

Automated Planning

Miscellaneous Topics...

Jonas Kvarnström Automated Planning Group Department of Computer and Information Science Linköping University

Deferred Evaluation / Lazy Search

Deferred Evaluation

3

- Standard greedy best-first search:
 - Remove the "best" state from the priority queue
 - Check whether it satisfies the goal
 - Generate all successors
 - Calculate their heuristic values
 - Place in priority queue

- Potentially faster: <u>Deferred Evaluation</u> (Fast Downward, ...)
 - Remove the "best" state from the priority queue
 - Check whether it satisfies the goal
 - Calculate its heuristic value (only one!)
 - Generate all successors
 - Place in priority queue using the parent's heuristic value

Takes less time, but less accurate heuristic – "one step behind" Often faster but lower-quality plans

Dual Queue Techniques

Dual Queues

- FF calculates <u>helpful actions</u>
 - Using its planning-graph-based heuristic
 - Then uses these to prune the search tree only uses helpful actions
 - Can be very helpful, but is incomplete
 - May have to restart without helpful actions
- Fast Downward uses <u>dual queues</u>
 - One queue for ordinary successors, one for preferred successors
 - Expansion:
 - Pick the best action from queue 1 (preferred); expand it
 - Pick the best action from queue 2 (non-preferred); expand it
 - Repeat
 - Fewer preferred successors → expanded more often, on average
 - Search remains complete

Boosted Dual Queues

- **<u>Boosted</u>** Dual Queues:
 - Used in later versions of Fast Downward and LAMA
 - Whenever progress is made (new best h-value):
 - Expand 1000 preferred successors
 - If progress is made again within these 1000 successors:
 - Add another 1000, accumulating
 - (Progress made after 300 → keep expanding 1700 more)
 - Still complete, but more aggressive

Parameter Optimization and Portfolio Planners

A general technique – not limited to state-space search!

Parameter Optimization (1)

- Some planners have <u>many parameters</u> to tweak
 - In early planning competitions, domains were <u>known in advance</u>
 - Participants could manually adapt their "domain-independent" planners...
 - Somewhat <u>exaggerated citation</u> from IPC-2008 results:
 - if domain name begins with "PS" and part after first letter is "SR": use algorithm 100
 - else if there are 5 actions, all with 3 args, and 12 non-ground predicates: use algorithm –1000
 - else if all predicates ground and 10th/11th domain name letters "PA": use algorithm –1004
 - else if there are 11 actions and action name lengths range from 5 to 28: use algorithm 107
 - From 2008, this was no longer allowed
 - Planners were handed in
 - Then the <u>organizers</u> ran the planners

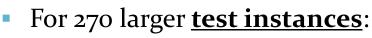
Parameter Optimization (2)

- How about *automatically* learning parameters?
 - One specific form of learning in planning others exist
 - Experimental application to <u>Fast Downward</u>
 - Optimization for speed: 45 params, 2.99 * 10¹³ possible configurations
 - Optimization for quality: 77 params, 1.94 * 10²⁶ possible configurations
 - Example parameters:
 - <u>Heuristics used</u>: h_{max} = h_o, h_m, h_{add}, h_{FF}, h_{cg} (causal graph), h_{cea} (context-enhanced additive), h_{LM} (landmarks), h_{M&S} (merge-and-shrink), h_{LA} (admissible landmarks), h_{LM-cut} (admissible landmark-cut), goal count
 - Method used to <u>combine heuristics</u>: Max, sum, selective max (learns which heuristic to use per state), tie-breaking, Pareto-optimal, alternation
 - **<u>Preferred operators</u>** used or not, for each heuristic
 - Like FF's helpful actions, but used for *prioritization*, not pruning
 - <u>Search strategy</u> combinations: Eager best-first, lazy best-first, EHC
 - Parameter learning framework ParamILS used

Parameter Optimization (3): Results

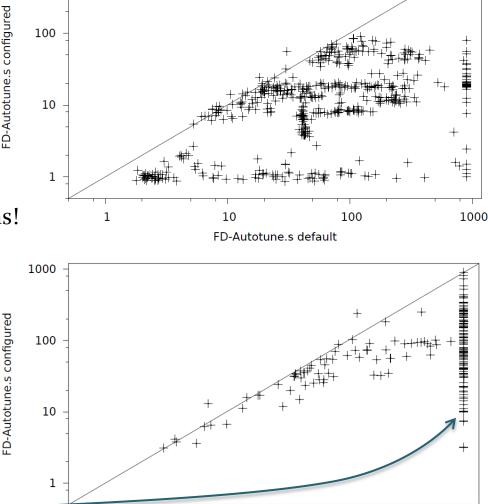
1000

- <u>**Under**</u> the diagonal = <u>**faster**</u> than default configuration ⁻D-Autotune.s configured
 - For 540 small training instances:
 - Very good results
 - To be expected parameters tuned for these specific problems!



- From the same domains
- Performance still improves

Unsolvable in 900 seconds by the default configuration



FD-Autotune.s default

100

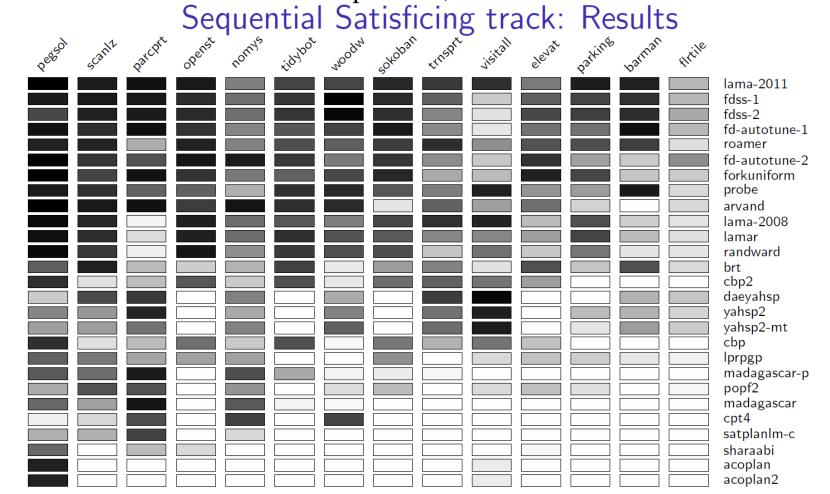
1000

Parameter Optimization (4): Results

Results from the <u>satisficing</u> track of IPC-2011

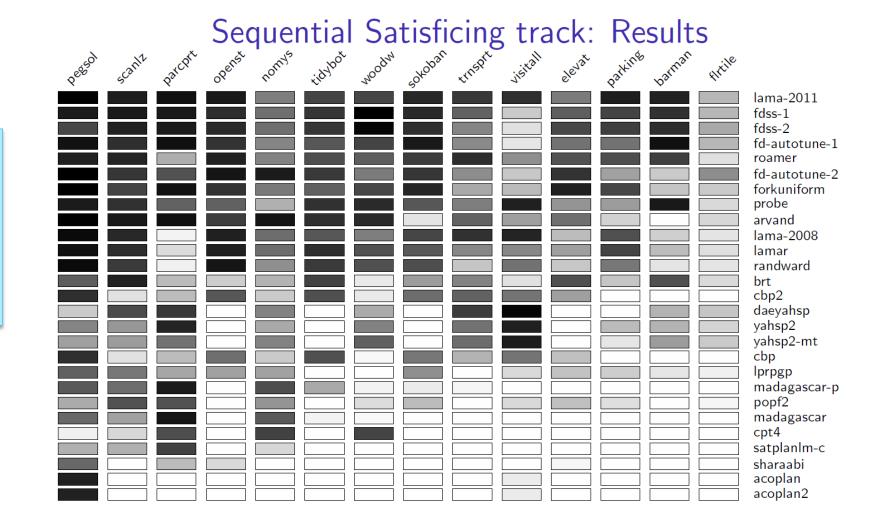
Darker = better!

- Two versions of FD-autotune competed, adapted to older domains
- Some were reused in this competition, most were new Sequential Satisficing track: Result



Portfolio Planning (1)

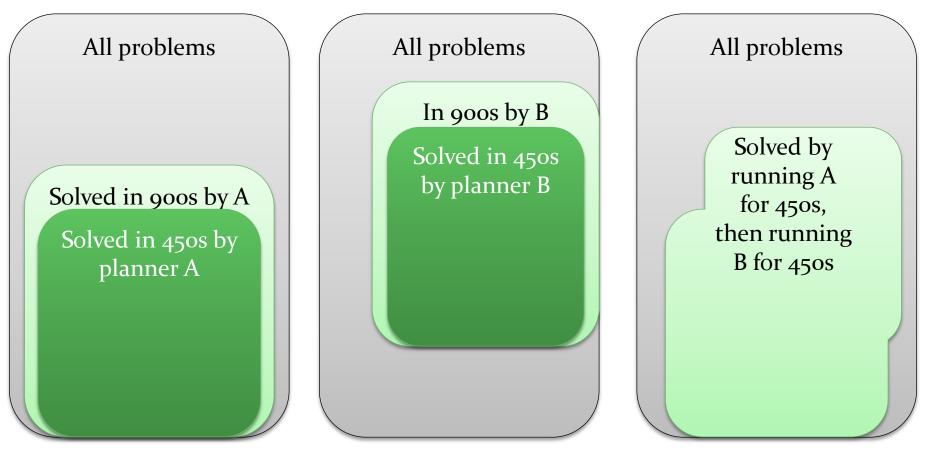
- Observation:
 - Different planners seem good in different domains!



Darker = better!

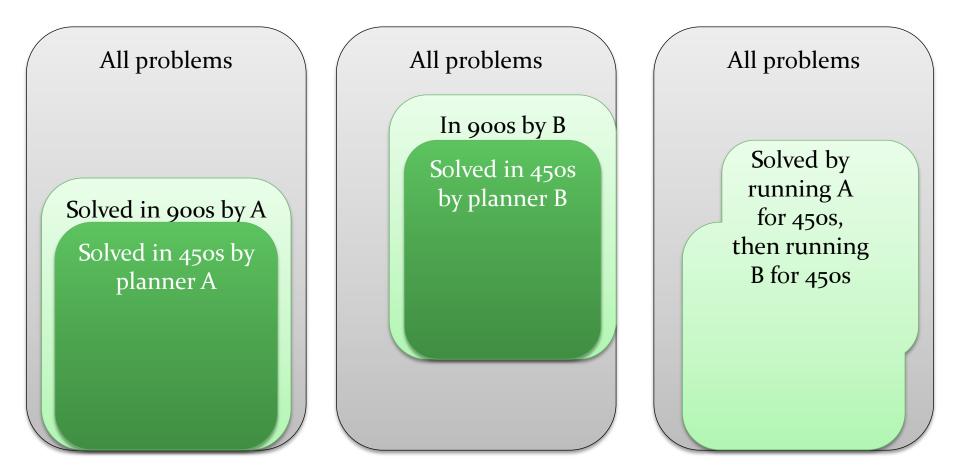
Portfolio Planning (2)

- Further analysis would show:
 - Even if two planners solve equally many problems in one domain, they may solve <u>different</u> problems
 - Also, planners often return plans <u>quickly</u> or <u>not at all</u>



Portfolio Planning (3)

- The competition has a fixed time limit
 - Can benefit from splitting this across <u>multiple algorithms</u>!
 - ▶ <u>Portfolio</u> planning



Portfolio Planning (4)

- Fast Downward Stone Soup: <u>Learning</u>
 - Which configurations to use
 - How much time to assign to each one
 - Given test examples from older domains

Algorithm	Score	Time	Marginal
BJOLP	605	455	46
RHW landmarks	597	0	
LM-cut	593	569	26
h^1 landmarks	588	0	
M&S-bisim 1	447	175	8
h^{\max}	427	0	
M&S-bisim 2	426	432	20
blind	393	0	
M&S-LFPA 10000	316	0	
M&S-LFPA 50000	299	0	
M&S-LFPA 100000	286	0	
Portfolio	654	1631	
"Holy Grail"	673		

Configurations learned for sequential optimal planning

Portfolio Planning (5)

Sequential Optimization track: Results

