
Jonas Kvarnström 

Automated Planning Group 

Department of Computer and Information Science 

Linköping University 





 Standard greedy best-first search: 
 Remove the "best" state from the priority queue 

 Check whether it satisfies the goal 

 Generate all successors 

 Calculate their heuristic values 

 Place in priority queue 

 

 Potentially faster: Deferred Evaluation (Fast Downward, …) 
 Remove the "best" state from the priority queue 

 Check whether it satisfies the goal 

 Calculate its heuristic value (only one!) 

 Generate all successors 

 Place in priority queue using the parent's heuristic value 

Typically takes most of the time 

Takes less time, but less accurate heuristic – "one step behind" 
Often faster but lower-quality plans 





 FF calculates helpful actions 
 Using its planning-graph-based heuristic 

 Then uses these to prune the search tree – only uses helpful actions 

 Can be very helpful, but is incomplete 

▪  May have to restart without helpful actions 

 

 Fast Downward uses dual queues 
 One queue for ordinary successors, one for preferred successors 

 Expansion: 

▪ Pick the best action from queue 1 (preferred); expand it 

▪ Pick the best action from queue 2 (non-preferred); expand it 

▪ Repeat 

 

 Fewer preferred successors  expanded more often, on average 

 Search remains complete 

 



 Boosted Dual Queues: 
 Used in later versions of Fast Downward and LAMA 

 Whenever progress is made (new best h-value): 

▪ Expand 1000 preferred successors 

 If progress is made again within these 1000 successors: 

▪ Add another 1000, accumulating 

▪ (Progress made after 300  keep expanding 1700 more) 

 Still complete, but more aggressive 

 



A general technique – not limited to state-space search! 



 Some planners have many parameters to tweak 
 In early planning competitions, domains were known in advance 

▪ Participants could manually adapt their ”domain-independent” planners… 

 

 Somewhat exaggerated citation from IPC-2008 results: 

▪ if domain name begins with “PS” and part after first letter is “SR”: 
 use algorithm 100 

▪ else if there are 5 actions, all with 3 args, and 12 non-ground predicates: 
 use algorithm −1000 

▪ else if all predicates ground and 10th/11th domain name letters “PA”: 
 use algorithm −1004 

▪ else if there are 11 actions and action name lengths range from 5 to 28: 
 use algorithm 107 

 

 From 2008, this was no longer allowed 

▪ Planners were handed in 

▪ Then the organizers ran the planners 



 How about automatically learning parameters? 
 One specific form of learning in planning – others exist 

 Experimental application to Fast Downward 

▪ Optimization for speed: 45 params, 2.99 * 1013  possible configurations 

▪ Optimization for quality: 77 params, 1.94 * 1026  possible configurations 

 Example parameters: 

▪ Heuristics used: hmax = h0, hm, hadd, hFF, hcg (causal graph), 
hcea (context-enhanced additive), hLM (landmarks), hM&S (merge-and-shrink), 
hLA (admissible landmarks), hLM-cut (admissible landmark-cut), goal count 

▪ Method used to combine heuristics: Max, sum, selective max (learns which 
heuristic to use per state), tie-breaking, Pareto-optimal, alternation 

▪ Preferred operators used or not, for each heuristic 

▪ Like FF's helpful actions, but used for prioritization, not pruning 

▪ Search strategy combinations: Eager best-first, lazy best-first, EHC 

▪ … 

 Parameter learning framework ParamILS used 

 



 Under the diagonal = faster 
than default configuration 
 
 For 540 small 

training instances: 

▪ Very good results 

▪ To be expected – parameters  
tuned for these specific problems! 

 

 For 270 larger test instances: 

▪ From the same domains 

▪ Performance still improves 

 

 
 

 

Unsolvable in 900 seconds 
by the default configuration 



 Results from the satisficing track of IPC-2011 
 Two versions of FD-autotune competed, adapted to older domains 

 Some were reused in this competition, most were new 

D
ar

k
er

 =
 b

et
te

r!
 



 Observation: 
 Different planners seem good in different domains! 

D
ar

k
er

 =
 b

et
te

r!
 



All problems 

Solved in 900s by A 

 Further analysis would show: 
 Even if two planners solve equally many problems in one domain, 

they may solve different problems 

 Also, planners often return plans quickly or not at all 

Solved in 450s by 
planner A 

All problems 

In 900s by B 

Solved in 450s 
by planner B 

All problems 

Solved by 
running A 
for 450s, 

then running 
B for 450s 



All problems 

Solved in 900s by A 

 The competition has a fixed time limit 
 Can benefit from splitting this across multiple algorithms! 

  Portfolio planning 

Solved in 450s by 
planner A 

All problems 

In 900s by B 

Solved in 450s 
by planner B 

All problems 

Solved by 
running A 
for 450s, 

then running 
B for 450s 



 Fast Downward Stone Soup: Learning 
 Which configurations to use 

 How much time to assign to each one 

 Given test examples from older domains 

 

 

 

 

Configurations 
learned for 
sequential 

optimal planning 



 Results from IPC-2011: 


