ ($s<1 \rightarrow$ with probability $1-s$, nothing happens)

Tire World

- Tire may go flat - good idea to load a spare from the start...
- (:action move-car :parameters (?from - location ?to - location)
:precondition (and (vehicle-at ?from) (road ?from ?to) (not (flattire)))
:effect (and (vehicle-at ?to) (not (vehicle-at ?from)) (increase (cost) 1) (probabilistic . 15 (flattire))))
- (:action changetire
:precondition (and (vehicle-has-spare) (flattire)) :effect (and (increase (cost) 1) (not (vehicle-has-spare)) (not (flattire))))
- (:action loadspare :parameters (?loc - location)
:precondition (and (vehicle-at ?loc) (spare-at ?loc) (not (vehicle-has-spare)))
:effect (and (vehicle-has-spare) (not (spare-at ?loc))
Spares have a cost, but you may still want to (increase (cost) 1))) load one to handle potential flat tires

Variation of SSPP:

 Achieve a goal, be at X , at minimum expected cost
You can bring one spare tire, but what if you need more?

Some locations provide spare tires affects where you should go in the road network

- (:action callAAA
:precondition (flattire) :effect (and (increase (cost) 100)
(not (flattire)))) :effect (and (increase (cost) 100)
(not (flattire))))

Can manage without a spare, but then you must call the AAA (tow truck) which is expensive

SSPP variations

- A variation of the Stochastic Shortest Path Problem:
- Let $\Sigma=(S, A, P)$ be a stochastic system
- Let $s_{0} \in S$ be an initial state
- Let $S_{g} \subseteq S \quad$ be a set of goal states
- (Ignore the cost function)
- Then, find a policy (not "of minimal expected cost") that can be applied starting at s_{0} and that reaches a state in S_{g} with maximum probability

Representation Example: PPDDL

- Bomb-and-toilet problem
- (define (domain bomb-and-toilet)
(:requirements :conditional-effects :probabilistic-effects)
(:predicates (bomb-in-package ?pkg) (toilet-clogged) (bomb-defused))
(:action dunk-package
:parameters (?pkg)
:effect (and

```
First, a "standard" effect
```

(when (bomb-in-package ?pkg) (bomb-defused))
(probabilistic 0.05 (toilet-clogged)))))

- (define (problem bomb-and-toilet)

5\% chance of toilet-clogged, 95% chance of no effect
(:domain bomb-and-toilet)
(:requirements :negative-preconditions)
(:objects package1 package2)
(:init (probabilistic 0.5 (bomb-in-package package1)
0.5 (bomb-in-package package2)))
(:goal (and (bomb-defused) (not (toilet-clogged)))))

Probabilistic initial state
Goal - no plan guarantees satisfaction; might maximize probability

- (define (problem climber-problem) (:domain climber)
(:init (on-roof) (alive) (ladder-on-ground)) (:goal (and (on-ground) (alive))))
- (define (domain climber) (:requirements :typing :strips :probabilistic-effects) (:predicates (on-roof) (on-ground) (ladder-raised) (ladder-on-ground) (alive))
- (:action climb-without-ladder :parameters () :precondition (and (on-roof) (alive)) :effect (and (not (on-roof)) (on-ground)
(probabilistic 0.4 (not (alive)))))
- (:action climb-with-ladder :parameters () :precondition (and (on-roof) (alive) (ladder-raised)) :effect (and (not (on-roof)) (on-ground)))
- (:action call-for-help :parameters () :precondition (and (on-roof) (alive) (ladder-on-ground)) :effect (and (not (ladder-on-ground)) (ladder-raised))))
;; Sylvie Thiébaux + Iain Little
You are stuck on a roof because the ladder you climbed up on fell down.

There are plenty of people around; if you call out for help someone will certaintly lift the ladder up again.

Or you can try the climb down without it.

You aren't a very good climber though, so there is a 40% chance that you will fall and break your neck if you go it alone.

What do you do?

Exploding Blocks World

- When you stack/putdown an undetonated block:
- 30% probability that it detonates, destroying what is below it
- (:action put-down-block-on-table :parameters (?b - block) :precondition (and (holding ?b) (not (destroyed-table))) :effect (and (not (holding ?b))

```
(ontable ?b)
(when (not (detonated ?b))
                                    (probabilistic . 3 (and (detonated ?b)
                                    (destroyed-table))
```

))))

- Solutions use unneeded blocks as potential "sacrifices"
- Repeat placing required blocks there until they detonate, destroying the unneeded blocks
- Ordering is important: Some unneeded blocks are not clear, must be freed
- Strategy of replanning after unexpected events won't work: Needed blocks are gone!
- https://www.aaai.org/Papers/JAIR/Vol24/JAIR-242I.pdf

Beyond SSPP:

Rewards for Indefinite Execution

Generalizating from the SSPP

- We have defined the Stochastic Shortest Path Problem
- Similar to the classical planning problem, but adapted to probabilistic outcomes
- But policies allow indefinite execution
" No predetermined termination criterion - go on "forever"
- Can we exploit this fact to generalize from SSPPs?

Yes - remove the goal states, assume no termination

But without goal states, what is the objective?

Goals $\boldsymbol{\rightarrow}$ Rewards

- How to determine what's a good policy?
- Introduce rewards that can be accumulated during execution!
- Reward function $\underline{R\left(s, a, s^{\prime}\right)}$
- Reward gained for being in s, executing action a and ending up in s^{\prime}
- Can be negative!

Rewards: Robot Navigation

- Example:
- The robot does not "want to reach s4"
- It wants to execute actions to gain rewards
- Every time step it is in s5:
- Negative reward - maybe the robot is in our way
- Every time step it is in s4:
- Positive reward maybe it helps us and "gets a salary"

Rewards: Grid World

- Example: Grid World
- Actions: North, South,West, East, NorthWest, ...
- Associated with a cost
- 90% probability of doing what you want
- 10\% probability of moving to another cell
- Rewards in some cells
- $R\left(s, a, s^{\prime}\right)=+100$ for transitions where you end up in the top right cell
- Danger in some cells
- $R\left(s, a, s^{\prime}\right)=-200$ for transitions where you end up in the neighbor cell
- The same action may give +100 , may give -200 !

				$+100$
		$+50$		

States, not Locations

- Important: States != locations

Reward given:

A person who wants to move is allowed to board

elevator-at(floor3) person-at(p1, floor3) wants-to-move(p1)	

Can't "cycle" to receive the same award again:
No path leads back to this state

> elevator-at(floor3) person-onboard $(\mathrm{p} 1)$ wants-to-move $(\mathrm{p} 1)$

Can't stay in the same state and "accumulate rewards":

Must execute an action, which always leads to a new state

Simplification

- To simplify formulas, include the cost in the reward!
- Decrease each $R\left(s_{i}, \pi\left(s_{i}\right), s_{i+1}\right)$ by $C\left(s_{i}, \pi\left(s_{i}\right)\right)$

$$
\begin{gathered}
C(s 0, \text { takeoff })=80 \\
R(s 0, \text { takeoff, } 1)=200 \\
R(s 0, \text { takeoff, } s 2)=-100
\end{gathered}
$$

$R(s 0$, takeoff, $s 1)=120$
$R(s 0$, takeoff, $s 2)=-180$

Utility Functions and Discount Factors

Utility Functions

- Cost \rightarrow reward, cost function \rightarrow utility function
- Suppose a policy has one particular outcome
\rightarrow results in one particular history (state sequence)
" How "useful / valuable" is this outcome to us? What is our reward?
- First: Un-discounted utility
- $h=\left\langle s_{0}, s_{1}, \ldots\right\rangle \rightarrow V(h \mid \pi)=\sum_{i \geq 0} R\left(s_{i}, \pi\left(s_{i}\right), s_{i+1}\right)$

Un-discounted utility of history h given policy π

Utility in a Context

Policy = solution for infinite horizon

Considers all possible infinite histories (as defined earlier)

(Infinite execution)

Never ends - unrealistic; we don't have to care about this!
"Goal-based" execution (SSPP)
Execute until we achieve a goal state Solution guarantees:
History has finitely many actions of cost>0

Now: Indefinite execution

No predefined stop criterion

We will stop at some point (the universe will end), but we can't predict when

A history can have infinitely many actions of reward >0, and there is no clear cut-off point!

Infinite Undiscounted Utility

- Leads to problems:
- π_{1} could result in $h_{1}=\langle s 1, s 2, s 3, s 4, s 4, \ldots\rangle$
- Using undiscounted utility:
$V\left(h_{1} \mid \pi_{1}\right)=(-100)+(-1)+(-100)+100+100+100+100+100+\ldots$
- Stays at s4 forever, executing "wait"
\rightarrow infinite amount of rewards!

Infinite Undiscounted Utility (2)

- What's the problem, given that we "like" being in state s4?
- We can't distinguish between different ways of getting there!
- $s 1 \rightarrow \mathrm{~s} 2 \rightarrow \mathrm{~s} 3 \rightarrow \mathrm{~s} 4: \quad-201+\infty=\infty$
- $s 1 \rightarrow \mathrm{~s} 2 \rightarrow_{\mathrm{s}} 1 \rightarrow \mathrm{~s} 2 \rightarrow_{\mathrm{s} 3} \rightarrow_{\mathrm{s} 4:}-401+\infty=\infty$
- Both appear equally good...

Discounted Utility

- Solution: Use a discount factor, γ, with $0 \leq \gamma \leq 1$
- To avoid infinite utilities $V(\ldots)$
- To model "impatience":
rewards and costs far in the future are less important to us
- Discounted utility of a history:
- $V(h \mid \pi)=\sum_{i \geq 0} \gamma^{i} R\left(s_{i}, \pi\left(s_{i}\right), s_{i+1}\right)$
- Distant rewards/costs have less influence
- Convergence (finite results) is guaranteed if $0 \leq \gamma<1$

Examples will use $\gamma=0.9$
Only to simplify formulas! Should choose carefully...

Discounted Utility (2)

- Why γ^{i} and not (for example) $\frac{1}{i^{2}}$?

Different factors \rightarrow need a unique starting point to know where you are

Same factor \Rightarrow doesn't matter where you start
\Rightarrow The best action to take doesn't depend on how many actions you already took

Example

$$
\begin{aligned}
\pi_{1}=\{ & (s 1, \operatorname{move}(11,12)), \\
& (s 2, \operatorname{move}(12,13)), \\
& (\mathrm{s} 3, \text { move}(13,14)), \\
& (s 4, \text { wait }) \\
& (s 5, \text { wait })\}
\end{aligned}
$$

Given that we start in sl , π_{1} can lead to only two histories: 80\% chance of history hl, 20\% chance of history h2
$\gamma=0.9$
Factors 1, 0.9, 0.81, 0.729, 0.6561...
$h_{1}=\langle s 1, s 2, s 3, s 4, s 4, \ldots\rangle$

$$
V\left(h_{1} \mid \pi_{1}\right)=.9^{0}(-100)+.9^{1}(-1)+.9^{2}(-100)+.9^{3} 100+.9^{4} 100+\ldots=547.9
$$

$h_{2}=\langle s 1, s 2, s 5, s 5 \ldots\rangle$

$$
V\left(h_{2} \mid \pi_{1}\right)=.9^{0}(-100)+.9^{1}(-1)+.9^{2}(-100)+.9^{3}(-100)+\ldots=-910.1
$$

$E\left(\pi_{1}\right)=0.8 * 547.9+0.2(-910.1)=256.3$ We expect a reward of 256.3 on average

Example

67

$$
\begin{aligned}
\pi_{2}=\{ & (s 1, \text { move }(11,12)), \\
& (\mathrm{s} 2, \text { move }(12,13)), \\
& (\mathrm{s} 3, \text { move }(13,14)), \\
& (\mathrm{s} 4, \text { wait }), \\
& (\mathrm{s} 5, \text { move }(\mathbf{1 5}, \mathbf{1 4})\}
\end{aligned}
$$

Given that we start in sl, also two different histories... 80% chance of history hl, 20\% chance of history h2
$\gamma=0.9$
Factors 1, 0.9, 0.81, 0.729, 0.6561...

$$
\begin{aligned}
& h_{1}=\langle s 1, s 2, s 3, s 4, s 4, \ldots\rangle \\
& \quad V\left(h_{1} \mid \pi_{1}\right)=.9^{0}(100)+.9^{1}(-1)+.9^{2}(-1 \\
& h_{2}=\langle s 1, s 2, s 5, s 4, s 4, \ldots\rangle \\
& V\left(h_{2} \mid \pi_{1}\right)=.9^{0}(-100)+.9^{1}(-1)+.9^{2}(- \\
& E\left(\pi_{2}\right)=0.8 * 547.9+0.2(466.9)=531,7
\end{aligned}
$$

$$
V\left(h_{1} \mid \pi_{1}\right)=.9^{0}(100)+.9^{1}(-1)+.9^{2}(-100)+.9^{3} 100+.9^{4} 100+\ldots=547.9
$$

$$
V\left(h_{2} \mid \pi_{1}\right)=.9^{0}(-100)+.9^{1}(-1)+.9^{2}(-200)+.9^{3} 100+\ldots=466.9
$$

Expected reward $53 \mathrm{I}, 7$ (Π_{1} gave 256.3)

Fully Observable Probabilistic Planning: Markov Decision Processes

- Markov Decision Processes
- Underlying world model: Stochastic system
- Plan representation:
- Goal representation:
- Planning problem:

Policy - which action to perform in any state
Utility function defining "solution quality"
Optimization: Maximize expected utility

Markov Property (1)

- If a stochastic process has the Markov Property:
- It is memoryless
- The future of the process can be predicted equally well if we use only its current state or if we use its entire history
- This is part of the definition!
- $P\left(s, a, s^{\prime}\right)$ is the probability of ending up in s^{\prime} when we are in s and execute a

> Nothing else matters!

A. A. Mapkor (1886).

Markov Property (2)

Remembering the Past

- Essential distinction:

Previous states in the history sequence:

Cannot affect the transition function

What happened at earlier timepoints:

Can partly be encoded into the current state Can affect the transition function

- Example:
- If you have visited the lectures, you are more likely to pass the exam
- Add a visitedLectures predicate / variable, representing in this state what you did in the past
- This information is encoded and stored in the current state
- State space doubles in size (and here we often treat every state separately!)
- We only have a finite number of states
\rightarrow can't encode an unbounded history

Policies and Expected Utilities: Expectations Revisited

Expected Utility

- Expected utility - similar to expected cost:
- We know the utility of each history, of each outcome
- But we can only decide a policy
- Each outcome has a probability
- So we can calculate an expected ("average") utility for the policy: $E(\pi)$

Expected Utility 2

- A policy selects actions; the world chooses the outcome

> If the policy chooses the green action, the world selects one of these outcomes
Action blue \rightarrow
world
selects outcome
Action red

$$
\rightarrow
$$

one
possible
outcome

Expected Utility 3

- We must consider all possible outcomes / histories but not all possible choices

Suppose the policy chooses green action

These outcomes must be handled!

Irrelevant to us

Expected Utility 4

- In the next step the policy again makes a choice
- Use $\pi(s 21), \pi(s 22)$ or $\pi(s 23)$ depending on where you are

Expected Utility 4

- Calculating expected utility $E(\pi)$, method I: "History-based"
- Find all possible infinite histories
- Calculate probabilities, rewards over each entire history

$$
\begin{aligned}
& <A, B, E, \ldots> \\
& <A, B, F, \ldots> \\
& <A, B, G, \ldots> \\
& <A, C, H, \ldots>
\end{aligned}
$$

$E(\pi)=\sum_{h} P(h \mid \pi) V(h \mid \pi)$ where $V(h \mid \pi)=\sum_{i \geq 0} \gamma^{i} R\left(s_{i}, \pi\left(s_{i}\right), s_{i+1}\right)$

Simple conceptually Less useful for calculations

Expected Utility 5

- Calculating expected utility, method 2: Recursive
- What's the probability of the outcomes B, C, or D ?
- What's the reward for each transition?
- What's the utility of continuing from there?

Expected Utility 6: "Step-Based"

- If π is a policy, then
- $E(\pi, s)=\sum_{s^{\prime} \in s} P\left(s, \pi(s), s^{\prime}\right) *\left(R\left(s, \pi(s), s^{\prime}\right)+\gamma E\left(\pi, s^{\prime}\right)\right)$
- The expected utility of continuing to execute π after having reached s
- Is the sum, for all possible states $s^{\prime} \in S$ that you might end up in,
of the probability $P\left(s, \pi(s), s^{\prime}\right)$ of actually ending up in that state given the action $\pi(s)$ chosen by the policy, times
the reward you get for this transition
plus the discount factor
times the expected utility $E\left(\pi, s^{\prime}\right)$ of continuing π from the new state s^{\prime}

Example 1

- $E\left(\pi_{2}, s 1\right)=$ The expected reward of executing π_{2} starting in $\underline{\mathbf{s} \mathbf{1}}$:
- Ending up in s2: 100% probability times
- Reward - 100
- Discount factor γ times $E\left(\pi_{2}, s 2\right)$

$$
\begin{aligned}
\pi_{2}=\{ & (s 1, \operatorname{move}(11,12)), \\
& (\mathrm{s} 2, \operatorname{move}(12,13)), \\
& (\mathrm{s} 3, \operatorname{move}(13,14)), \\
& (\mathrm{s} 4, \text { wait }), \\
& (\mathrm{s} 5, \operatorname{move}(15,14)\}
\end{aligned}
$$

Example 2

- $E\left(\pi_{2}, s 2\right)=$ the expected utility of executing π_{2} starting in $\underline{\mathbf{~ 2}}$:
- Ending up in s3: 80\% probability times
- Reward -1
- Discount factor γ times $E\left(\pi_{2}, s 3\right)$
- Ending up in $s 5: 20 \%$ probability times
- Reward - 1
- Discount factor γ times $E\left(\pi_{2}, s 5\right)$

$$
\begin{aligned}
\pi_{2}=\{ & (s 1, \operatorname{move}(11,12)), \\
& (\mathrm{s} 2, \operatorname{move}(12,13)), \\
& (\mathrm{s} 3, \operatorname{move}(13,14)), \\
& (\mathrm{s} 4, \text { wait }), \\
& (\mathrm{s} 5, \operatorname{move}(15,14)\}
\end{aligned}
$$

Recursive?

- Seems like we could easily calculate this recursively!
- $E\left(\pi_{2}, s 1\right)$
- defined in terms of $E\left(\pi_{2}, s 2\right)$
- defined in terms of $E\left(\pi_{2}, s 3\right)$ and $E\left(\pi_{2}, s 5\right)$
- Just continue until you reach the end!
- Why doesn't this work?

Not Recursivel

- There isn't always an "end'"
- Modified example below is a valid policy π (different action in s5)
- $E(\pi, \mathrm{~s} 1)$ defined in terms of $E(\pi, \mathrm{~s} 2)$
- $E(\pi, s 2)$ defined in terms of $E(\pi, \mathrm{~s} 3)$ and $E(\pi, \mathrm{~s} 5)$
- $E(\pi, \mathrm{~s} 3)$ defined in terms of $E(\pi, \mathrm{~s} 4)$
- $E(\pi, \mathrm{~s} 5)$ defined in terms of $E(\pi, \mathrm{~s} 2) \ldots$

Equation System

- If π is a policy, then
- $E(\pi, s)=\sum_{s^{\prime} \in s} P\left(s, \pi(s), s^{\prime}\right) *\left(R\left(s, \pi(s), s^{\prime}\right)+\gamma E\left(\pi, s^{\prime}\right)\right)$
- The expected utility of continuing to execute π after having reached s
- Is the sum, for all possible states s' $\in S$ that you might end up in,

> of the probability $P\left(s, \pi(s), s^{\prime}\right)$ of actually ending up in that state given the action $\Pi(s)$ chosen by the policy, times
the reward you get for this transition
plus the discount factor
times the expected utility $E\left(\pi, s^{\prime}\right)$ of continuing π from the new state s '

This is an equation system: $|\mathrm{S}|$ equations, $|\mathrm{S}|$ variables!

Requires different solution methods...

MDPs part 2:
 Finding Solutions

Optimality and Bellman's Principle of Optimality

Repetition:Utility

- Let us first revisit the definition of utility
- We can define the actual utility given an outcome, a history
- Given any history $\left\langle s_{0}, s_{1}, \ldots\right\rangle$:

$$
\underset{\substack{\text { Value of a history }} \underset{ }{V\left(\left\langle s_{0}, s_{1}, \ldots\right\rangle \mid \pi\right)}=\sum_{i \geq 0} \gamma^{i} R\left(s_{i}, \pi\left(s_{i}\right), s_{i+1}\right)}{\text { Discounted rewards claimed }}
$$

$$
\begin{aligned}
& \text { What happens } \\
& \text { in the future } \\
& \text { is less important } \\
& \text { expected utility } \\
& \text { != expected } \\
& \text { sum of rewards }
\end{aligned}
$$

- We can define the expected utility using the given probability distribution:
- Given that we start in state s:

$$
\begin{gathered}
E(\pi, s)=\sum_{\left\langle s_{0}, s_{1}, \ldots\right\rangle}\left(P\left(\left\langle s_{0}, s_{1}, \ldots\right\rangle \mid s_{0}=s\right) \sum_{i \geq 0} \gamma^{i} R\left(s_{i}, \pi\left(s_{i}\right), s_{i+1}\right)\right) \\
\text { All possible histories } \quad \begin{array}{c}
\text { P(that entire history, } \\
\text { when starting in s) }
\end{array} \\
\text { Discounted reward } \\
\text { for that entire history }
\end{gathered}
$$

- As we saw, we can also rewrite this recursively! Given that we start in state s:

$$
E(\pi, s)=\sum_{s^{\prime} \in S} P\left(s, \pi(s), s^{\prime}\right) \cdot\left(R\left(s, \pi(s), s^{\prime}\right)+\gamma E\left(\pi, s^{\prime}\right)\right)
$$

Maximizing Expected Utility

- Suppose that:
- We know the initial state s_{0}
- We want a policy π^{*} that maximizes expected utility: $E\left(\pi^{*}, s_{0}\right)$
- How do we find one?
- Bellman's Principle of Optimality:
- An optimal policy has the property that whatever the initial state and initial decision are, the remaining decisions must constitute an optimal policy with regard to the state resulting from the first decision!
- Richard Ernest Bellman, 1920-1984

Principle of Optimality: Example

- Suppose we start in $s 1$
- Suppose π^{*} is optimal starting in $\boldsymbol{s} 1$
- It maximizes $E\left(\pi^{*}, s 1\right)$: Expected utility starting in $s 1$
- Suppose that $\pi^{*}(s 1)=$ move $(11,12)$, so that the next state must be $s 2$
- Then π^{*} must also be optimal starting in $s 2$!
- Must maximize $E\left(\pi^{*}, s 2\right)$: Expected utility starting in $s 2$

Principle of Optimality (2)

- Sounds obvious? Depends on the Markov Property!
- Suppose rewards depended on which states you had visited before
- To go s5 $\rightarrow \mathrm{s} 4 \rightarrow \mathrm{~s} 1$:
- Use move(15,14) and move $(14,11)$
- Reward $-200+-400=-600$
- To go s4 \rightarrow s1 without having visited s5:
- Use move(14,11), same as above
- Reward for this step: 99, not -400
- \rightarrow Optimal action would ${ }^{\text {r }}$ have to take history into account
- This can't happen in an MDP: Markovian!

Consequences (1)

- To find an optimal policy π^{*} :
- No need to know the initial state s_{0} in advance:

We can find a policy that is optimal for all initial states

- Definition:

An optimal policy π^{*} maximizes expected utility for all states:
For all states s and alternative policies π,

$$
E\left(\pi^{*}, s\right) \geq E(\pi, s)
$$

- Definition:

A solution to an MDP is an optimal policy!

Consequences (2)

- Suppose I have a non-optimal policy π
- I select an arbitrary state s
- I make a local improvement:

Change $\pi(s)$, selecting another action that increases $\mathrm{E}(\pi, s)$

- This cannot make anything worse:

Cannot decrease $\mathrm{E}\left(\pi, s^{\prime}\right)$ for any s^{\prime} !
We change $\pi\left(s_{1}\right) \ldots$

So that
$E\left(\pi, s_{1}\right)$
increases

How does this affect $E\left(\pi, s_{2}\right)$?

Same $\pi\left(s_{2}\right)$,

$$
P\left(s, \pi\left(s_{2}\right), s^{\prime}\right), R(\ldots), \gamma
$$

Only change: If $s^{\prime}=s_{1}$, then $E\left(\pi, s^{\prime}\right)$ increases

Consequences (3)

- Also:
- Every global improvement can be reached through such local improvements (no need to first make the policy worse, then better)
$-\rightarrow$ We can find optimal solutions through local improvements - No need to "think globally"

Finding a Solution (Optimal Policy): Algorithm 1, Policy Iteration

Simplification

- In many presentations (and our current example), rewards do not depend on the outcome s'!

$$
E(\pi, s)=\sum_{s^{\prime} \in S} P\left(s, \pi(s), s^{\prime}\right) \cdot\left(R\left(s, \pi(s), s^{\prime}\right)+\gamma E\left(\pi, s^{\prime}\right)\right)
$$

\rightarrow

$$
E(\pi, s)=R(s, \pi(s))+\sum_{s^{\prime} \in S} P\left(s, \pi(s), s^{\prime}\right) \cdot \gamma E\left(\pi, s^{\prime}\right)
$$

Policy Iteration

- First algorithm: Policy iteration
- General idea:
- Start out with an initial policy, maybe randomly chosen
- Calculate the expected utility of executing that policy from each state
- Update the policy by making a local decision for each state: "Which action should my improved policy choose in this state, given the expected utility of the current policy?"
- Iterate until convergence (until the policy no longer changes)

Preliminaries 1: Single-step policy changes

- Preliminaries:
- Suppose I have a policy π, with an expected utility:

$$
E(\pi, s)=R(s, \pi(s))+\sum_{s^{\prime} \in S} P\left(s, \pi(s), s^{\prime}\right) \cdot \gamma E\left(\pi, s^{\prime}\right)
$$

- Suppose I change the decision in the first step, and keep the policy for everything else!
- Expected utility of this procedure:

$$
Q(\pi, s, a)=R(s, a)+\sum_{s^{\prime} \in S} P\left(s, a, s^{\prime}\right) \cdot \gamma E\left(\pi, s^{\prime}\right)
$$

- $Q(\pi, s, a)$ is the expected utility of π in a state s if we start by executing the given action a, but we use the policy π from then onward

Note: $E(\pi, s)=Q(\pi, s, \pi(s))$: "What if we first did what the policy said, and then continued using the policy?"

Why?

This tells us if we have a potential improvement, without solving a full equation system!

Preliminaries 2: Example

- Example: $E(\pi, s 1)$
- The expected utility of following π
- Starting in s1, beginning with move(11,12)
- $Q(\pi, s 1, \operatorname{move}(l 1, l 4))$
- The expected utility of first executing move(11,14) from s1, then following policy π
- Does not correspond to any possible policy!
- If move(11,14) returns you to state s1, then the next action is move(s1,s2)!

Preliminaries 3

- Suppose you have an optimal policy π^{*}
- Then, because of the principle of optimality:
- In every state, the local choice made by the policy is locally optimal
- For all states s,

$$
E\left(\pi^{*}, s\right)=\max _{a \in A} Q\left(\pi^{*}, s, a\right)
$$

- Yields the modification step of policy iteration!
- We have a possibly non-optimal policy π, want to create an improved policy π^{\prime}
- For every state s, set

$$
\pi^{\prime}(s):=\underset{a \in A}{\arg \max } Q(\pi, s, a)
$$

But what if there was an even better choice, which we don't see now because of our single step modification (Q)?

That's OK: We still have an improvement, which cannot prevent future improvements

Preliminaries 4

- Example: $E(\pi, s 1)$
- The expected utility of following the current policy
- Starting in s1, beginning with move $(11,12)$
- $Q(\pi, s 1$, move $(l 1, l 4))$
- The expected utility of first trying to move from 11 to 14 , then following the current policy

If doing move $(11,14)$ first has a greater expected utility, we should modify the current policy:

$$
\pi^{\prime}(\mathrm{s} 1):=\operatorname{move}(11,14)
$$

First Iteration

Policy Iteration 1: Initial Policy π

- Policy iteration requires an initial policy

$$
\begin{aligned}
\pi_{1}=\{ & (s 1, \text { wait }), \\
& (s 2, \text { wait }) \\
& (s 3, \text { wait }), \\
& (s 4, \text { wait }) \\
& (s 5, \text { wait })\}
\end{aligned}
$$

- Let's start by choosing "wait" in every state
- Let's set a discount factor: $\gamma=0.9$
- Easy to use in calculations on these slides, but in reality we might use a larger factor (we're not that short-sighted!)
- Need to know expected utilities!
- Because we will make changes according to $Q\left(\pi_{1}, s, a\right)$, which depends on $\sum_{s^{\prime} \in S} P\left(s, a, s^{\prime}\right) E\left(\Pi_{\mid}, s^{\prime}\right)$

Policy Iteration 2: Expected Utility for π_{1}

- Calculate expected utilities for the current policy π_{1}
- Simple: Chosen transitions are deterministic and return to the same state!
- $E(\pi, s)=\mathrm{R}(s, \pi(s))+\gamma \sum_{s^{\prime} \in S} P\left(s, \pi(s), s^{\prime}\right) E\left(\pi, s^{\prime}\right)$
- $\mathrm{E}(\pi 1, \mathrm{~s} 1)=\mathrm{R}(\mathrm{s} 1$, wait $)+\gamma \mathrm{E}(\pi 1, \mathrm{~s} 1)=-1+0.9 \mathrm{E}(\pi 1, \mathrm{~s} 1)$
- $\mathrm{E}(\pi 1, \mathrm{~s} 2)=\mathrm{R}(\mathrm{s} 2$, wait $)+\gamma \mathrm{E}(\pi 1, \mathrm{~s} 2)=-1+0.9 \mathrm{E}(\pi 1, \mathrm{~s} 2)$
- $\mathrm{E}(\pi 1, \mathrm{~s} 3)=\mathrm{R}(\mathrm{s} 3$, wait $)+\gamma \mathrm{E}(\pi 1, \mathrm{~s} 3)=-1+0.9 \mathrm{E}(\pi 1, \mathrm{~s} 3)$
- $\mathrm{E}(\pi 1, \mathrm{~s} 4)=\mathrm{R}(\mathrm{s} 4$, wait $)+\gamma \mathrm{E}(\pi 1, \mathrm{~s} 4)=+100+0.9 \mathrm{E}(\pi 1, \mathrm{~s} 4)$
- $\mathrm{E}(\pi 1, \mathrm{~s} 5)=\mathrm{R}(\mathrm{s} 5$, wait $)+\gamma \mathrm{E}(\pi 1, \mathrm{~s} 5)=-100+0.9 \mathrm{E}(\pi 1, \mathrm{~s} 5)$
- Simple equations to solve:
- $0.1 \mathrm{E}(\pi 1, \mathrm{~s} 1)=-1$
- $0.1 \mathrm{E}(\pi 1, \mathrm{~s} 2)=-1$
- $0.1 \mathrm{E}(\pi 1, \mathrm{~s} 3)=-1$
- $0.1 \mathrm{E}(\pi 1, \mathrm{~s} 4)=+100$
- $0.1 \mathrm{E}(\pi 1, s 5)=-100$
$\rightarrow \mathrm{E}(\pi 1, \mathrm{~s} 1)=-10$
$\rightarrow \mathrm{E}(\pi 1, \mathrm{~s} 2)=-10$
$\rightarrow \mathrm{E}(\pi 1, \mathrm{~s} 3)=-10$
$\rightarrow \mathrm{E}(\pi 1, \mathrm{~s} 4)=+1000$
$\rightarrow \mathrm{E}(\pi 1, \mathrm{~s} 5)=-1000$

Given this policy Π_{1} :

High rewards if we start in s4, high costs if we start in s5

Policy Iteration 3: Update la

What is the best
local modification
according to the expected utilities of the current policy?
$E\left(\pi_{1}, s 1\right)=-10$
$E\left(\pi_{1}, s 2\right)=-10$
$E\left(\pi_{1}, s 3\right)=-10$
$\mathrm{E}\left(\pi_{1}, s 4\right)=+1000$
$E(\pi, s 5)=-1000$

- For every state s :
- Let $\pi_{2}(s)=\operatorname{argmax}_{a \in A} Q\left(\pi_{1}, s, a\right)$

- That is, find the action a that maximizes $R(s, a)+\gamma \sum_{s^{\prime} \in S} P\left(s, a, s^{\prime}\right) E\left(\pi 1, s^{\prime}\right)$
- s1: wait
move $(11,12)$
move(11,14)
Best improvement

$$
\begin{array}{rll}
-1+0.9 *-10 & =-10 \\
-100+0.9 *-10 & =-109 \\
-1+0.9 *\left(0.5^{*}-10+0.5^{*} 1000\right) & =+444,5
\end{array}
$$

- These are not the true expected utilities for starting in state $s 1$!
- Only correct if we locally change the first action to execute then go on to use the previous policy (in this case, always waiting)!
- But they can be proven to yield good guidance, as long as you apply the improvements repeatedly (as policy iteration does)

Policy Iteration 4:Update lb

106

What is the best
local modification
according to the expected utilities of the current policy?

$$
\begin{aligned}
& \mathrm{E}\left(\pi_{1}, s 1\right)=-10 \\
& \mathrm{E}\left(\pi_{1}, s 2\right)=-10 \\
& \mathrm{E}\left(\pi_{1}, s 3\right)=-10 \\
& \mathrm{E}\left(\pi_{1}, s 4\right)=+1000 \\
& \mathrm{E}\left(\pi_{1}, 55\right)=-1000
\end{aligned}
$$

- For every state s :
- Let $\pi_{2}(s)=\operatorname{argmax}_{a \in A} Q(\pi 1, s, a)$

- That is, find the action a that maximizes $R(s, a)+\gamma \sum_{s^{\prime} \in S} P\left(s, a, s^{\prime}\right) E\left(\Pi l, s^{\prime}\right)$
- s2: $\begin{aligned} & \text { wait } \\ & \operatorname{move}(12,11) \\ & \operatorname{move}(12,13)\end{aligned}$

$$
\begin{array}{|r|l}
\hline-1+0.9 *-10 & =-10 \\
-100+0.9 *-10 & =-109 \\
-1+0.9 *\left(0.8^{*}-10+0.2^{*}-1000\right) & =-188,2
\end{array}
$$

Policy Iteration 5: Update ic

What is the best local modification according to the expected utilities of the current policy?

$$
\begin{aligned}
& \mathrm{E}\left(\pi_{1}, s 1\right)=-10 \\
& \mathrm{E}\left(\pi_{1}, s 2\right)=-10 \\
& \mathrm{E}\left(\pi_{1}, s 3\right)=-10 \\
& \mathrm{E}\left(\pi_{1}, s 4\right)=+1000 \\
& \mathrm{E}\left(\pi_{1}, 55\right)=-1000
\end{aligned}
$$

- For every state s :
- Let $\pi_{2}(s)=\operatorname{argmax}_{a \in A} Q(\pi 1, s, a)$

- That is, find the action a that maximizes $R(s, a)+\gamma \sum_{s^{\prime} \in S} P\left(s, a, s^{\prime}\right) E\left(\Pi l, s^{\prime}\right)$
- s3: wait

move(13,12)
- s4:move(13,14) wait move(14,11)

- s5: wait
move $(15,12)$ move $(15,14)$

-1	$+0.9 *-10$	$=-10$
-1	+ 0.9 *-10	$=-10$
-100	+ 0.9 * +1000	$=+800$
+100	$+0.9{ }^{*}+1000$	$=+1000$
+99	+0.9 *-10	$=+90$
-100	$+0.9 *-1000$	$=-1000$
-101	+0.9 *-10	$=-110$
-200	$+0.9 *+1000$	$=+700$

Second Iteration

Policy Iteration 6: Second Policy

- This results in a new policy

$$
\begin{array}{ll}
\pi_{1}=\{(s 1, \text { wait }), & E(\pi 1, s 1)=-10 \\
(s 2, \text { wait }), & E(\pi 1, s 2)=-10 \\
(s 3, \text { wait }), & E(\pi 1, s 3)=-10 \\
\text { (s4, wait), } & E(\pi 1, s 4)=+1000 \\
(s 5, \text { wait })\} & E(\pi 1, s 5)=-1000
\end{array}
$$

$$
\begin{array}{rlrl}
\Pi_{2}=\{ & (s 1, \text { move }(11,14), & >=+444,5 \\
& (s 2, \text { wait }), & >=-10 \\
& (s 3, \text { move }(13,14)), & >=+800 \\
& (s 4, \text { wait }), & >=+1000 \\
& (s 5, \text { move }(15,14))\} & & >=+700
\end{array}
$$

Now we have made use of earlier indications that s4 seems to be a good state
\Rightarrow Try to go there from sl / s3 / s5!

No change in s2 yet...

Policy Iteration 7: Expected Utilities for π_{2}

- Calculate true expected utilities for the new policy Π_{2}
- $\mathrm{E}(\pi 2, \mathrm{~s} 1)=\mathrm{R}(\mathrm{s} 1$, move $(11,14))+\gamma \ldots=-1+0.9(0.5 \mathrm{E}(\pi 2, \mathrm{~s} 1)+0.5 \mathrm{E}(\pi 2, \mathrm{~s} 4))$
- $\mathrm{E}(\pi 2, \mathrm{~s} 2)=\mathrm{R}(\mathrm{s} 2$, wait $)+\gamma \mathrm{E}(\pi 2, \mathrm{~s} 2)=-1+0.9 \mathrm{E}(\pi 2, \mathrm{~s} 2)$
- $\mathrm{E}(\pi 2, s 3)=\mathrm{R}(\mathrm{s} 3, \operatorname{move}(13,14))+\gamma \mathrm{E}(\pi 2, \mathrm{~s} 4)=-100+0.9 \mathrm{E}(\pi 2, \mathrm{~s} 4)$
- $\mathrm{E}(\pi 2, \mathrm{~s} 4)=\mathrm{R}(\mathrm{s} 4$, wait $) \quad+\gamma \mathrm{E}(\pi 2, \mathrm{~s} 4)=+100+0.9 \mathrm{E}(\pi 2, \mathrm{~s} 4)$
- $\mathrm{E}(\pi 2, \mathrm{~s} 5)=\mathrm{R}(\mathrm{s} 5, \operatorname{move}(15,14))+\gamma \mathrm{E}(\pi 2, \mathrm{~s} 4)=-200+0.9 \mathrm{E}(\pi 2, \mathrm{~s} 4)$
- Equations to solve:

```
- \(0.1 \mathrm{E}(\pi 2, \mathrm{~s} 2)=-1\)
- \(0.1 \mathrm{E}(\pi 2, \mathrm{~s} 4)=+100\)
- \(\mathrm{E}(\pi 2, \mathrm{~s} 3)=-100+0.9 \mathrm{E}(\pi 2, \mathrm{~s} 4)=-100+0.9^{*} 1000=+800\)
- \(\mathrm{E}(\pi 2, \mathrm{~s} 5)=-200+0.9 \mathrm{E}(\pi 2, \mathrm{~s} 4)=-200+0.9^{*} 1000=+700\)
- \(\mathrm{E}(\pi 2, \mathrm{~s} 1)=-1+0.45^{*} \mathrm{E}(\pi 2, \mathrm{~s} 1)+0.45^{*} \mathrm{E}(\pi 2, \mathrm{~s} 4) \rightarrow \quad \rightarrow \mathrm{E}(\pi 2, \mathrm{~s} 1)=+816,36\)
    \(0.55 \mathrm{E}(\pi 2, \mathrm{~s} 1)=-1+0.45^{*} \mathrm{E}(\pi 2, \mathrm{~s} 4) \rightarrow\)
    \(0.55 \mathrm{E}(\pi 2, \mathrm{~s} 1)=-1+450 \rightarrow\)
    \(0.55 \mathrm{E}(\pi 2, \mathrm{~s} 1)=+449 \rightarrow\)
    \(\mathrm{E}(\pi 2, \mathrm{~s} 1)=+816,3636 \ldots\)
```

	$\rightarrow \mathrm{E}(\pi 2, \mathrm{~s} 2)=-10$
$\rightarrow \mathrm{E}(\pi 2, \mathrm{~s} 4)=+1000$	
$\rightarrow \mathrm{E}(\pi 2, \mathrm{~s} 3)=+800$	
$\rightarrow \mathrm{E}(\pi 2, \mathrm{~s} 5)=+700$	
$\rightarrow \mathrm{E}(\pi 2, \mathrm{~s} 1)=+816,36$	

$\pi_{2}=\{(s 1, \operatorname{move}(11,14)$, (s2, wait),
(s3, move(13,14)),
(s4, wait),
(s5, move(15,14$))\}$

Policy Iteration 8: Second Policy

- Now we have the true expected utilities of the second policy...

$\pi_{1}=\{(s 1$, wait $)$,	$E(\pi 1, s 1)=-10$
(s2, wait),	$E(\pi 1, s 2)=-10$
(s3, wait),	$E(\pi 1, s 3)=-10$
(s4, wait),	$E(\pi 1, s 4)=+1000$
$(s 5$, wait $)\}$	$E(\pi 1,55)=-1000$

S5 wasn't so bad after all, since you can reach s4 in a single step!

SI / s3 are even better.

S2 seems much worse in comparison, since the benefits of s4 haven't "propagated" that far.

$$
\begin{array}{ll}
>=+444,5 & \mathrm{E}(\pi 2, s 1)=+816,36 \\
>=-10 & \mathrm{E}(\pi 2,52)=-10 \\
>=+800 & \mathrm{E}(\pi 2,53)=+800 \\
>=+1000 & \mathrm{E}(\pi 2,54)=+1000 \\
>=+700 & \mathrm{E}(\pi 2,55)=+700
\end{array}
$$

Policy Iteration 9: Update 2a

What is the best local modification according to the expected utilities of the current policy?
$\mathrm{E}(\pi 2,51)=+816,36$
$E(\pi 2, s 2)=-10$
$\mathrm{E}(\pi 2,53)=+800$
$E(\pi 2,54)=+1000$
$E(\pi 2,55)=+700$

- For every state s :
- Let $\pi_{3}(s)=\operatorname{argmax}_{a \in A} Q\left(\pi_{2}, s, a\right)$

- That is, find the action a that maximizes $R(s, a)+\gamma \sum_{s^{\prime} \in S} P\left(s, a, s^{\prime}\right) E\left(\pi_{2}, s^{\prime}\right)$
- s1: wait move(11,12) move(11,14)
Seems best - chosen!
- s2: wait
move $(12,11)$
move(12,13)

$$
\begin{array}{|r|l}
-1+0.9 * 816,36 & =+733,72 \\
-100+0.9 *-10 & =-109 \\
-1+0.9 *(.5 * 1000+.5 * 816.36) & =+816,36
\end{array}
$$

$$
\begin{array}{rll}
-1+0.9 & *-10 & \\
-100+0.9 * 816,36 & =+634,72 \\
-1+0.9 & *\left(0.8^{*} 800+0.2 * 700\right) & =+701
\end{array}
$$

Now we will change the action taken at s2,
since we have the expected utilities for reachable states $s I, s 3, s 5 \ldots$ have increased

Policy Iteration 10:Update 2b

What is the best	$\mathrm{E}(\pi 2, s 1)=+816,36$
local modification	$\mathrm{E}(\pi 2, s 2)=-10$
according to the	$\mathrm{E}(\pi 2, s 3)=+800$
expected utilities	$\mathrm{E}(\pi 2, s 4)=+1000$
of the current policy?	$\mathrm{E}(\pi 2,55)=+700$

- For every state s :
- Let $\pi_{3}(s)=\operatorname{argmax}_{a \in A} Q\left(\pi_{2}, s, a\right)$

- That is, find the action a that maximizes $R(s, a)+\gamma \sum_{s^{\prime} \in S} P\left(s, a, s^{\prime}\right) E\left(\Pi_{2}, s^{\prime}\right)$
- s3: wait

move(13,12)
move(13,14) - s4: wait move(14,11)

- s5: wait
move $(15,12)$ move $(15,14)$

$-1+0.9 * 800$	
$-1+0.9 *-10$	
$-100+0.9 * 1000$	
$+100+0.9 * 1000$	
$+99+0.9 * 816,36$	
	$=+800$
$-100+0.9 * 700$	
$-101+0.9 *-10$	
$-200+0.9 *-1000$	

Polity Iteration 11:Third Polity

- This results in a new policy π_{3}
- True expected utilities are updated by solving an equation system
- The algorithm will iterate once more
- No changes will be made to the policy
- \rightarrow Termination with optimal policy!

$$
\pi_{3}=\{(\mathrm{s} 1, \operatorname{move}(11,14),
$$

(s2, move(l2,l3)),

$$
(s 3, \text { move }(13,14)),
$$

(s4, wait),

$$
(s 5, \text { move }(15,14))\}
$$

Policy Iteration Algorithm

Policy Iteration 12: Algorithm

- Policy iteration is a way to find an optimal policy Π^{*}
- Start with an arbitrary initial policy π_{1}. Then, for $i=1,2, \ldots$
- Compute expected utilities $E\left(\pi_{i}, s\right)$ for every s by solving a system of equations

Find utilities according to current policy

$$
\begin{aligned}
& =Q\left(\pi_{i}, s, \pi_{i}(s)\right) \\
& =R\left(s, \pi_{i}(s)\right)+\gamma \sum_{s^{\prime} \in S} P\left(s, \pi_{i}(s), s^{\prime}\right) E\left(\pi_{i}, s^{\prime}\right)
\end{aligned}
$$

- Result:The expected utilities of the "current" policy in every state s
" Not a simple recursive calculation - the state graph is generally cyclic!
- Compute an improved policy π_{i+1} "locally" for every s

Find best local improvements

- $\pi_{i+1}(s):=\operatorname{argmax}_{a \in A} Q\left(\pi_{i}, s, a\right)$
$=\operatorname{argmax}_{a \in A} R(s, a)+\gamma \sum_{s^{\prime} \in S} P\left(s, a, s^{\prime}\right) E\left(\pi_{i}, s^{\prime}\right)$
- Best action in any given state s given expected utilities of old policy π_{i}
- If $\pi_{i+1}=\pi_{i}$ then exit
- No local improvement possible, so the solution is optimal
- Otherwise
- This is a new policy π_{i+1} - with new expected utilities!
- Iterate, calculate those utilities, ...

Convergence

- Converges in a finite number of iterations!
- We change which action to execute if this improves expected (pseudo-)utility for this state
- This can sometimes increase, and never decrease, the utility of the policy in other states!
- So utilities are monotonically improving and we only have to consider a finite number of policies

- In general:
- May take many iterations
- Each iteration involved can be slow
- Mainly because of the need to solve a large equation system!

Avoiding Equation Systems

Avoiding Equation Systems

- Plain policy iteration:
- In every iteration i we have a policy π_{i}, want its expected utilities $E\left(\pi_{i}, s\right)$
- Can use an equation system or iterate until convergence:
- $E_{i, 0}\left(\pi_{i}, s\right)=0$ for all s

Finite horizon:

Exact expected utility for 0 steps

- Then iterate for $j=0, \mathrm{I}, 2, \ldots$ and for all states s:

$$
E_{i, j+1}\left(\pi_{i}, s\right)=R\left(s, \pi_{i}(s)\right)+\gamma\left(\sum_{\begin{array}{c}
\text { Definite } \\
\text { reward }
\end{array}} P\left(s, \pi_{i}(s), s^{\prime}\right) E_{i, j}\left(\pi_{i}, s^{\prime}\right)\right)
$$

Exact exp. utility for I step, 2 steps, 3 steps, ...

- Will converge in the limit $(j \rightarrow \infty)$
- $\gamma<1 \rightarrow$ steps sufficiently far into the future are almost irrelevant
- Stop when $E_{i, j+1}$ is very close to $E_{i, j}$ - then we're close to $E\left(\pi_{i}, s\right)$

Avoiding Equation Systems (2)

- Finally, the approximated utility function $E_{i, n}$ determines the best actions to use
- Previously:

True expected cost

$$
\begin{aligned}
\pi_{i+1}(s) & =\arg \max _{a \in A} Q\left(\pi_{i}, s, a\right) \\
& =\arg \max _{a \in A}\left(R(s, a)+\gamma \sum_{s^{\prime} \in S} P\left(s, a, s^{\prime}\right) E\left(\pi_{i}, s\right)\right)
\end{aligned}
$$

- Approximated:

$$
\pi_{i+1}(s)=\arg \max _{a \in A}\left(R(s, a)+\gamma \sum_{s^{\prime} \in S} P\left(s, a, s^{\prime}\right) E_{i, n}\left(\pi_{i}, s\right)\right)
$$

Approximate expected cost

Finding a Solution (Optimal Policy): Algorithm 2, Value Iteration

Value Iteration (1)

- Another algorithm: Value iteration - no policy used!
- What's the max expected utility of executing $\mathbf{0}$ steps starting in any state?
- No rewards, no costs
- For all states $s \in S$, set $V_{0}(s)=0$
- What's the max expected utility of executing I step starting in any state?
- Choose one action; max utility of executing remaining 0 actions in resulting state is known

$$
V_{1}(s)=\max _{a \in A}\left(R(s, a)+\gamma \sum_{s^{\prime} \in S} P\left(s, a, s^{\prime}\right) V_{0}(s)\right)
$$

Value Iteration (2)

- Long formulas again...
- Let's abbreviate this...
- $V_{1}(s)=\max _{a \in A}\left(R(s, a)+\gamma \sum_{s^{\prime} \in S} P\left(s, a, s^{\prime}\right) V_{0}(s)\right)$
- By defining some non-standard notation:
- $Q\left(V_{i}, s, a\right)=R(s, a)+\gamma \sum_{s^{\prime} \in S} P\left(s, a, s^{\prime}\right) V_{i}(s)$
- So that:
- $V_{1}(s)=\max _{a \in A} Q\left(V_{0}, s, a\right)$
- Then what's the max expected utility of executing $\dot{\boldsymbol{j}+1 \text { steps? }}$
- Choose one action; max utility of executing remaining j actions in resulting state is known

$$
V_{j+1}(s)=\max _{a \in A} Q\left(V_{j}, s, a\right)=\max _{a \in A}\left(R(s, a)+\gamma \sum_{s^{\prime} \in S} P\left(s, a, s^{\prime}\right) V_{j}(s)\right)
$$

Maximizes expected finite-horizon utility

Value Iteration (3)

- Notice: In essence, we find actions in inverse order
- Best expected utility with a horizon of zero steps?

$$
V_{0}=0
$$

- One step?

Maximize V_{1} : Choose an action based on the next utility being V_{0}

$$
V_{0}=0
$$

- Two steps?

Value Iteration (4)

- Notice: $V_{j}(s)$ is not the expected value of a policy
- For a given state s, a policy π always uses the same action $\pi(s)$, but value iteration chooses an action separately for every step
- Based on different information each time: Iteration $\mathrm{j}+\mathrm{I}$ based on iteration j

$$
\begin{aligned}
& V_{j+1}(s)=\max _{a \in A}\left(Q\left(V_{j}, s, a\right)\right) \\
& V_{j+1}(s)=\max _{a \in A}\left(R(s, a)+\gamma \sum_{s^{\prime} \in S} P\left(s, a, s^{\prime}\right) V_{j}(s)\right)
\end{aligned}
$$

- Iterations j and $\mathrm{j}+1$ could use different actions for the same state s

Value Iteration (5)

- Expected finite-horizon utility:
- $V_{j+1}(s)=\max _{a \in A}\left(Q\left(V_{j}, s, a\right)=R(s, a)+\gamma \sum_{s^{\prime} \in S} P\left(s, a, s^{\prime}\right) V_{j}(s)\right)$
- Corresponds to best possible action choice in each step given that you will execute exactly ${ }^{++1}$ actions
- As $j \rightarrow \infty$:
- Converges towards the expected utility of an optimal policy for infinite execution
- Will converge faster if $V_{0}(s)$ is close to the true value function
- Will actually converge regardless of the initial value of $V_{0}(s)$, despite not corresponding to a policy
- Intuition: As $j \rightarrow \infty$, the discount factor ensures...
- Unconsidered actions in the distant future become irrelevant
- As the value function converges, the implicit action choices will converge

Value Iteration (6)

- Expected finite-horizon utility:
- $V_{j+1}(s)=\max _{a \in A}\left(Q\left(V_{j}, s, a\right)=R(s, a)+\gamma \sum_{s^{\prime} \in S} P\left(s, a, s^{\prime}\right) V_{j}(s)\right)$
- Policy extraction from a value function V_{k} : for all s,

$$
\begin{aligned}
& \pi(s)=\underset{a \in A}{\arg \max }\left(Q\left(V_{k}, s, a\right)\right) \\
& \pi(s)=\underset{a \in A}{\arg \max }\left(R(s, a)+\gamma \sum_{s^{\prime} \in S} P\left(s, a, s^{\prime}\right) V_{k}\left(s^{\prime}\right)\right)
\end{aligned}
$$

Value Iteration (7)

- Main difference:
- With policy iteration
- Find a policy
- Find exact expected utilities for infinite steps using this policy (expensive, but gives the best possible basis for improvement)
- Use these to generate a new policy
- Throw away the old utilities, find exact expected utilities for infinite steps using the new policy
- Use these to generate a new policy
" ...
- With value iteration, if $V_{0}(s)=0$ for all s:
- Find exact expected utilities for 0 steps; implicitly defines a policy
- Find exact expected utilities for I step; implicitly defines a policy
- Find exact expected utilities for 2 steps; implicitly defines a policy
- ...

Value Iteration Example

Value Iteration Horizon: 0 actions

VI Example l: Initial Guess Vo

- Value iteration requires an initial value function
- Let's start with $\mathrm{V}_{0}(s)=0$ for each s
- Expected utility of executing zero steps

$$
\begin{aligned}
& \mathrm{V} 0(\mathrm{~s} 1)=0 \\
& \mathrm{~V} 0(\mathrm{~s} 2)=0 \\
& \mathrm{~V} 0(\mathrm{~s} 3)=0 \\
& \mathrm{~V} 0(\mathrm{~s} 4)=0 \\
& \mathrm{VO}(\mathrm{~s} 5)=0
\end{aligned}
$$

Value Iteration Horizon: 0 actions \rightarrow laction

VI Example 2:Update la

What is the (expected) best first action for each state if we then continue according to V_{0} ?

$$
\begin{aligned}
& V_{0}(s 1)=0 \\
& V_{0}(s 2)=0 \\
& V_{0}(s 3)=0 \\
& V_{0}(s 4)=0 \\
& V_{0}(s 5)=0
\end{aligned}
$$

- For every state s:

- PI: find $a \in A$ maximizing $Q\left(\pi_{1}, s, a\right)=R(s, a)+\gamma \Sigma_{s^{\prime} \in S} P\left(s, a, s^{\prime}\right) E\left(\pi_{1}, s^{\prime}\right)$
- VI: find $a \in A$ maximizing $Q\left(V_{0}, s, a\right)=R(s, a)+\gamma \Sigma_{s^{\prime} \in S} P\left(s, a, s^{\prime}\right) V_{0}\left(s^{\prime}\right)$
- s1: wait

$$
\begin{aligned}
& \text { move }(11,12) \\
& \text { move }(11,14) \\
& \hline
\end{aligned}
$$

" s2:

wait
move(l2,l1)
move(12,13)

$$
\begin{array}{|r|l}
\hline-1+0.9 * 0 & =-1 \\
-100+0.9 * 0 & =-100 \\
-1+0.9 *\left(0.5^{*} 0+0.5^{*} 0\right) & =-1 \\
\hline-1+0.9 * 0 & =-1 \\
-100+0.9 * 0 & =-100 \\
-1+0.9 *\left(0.8^{*} 0+0.2^{*} 0\right) & \\
\hline
\end{array}
$$

VI Example 3: Update lb

What is the (expected)	$\mathrm{V} 0(\mathrm{~s} 1)=0$
best first action	$\mathrm{V} 0(\mathrm{~s} 2)=0$
for each state	$\mathrm{V} 0(\mathrm{~s} 3)=0$
if we then continue	$\mathrm{V} 0(\mathrm{~s} 4)=0$
according to V_{0} ?	$\mathrm{V} 0(\mathrm{~s} 5)=0$

- For every state s:

- VI: find $a \in A$ maximizing $Q\left(V_{0}, s, a\right)=R(s, a)+\gamma \Sigma_{s^{\prime} \in S} P\left(s, a, s^{\prime}\right) V_{0}\left(s^{\prime}\right)$
- s3: wait
move $(13,12)$
move $(13,14)$
- s4: wait
move(14,11)
- s5: wait move $(15,12)$ move $(15,14)$

$-1+0.9 * 0$	$=-1$
$-1+0.9 * 0$	$=-1$
$-100+0.9$ * 0	$=-100$
+100 + 0.9 * 0	$=+100$
+99+0.9*0	$=+99$
$-100+0.9 * 0$	= - 100
$-101+0.9 * 0$	$=-101$
$-200+0.9$ * 0	$=-200$

VI Example 4: V_{1}

- This results in a new value function
- Finite horizon: $V_{1}(s)$ is the (actual) expected utility of executing I action, making the best choices at all steps
- Infinite horizon: $V_{1}(s)$ is our current approximation of the (actual) expected utility of following the best possible policy forever

VI Example 5: Policy

- If we stopped value iteration here, we could extract a policy π_{1}
- $\pi_{1}(s)=\underset{a \in A}{\arg \max }\left(Q\left(V_{1}, s, a\right)\right)$
$\mathrm{VO}(\mathrm{sl})=0$
$\mathrm{VO}(\mathrm{s} 2)=0$
$\mathrm{VO}(\mathrm{s} 3)=0$
$\mathrm{VO}(\mathrm{s} 4)=0$
$\mathrm{VO}(55)=0$

$$
\begin{aligned}
\pi_{1}=\{ & (s 1, \text { wait }), \\
& (s 2, \text { wait), } \\
& (s 3, \text { move }(13,12)), \\
& (s 4, \text { wait) }, \\
& (s 5, \text { wait) }\}
\end{aligned}
$$

Best expected utility for executing 1 action!
For infinite execution, $E(\pi 1, s 1)=-10$,
but this is not calculated...

Instead we continue with the next iteration...

Value Iteration Horizon: laction $\rightarrow 2$ actions

VI Example 6:Update 2a

What is the (expected) best first action

$$
\mathrm{VI}(\mathrm{sz})=-1
$$ for each state

$$
V 1(s l)=-1
$$

$$
\operatorname{VI}(s 3)=-1
$$ if we then continue according to V_{1} ?

$\mathrm{VI}(\mathrm{s} 4)=+100$
$\mathrm{VI}(\mathrm{S} 5)=-100$

- For every state s:

- PI: $a \in A$ maximizing $Q\left(\pi_{k}, s, a\right)=R(s, a)+\gamma \Sigma_{s^{\prime} \in S} P\left(s, a, s^{\prime}\right) \boldsymbol{E}\left(\boldsymbol{\pi}_{\boldsymbol{k}}, \boldsymbol{s}^{\prime}\right)$
- VI: $a \in A$ maximizing $Q\left(V_{k-1}, s, a\right)=R(s, a)+\gamma \Sigma_{s^{\prime} \in S} P\left(s, a, s^{\prime}\right) \boldsymbol{V}_{\boldsymbol{k}-\mathbf{1}}\left(\boldsymbol{s}^{\prime}\right)$
- s1: wait
- s2: | move $(11,12)$ |
| ---: |
| move(11,14) |
| |

$$
\begin{array}{|r|l}
\hline-1+0.9^{*}-1 & \\
-100+0.9^{*}-1 & =-1.9 \\
-1+0.9^{*}\left(0.5^{*}-1+0.5^{*} 100\right) & =-100.9 \\
\hline \hline-1+0.9^{*}-1 & =-43,55 \\
-100+0.9^{*}-1 & =-100.9 \\
-1+0.9^{*}\left(0.8^{*}-1+0.2^{*}-1\right) & =-1.9
\end{array}
$$

VI Example 7:Update 2b

What is the (expected) best first action for each state if we then continue according to V_{1} ?

- For every state s :
$V 1(s 1)=-1$
VI(s2) $=-1$
VI(s3) $=-1$
$\mathrm{VI}(\mathrm{s} 4)=+100$
$\mathrm{VI}(\mathrm{S} 5)=-100$

- VI: $a \in A$ maximizing $Q\left(V_{k-1}, s, a\right)=R(s, a)+\gamma \sum_{s^{\prime} \in S} P\left(s, a, s^{\prime}\right) V_{\boldsymbol{k}-\mathbf{1}}\left(\boldsymbol{s}^{\prime}\right)$
- s3: wait move $(13,12)$ move $(13,14)$
- s4: wait
move(14,11)
- s5: wait
move $(15,12)$ move $(15,14)$

$$
\begin{array}{|l|l}
\hline-1+0.9^{*}-1 & \\
-1+0.9^{*}-1 & =-1.9 \\
-100+0.9^{*}+100 & \\
\hline+100+0.9^{*}+100 & =-10 \\
\hline+99+0.9^{*}-1 & \\
& =+190 \\
& =+98.1 \\
\hline-100+0.9^{*}-1 & \\
\hline-101+0.9^{*}-1 & =-100.9 \\
-200+0.9^{*}+100 & \\
\hline
\end{array}
$$

VI Example 8: V_{2}

- This results in another new value function
- Finite horizon: $V_{2}(s)$ is the (actual) expected utility of executing 2 actions, making the best choices at all steps
- Infinite horizon: $V_{2}(s)$ is our current approximation of the (actual) expected utility of following the best possible policy forever

$$
\begin{aligned}
& \mathrm{VO}(s 1)=0 \\
& \mathrm{VO}(\mathrm{~s} 2)=0 \\
& \mathrm{VO}(\mathrm{~s} 3)=0 \\
& \mathrm{VO}(\mathrm{s4})=0 \\
& \mathrm{VO}(\mathrm{~s} 5)=0
\end{aligned}
$$

VI Example 9: Polity

- Now we have a new implicit policy

Analysis

- Significant differences from policy iteration
- Less accurate basis for action selection
- Based on finite horizon utility, which incrementally approximates the true infinite horizon utility
- \rightarrow Requires a larger number of iterations, but each iteration is cheaper
- The implicit policy does not necessarily change in each iteration
- May first have to iterate n times, incrementally improving approximations
- Then another action suddenly seems better in some state
- \rightarrow Need a new termination condition!
- Cannot terminate just because the policy does not change...

Illustration

- Illustration below

- Notice that we already calculated rows I and 2
- s1: wait
move(11,12)
move(11,14)

$$
\begin{aligned}
-1+0.9^{*}-1 & =-1.9 \\
-100+0.9 *-1 & =-100.9 \\
-1+0.9^{*}\left(0.5^{*}-1+0.5^{*}+100\right) & =+43,55
\end{aligned}
$$

	s1			s2			s3			s4	s5		
	wait	move-s2	move-s4	wait	move-s1	move-s3	wait	move-s2	move-s4	wait	wait	move-s2	move-s4
	0	0	0	0	0	0	0	0	0	0	0	0	0
	-1	-100	-1	-1	-100	-1	-1	-1	-100	100	-100	-101	-200
	-1,9	-100,9	43,55	-1,9	-100,9	-1,9	-1,9	-1,9	-10	190	-190	-101,9	-110
3	38,195	-101,71	104,098	-2,71	-60,805	-2,71	-2,71	-2,71	71	271	-191,71	-102,71	-29
4	92,6878	$-102,439$	167,794	-3,439	$-6,31225$	62,9	62,9	-3,439	143,9	343,9	-126,1	-103,439	43,9
5	150,014	-43,39	229,262	55,61	51,0145	128,51	128,51	55,61	209,51	409,51	-60,49	-44,39	109,51
5	205,336	15,659	286,448	114,659	106,336	187,559	187,559	114,659	268,559	468,559	-1,441	14,659	168,559
6	256,803	68,8031	338,753	167,803	157,803	240,703	240,703	167,803	321,703	521,703	51,7031	67,8031	221,703
7	303,878	116,633	386,205	215,633	204,878	288,533	288,533	215,633	369,533	569,533	99,5328	115,633	269,533
8	346,585	159,68	429,082	258,68	247,585	331,58	331,58	258,68	412,58	612,58	142,58	158,68	312,58
9	385,174	198,422	467,748	297,422	286,174	370,322	370,322	297,422	451,322	651,322	181,322	197,422	351,322
	419,973	233,289	502,581	332,289	320,973	405,189	405,189	332,289	486,189	686,189	216,189	232,289	386,189
	451,323	264,67	533,947	363,67	352,323	436,57	436,57	363,67	517,57	717,57	247,57	263,67	417,57
	479,552	292,913	562,183	391,913	380,552	464,813	464,813	391,913	545,813	745,813	275,813	291,913	445,813
	504,964	318,332	587,598	417,332	405,964	490,232	490,232	417,332	571,232	771,232	301,232	317,332	471,232
	527,838	341,209	610,474	440,209	428,838	513,109	513,109	440,209	594,109	794,109	324,109	340,209	494,109

Illustration

- Remember, these are finite horizon utilities!

	s1			s2			s3			s4	s5		
Action	wait	move-s2	move-s4	wait	move-s1	move-s3	wait	move-s2	move-s4	wait	wait	move-s2	move-s4
	0	0	0	0	0	0	0	0	0	0	0	0	0
1	-1	-100	-1	-1	-100	-1	-1	-1	-100	100	-100	-101	-200
2	-1,9	-100,9	43,55	-1,9	-100,9	-1,9	-1,9	-1,9	-10	190	-190	-101,9	-110
3	38,195	-101,71	104,098	-2,71	-60,805	-2,71	-2,71	-2,71	71	271	-191,71	-102,71	-29
4	92,6878	-102,439	167,794	-3,439	$-6,31225$	62,9	62,9	-3,439	143,9	343,9	-126,1	-103,439	43,9
5	150,014	-43,39	229,262	55,61	51,0145	128,51	128,51	55,61	209,51	409,51	-60,49	-44,39	109,51
5	205,336	15,659	286,448	114,659	106,336	187,559	187,559	114,659	268,559	468,559	-1,441	14,659	168,559
6	256,803	68,8031	338,753	167,803	157,803	240,703	240,703	167,803	321,703	521,703	51,7031	67,8031	221,703
7	303,878	116,633	386,205	215,633	204,878	288,533	288,533	215,633	369,533	569,533	99,5328	115,633	269,533
8	346,585	159,68	429,082	258,68	247,585	331,58	331,58	258,68	412,58	612,58	142,58	158,68	312,58
9	385,174	198,422	467,748	297,422	286,174	370,322	370,322	297,422	451,322	651,322	181,322	197,422	351,322
10	419,973	233,289	502,581	332,289	320,973	405,189	405,189	332,289	486,189	686,189	216,189	232,289	386,189
11	451,323	264,67	533,947	363,67	352,323	436,57	436,57	363,67	517,57	717,57	247,57	263,67	417,57
12	479,552	292,913	562,183	391,913	380,552	464,813	464,813	391,913	545,813	745,813	275,813	291,913	445,813
13	504,964	318,332	587,598	417,332	405,964	490,232	490,232	417,332	571,232	771,232	301,232	317,332	471,232
14	527,838	341,209	610,474	440,209	428,838	513,109	513,109	440,209	594,109	794,109	324,109	340,209	494,109

$324.109=$ reward of waiting once in s 5 , then making the best finite horizon decisions for 14 steps, under the assumption that you will then do nothing!

Illustration

- The policy implicit in the value function changes incrementally...
- Blue highlight: Optimal action choices in each step
- Sometimes multiple choices are optimal!

	s1			s2			s3			s4	s5		
Action	wait	move-s2	move-s4	wait	move-s1	move-s3	wait	move-s2	move-s4	wait	wait	move-s2	move-s4
	0	0	0	0	0	0	0	0	0	0	0	0	0
1	-1	-100	-1	-1	-100	-1	-1	-1	-100	100	-100	-101	-200
2	-1,9	-100,9	43,55	-1,9	-100,9	-1,9	-1,9	-1,9	-10	190	-190	-101,9	-110
3	38,195	-101,71	104,0975	-2,71	-60,805	-2,71	-2,71	-2,71	71	271	-191,71	-102,71	-29
4	92,68775	-102,439	167,7939	-3,439	-6,31225	62,9	62,9	-3,439	143,9	343,9	-126,1	-103,439	43,9
5	150,0145	-43,39	229,2622	55,61	51,01449	128,51	128,51	55,61	209,51	409,51	-60,49	-44,39	109,51
5	205,336	15,659	286,4475	114,659	106,336	187,559	187,559	114,659	268,559	468,559	-1,441	14,659	168,559
6	256,8028	68,8031	338,7529	167,8031	157,8028	240,7031	240,7031	167,8031	321,7031	521,7031	51,7031	67,8031	221,7031
7	303,8776	116,6328	386,2052	215,6328	204,8776	288,5328	288,5328	215,6328	369,5328	569,5328	99,53279	115,6328	269,5328
8	346,5847	159,6795	429,0821	258,6795	247,5847	331,5795	331,5795	258,6795	412,5795	612,5795	142,5795	158,6795	312,5795
9	385,1739	198,4216	467,7477	297,4216	286,1739	370,3216	370,3216	297,4216	451,3216	651,3216	181,3216	197,4216	351,3216
10	419,973	233,2894	502,5812	332,2894	320,973	405,1894	405,1894	332,2894	486,1894	686,1894	216,1894	232,2894	386,1894
11	451,3231	264,6705	533,9468	363,6705	352,3231	436,5705	436,5705	363,6705	517,5705	717,5705	247,5705	263,6705	417,5705
12	479,5521	292,9134	562,1828	391,9134	380,5521	464,8134	464,8134	391,9134	545,8134	745,8134	275,8134	291,9134	445,8134
13	504,9645	318,3321	587,5983	417,3321	405,9645	490,2321	490,2321	417,3321	571,2321	771,2321	301,2321	317,3321	471,2321
14	527,8384	341,2089	610,4737	440,2089	428,8384	513,1089	513,1089	440,2089	594,1089	794,1089	324,1089	340,2089	494,1089

Illustration

- At some point we reach the final recommendation/policy:

	s1			s2			s3			s4	s5						
Action	wait move-s2 move-s4			wait	move-s1 move-s3		wait move-s2 move-s4			wait	wait	move-s2 move-s4					
	$0 \quad 0 \quad 0$			$0 \quad 0 \quad 0$			$0 \quad 0 \quad 0$			0	$0 \quad 00$						
1		-100	1	-1	-100	-1,9	-1	-1	-100		-100	-101	-200				
2		9 -100,9 43,55		-1,9	-100,9		-1,9		-100 -10		-190	-101,9	-110				
3	Max value for action move-s4					-2,71			Max value for action move-s4			Only wait	Max value for action move-s4				
4				$\begin{array}{lll} -3,439 & -6,31225 & 62,9 \end{array}$													
5				Max value for action move-s3													
7	Will never										Will never						
8																	
9	change						Will never change			651,3216	change						
10				Will never			+00,1004 joc,<004 +00,100.			686,1894	-nvoruju cuc,cout jou,sout						
11	451,3231	264,6705	533,9468	change			436,5705	363,6705	517,5705	717,5705	247,5705	263,6705	417,5705				
12	479,5521	292,9134	562,1828				464,8134	391,9134	545,8134	745,8134	275,8134	291,9134	445,8134				
13	504,9645	318,3321	587,5983	417,3321	405,9645	490,2321	490,2321	417,3321	571,2321	771,2321	301,2321	317,3321	471,2321				
14	527,8384	341,2089	610,4737	440,2089	428,8384	513,1089	513,1089	440,2089	594,1089	794,1089	324,1089	340,2089	494,1089				

Optimal infinite horizon policy corresponds to iteration 4
Can't be seen directly in rows 0-4:
We don't know how the approximation will change Maybe one action will soon "overtake" another!

Different Discount Fartors

- Suppose discount factor is 0.99 instead
- Illustration, only showing best finite horizon utility (for the best action choice) at each iteration
- Much slower convergence
- Change at step 20: $2 \% \rightarrow 5 \%$
- Change at step 50: $0.07 \% \rightarrow 1.63 \%$
- Care more about the future \rightarrow need to consider many more steps!

Iteration	$s 1^{\prime}$	$s 2$	$s 3$	$s 4$	$s 5$
0^{\prime}	0^{\prime}	0^{\prime}	0	0^{\prime}	0
1	-1	-1	-1	100	-100
2	48,005	$-1,99$	-1	199	-101
3	121,267	$-1,99$	97,01	297,01	$-2,99$
4	206,047	95,0399	194,04	394,04	94,0399
5	296,043	191,1	290,1	490,1	190,1
6	388,141	286,199	385,199	585,199	285,199
7	480,803	380,347	479,347	679,347	379,347
8	573,274	473,553	572,553	772,553	472,553
9	665,184	565,828	664,828	864,828	564,828
10	756,356	657,179	756,179	956,179	656,179
11	846,705	747,617	846,617	1046,62	746,617
12	936,195	837,151	936,151	1136,15	836,151
13	1024,81	925,79	1024,79	1224,79	924,79
14	1112,55	1013,54	1112,54	1312,54	1012,54
15	1199,42	1100,42	1199,42	1399,42	1099,42
16	1285,42	1186,42	1285,42	1485,42	1185,42
17	1370,57	1271,57	1370,57	1570,57	1270,57
18	1454,86	1355,86	1454,86	1654,86	1354,86
19	1538,31	1439,31	1538,31	1738,31	1438,31
20	1620,93	1521,93	1620,93	1820,93	1520,93

How Many Iterations?

- We can find bounds!
- Let ε be the greatest change in pseudo-utility between two iterations:

$$
\epsilon=\max _{s \in S}\left|V_{\text {new }}(s)-V_{\text {old }}(s)\right|
$$

- Then if we extract a policy π from $V_{\text {new }}$, we have a bound:

$$
\max _{s \in S}\left|E(\pi, s)-E\left(\pi^{*}, s\right)\right|<2 \epsilon \gamma /(1-\gamma)
$$

- For every state, the reward of π is at most $2 \epsilon \gamma /(1-\gamma)$ from the reward of an optimal policy

	Discount factor γ					
		0,5	0,9	0,95	0,99	0,999
	0,000	0,002	0,018	0,038	0,198	1,998
Maximum absolute	0,01	0,02	0,18	0,38	1,98	19,98
difference ϵ between	0,1	0,2	1,8	3,8	19,8	199,8
two iterations	1	2	18	38	198	1998
	5	10	90	190	990	9990
	10	20	180	380	1980	19980
	100	200	1800	3800	19800	199800

How Manvlterations? Discount 0.90

Quit after 2 iterations $\rightarrow \mathrm{V}_{2}(\mathrm{sl})=43$.
Guarantee: By using the corresponding policy π_{2}, we lose at most 1620 compared to π^{*}.

Iteration	$s 1$	$s 2$	$s 3$	$s 4$	$s 5$		change	policy
0	0	0	0	0	0			
1	-1	-1	-1	100	-100	100	1800	
2	43,55	$-1,9$	$-1,9$	190	-110	90	1620	
3	104,0975	$-2,71$	71	271	-29	81	1458	
4	167,7939	62,9	143,9	343,9	43,9	72,9	1312,2	
5	229,2622	128,51	209,51	409,51	109,51		65,61	1180,98
6	286,4475	187,559	268,559	468,559	168,559		59,049	1062,882
7	338,7529	240,7031	321,7031	521,7031	221,7031		53,1441	956,5938
8	386,2052	288,5328	369,5328	569,5328	269,5328		47,82969	860,9344
9	429,0821	331,5795	412,5795	612,5795	312,5795		43,04672	774,841
10	467,7477	370,3216	451,3216	651,3216	351,3216		38,74205	697,3569
20	694,787	597,4233	678,4233	878,4233	578,4233		13,50852	243,1533
30	773,9725	676,6088	757,6088	957,6088	657,6088		4,710129	84,78232
40	801,5828	704,2191	785,2191	985,2191	685,2191		1,64232	29,56177
50	811,2099	13,8462	794,8462	994,8462	694,8462		0,572642	10,30755
60	814,5666	717,203	798,203	998,203	698,203		0,199668	3,594021
70	815,7371	718,3734	799,3734	999,3734	699,3734		0,06962	1,253157
80	816,1452	718,7815	799,7815	999,7815	699,7815		0,024275	0,436949
90	816,2875	718,9238	799,9238	999,9238	699,9238		0,008464	0,152355
100	816,3371	718,9734	799,9734	999,9734	699,9734		0,002951	0,053123

	Possible	
	diff from	Bounds are incrementally tightened!
Greatest	optimal	
change	policy	
100	1800	Quit after 10 iterations?
19	1620	
81	1458	
72,9	1312,2	
65,61	1180,98	Guarantee:
59,049	1062,882	
53,1441	956,5938	Lose at most 697 by using the corresponding policy π_{10}.
47,82969	860,9344	
43,04672	774,841	
38,74205	697,3569	
13,50852	243,1533	Quit after 50 iterations?
4,710129	84,78232	
1,64232	29,56177	
0,57264i	10,30755	
0,199668	3,594021	New guarantee:
0,06962	1,253157	Lose at most 10 by using π_{50} (actually,$\left.\pi_{50}=\pi_{10}\right)$
0,024275	0,436949	
0,008464	0,152355	
0,002951	0,053123	

How Many Iterations? Discount 0.99

							Possible	Bounds are incrementally tightened!
							diff from	
						Greatest	optimal	
Iteration	s1	s2	s3	s4	s5	change	policy	
0	0	0	0	0	0			
1	-1	-1	-1	100	-100	100	19800	Quit after 250 iterations?
10	756,356	657,179	756,179	956,179	656,179	91,3517	18087,6	
20	1620,93	1521,93	1620,93	1820,93	1520,93	82,6169	16358,1	
30	2403	2304	2403	2603	2303	74,7172	14794	
50	3749,94	3650,94	3749,94	3949,94	3649,94	61,1117	12100,1	Guarantee:
100	6139,68	6040,68	6139,68	6339,68	6039,68	36,973	7320,65	
150	7585,48	7486,48	7585,48	7785,48	7485,48	22,3689	4429,04	
200	8460,2	8361,2	8460,2	8660,2	8360,2	13,5333	2679,59	621.
250	8989,41	3890,41	8989,41	9189,41	8889,41	8,18773	1621,17	
300	9309,59	9210,59	9309,59	9509,59	9209,59	4,95363	980,818	Quit after 600 iterations?
400	9620,49	9521,49	9620,49	9820,49	9520,49	1,81319	359,011	
500	9734,3	9635,3	9734,3	9934,3	9634,3	0,66369	131,41	
600	9775,95	0676,95	9775,95	9975,95	9675,95	0,24293	48,1002	
700	9791,2	9692,2	9791,2	9991,2	9691,2	0,08892	17,6062	
800	9796,78	9697,78	9796,78	9996,78	9696,78	0,03255	6,44445	Guarantee: Lose at most 48.
900	9798,82	9699,82	9798,82	9998,82	9698,82	0,01191	2,35888	
1000	9799,57	9700,57	9799,57	9999,57	9699,57	0,00436	0,86342	

- Convergence?
- On an acyclic graph, the values converge in finitely many iterations
- On a cyclic graph, value convergence can take infinitely many iterations
- That's why $\varepsilon>0$ is needed

Comparison

Policy Iteration

Start: $\forall s . \pi_{1}(s)=$ some arbitrary action
Better guesses \rightarrow faster convergence

Loop: For steps $i=1,2,3, \ldots$
Compute true expected utilities $E\left(\pi_{i}, s\right)$:
Notation: Define

$$
\begin{aligned}
& Q\left(\pi_{i}, s, a\right)= \\
& R(s, a)+\gamma \sum_{s^{\prime} \in S} P\left(s, a, s^{\prime}\right) E\left(\pi_{i}, s^{\prime}\right)
\end{aligned}
$$

Step I:

// Solve an equation system
Circular definition, harder
solve_eq $\left(\forall s . E\left(\pi_{i}, s\right)=Q\left(\pi_{i}, s, \pi_{i}(s)\right)\right)$
// Represents true expected costs
// for infinite execution of π_{i}

Step 2:

// Compute π_{i+1}
for all states $s \in S$:
π_{i+1} based on true exp.
utility for π_{i}

$$
\pi_{i+1}(s)=\arg \max _{a \in A} Q\left(\pi_{i}, s, a\right)
$$

// Optimal yet?

If $\pi_{i+1}=\pi_{i}$ then stop

Value Iteration given $\epsilon>0$
Start: $\forall s . V_{0}(s)=$ some arbitrary utility
Better guesses \rightarrow faster convergence $V_{0}(s)=0 \rightarrow$ true finite horizon utility, 0 steps

Loop: For steps $i=1,2,3, \ldots$
Compute expected finite-horizon utilities $V_{i}(s)$:
Notation: Define
New def.

$$
\begin{aligned}
& Q\left(V_{i-1}, s, a\right)= \\
& R(s, a)+\gamma \sum_{s^{\prime} \in S} P\left(s, a, s^{\prime}\right) V_{i-1}\left(s^{\prime}\right)
\end{aligned}
$$

$$
\text { of } Q(
$$

Step I:
// Use the old $i-1$ step rewards

$$
\text { for all states } s \in S \text { : }
$$

$$
V_{i}(s)=\max _{a \in A} Q\left(V_{i-1}, s, a\right)
$$

// Good enough yet?
If $\max _{s \in S}\left|V_{i}(s)-V_{i-1}(s)\right|<\epsilon$ then stop
Finishing:
// Compute π
π_{i} based on expected finite horizon utility
for all states $s \in S$:

$$
\pi(s)=\arg \max _{a \in A} Q\left(V_{\text {last }}, s, a\right)
$$

Discussion

- Both algorithms terminate in a polynomial number of iterations
- (Assuming $\epsilon>0$ for VI)
- But the variable in the polynomial is the number of states
- Need to examine the entire state space in each iteration
- $\boldsymbol{\rightarrow}$ Requires significant time and space
- Probabilistic planning is EXPTIME-complete, even for set-theoretic planning
- (Like propositional logic: Simplified - no variables, no parameters)
- Methods exist for reducing the search space, and for approximating optimal solutions

Value Iteration given $\epsilon>0$
Start: $\forall s . V_{0}(s)=$ some arbitrary reward
Better guesses \rightarrow faster convergence
$V_{0}(s)=0 \rightarrow$ true finite horizon reward, 0 steps
Loop: For steps $i=1,2,3, \ldots$
Compute pseudo-utilities $V_{i}(s)$:

Notation: Define

$$
\begin{aligned}
& Q\left(V_{i-1}, s, a\right)= \\
& R(s, a)+\gamma \sum_{s^{\prime} \in S} P\left(s, a, s^{\prime}\right) V_{i-1}\left(s^{\prime}\right)
\end{aligned}
$$

New def. of $Q()$

Step I:

// Use the old $i-1$ step rewards for all states $s \in S$:

$$
V_{i}(s)=\max _{a \in A} Q\left(V_{i-1}, s, a\right)
$$

// Good enough yet?
If $\max _{s \in S}\left|V_{i}(s)-V_{i-1}(s)\right|<\epsilon$ then stop

Finishing:

// Compute π π_{i} based on finite horizon rewards

for all states $s \in S$:

$$
\pi(s)=\arg \max _{a \in A} Q\left(V_{\text {last }}, s, a\right)
$$

Partial Observability

Overview

Non-Observable:
 No information gained after action

Fully Observable: Exact outcome known after action

Partially Observable:

 Some information gained after actionDeterministic:
Exact outcome known in advance

Non-deterministic:
Multiple outcomes, no probabilities

Probabilistic:

Multiple outcomes with probabilities

Classical planning (possibly with extensions)

Information dimension is meaningless!

NOND:	FOND:	POND:		
Conformant Planning	Conditional			
(Contingent) Planning			\quad	Partially Observable,
:---:				
Non-Deterministic				

- In general:
- Full information is the easiest
- Partial information is the hardest!

