
Jonas Kvarnström

Automated Planning Group

Department of Computer and Information Science

Linköping University

 Standard greedy best-first search:
 Remove the "best" state from the priority queue

 Check whether it satisfies the goal

 Generate all successors

 Calculate their heuristic values

 Place in priority queue

 Potentially faster: Deferred Evaluation (Fast Downward, …)
 Remove the "best" state from the priority queue

 Check whether it satisfies the goal

 Calculate its heuristic value (only one!)

 Generate all successors

 Place in priority queue using the parent's heuristic value

Typically takes most of the time

Takes less time, but less accurate heuristic – "one step behind"
Often faster but lower-quality plans

 FF calculates helpful actions
 Using its planning-graph-based heuristic

 Then uses these to prune the search tree – only uses helpful actions

 Can be very helpful, but is incomplete

▪ May have to restart without helpful actions

 Fast Downward uses dual queues
 One queue for ordinary successors, one for preferred successors

 Expansion:

▪ Pick the best action from queue 1 (preferred); expand it

▪ Pick the best action from queue 2 (non-preferred); expand it

▪ Repeat

 Fewer preferred successors expanded more often, on average

 Search remains complete

 Boosted Dual Queues:
 Used in later versions of Fast Downward and LAMA

 Whenever progress is made (new best h-value):

▪ Expand 1000 preferred successors

 If progress is made again within these 1000 successors:

▪ Add another 1000, accumulating

▪ (Progress made after 300 keep expanding 1700 more)

 Still complete, but more aggressive

A general technique – not limited to state-space search!

 Some planners have many parameters to tweak
 In early planning competitions, domains were known in advance

▪ Participants could manually adapt their ”domain-independent” planners…

 Somewhat exaggerated citation from IPC-2008 results:

▪ if domain name begins with “PS” and part after first letter is “SR”:
 use algorithm 100

▪ else if there are 5 actions, all with 3 args, and 12 non-ground predicates:
 use algorithm −1000

▪ else if all predicates ground and 10th/11th domain name letters “PA”:
 use algorithm −1004

▪ else if there are 11 actions and action name lengths range from 5 to 28:
 use algorithm 107

 From 2008, this was no longer allowed

▪ Planners were handed in

▪ Then the organizers ran the planners

 How about automatically learning parameters?
 One specific form of learning in planning – others exist

 Experimental application to Fast Downward

▪ Optimization for speed: 45 params, 2.99 * 1013 possible configurations

▪ Optimization for quality: 77 params, 1.94 * 1026 possible configurations

 Example parameters:

▪ Heuristics used: hmax = h0, hm, hadd, hFF, hcg (causal graph),
hcea (context-enhanced additive), hLM (landmarks), hM&S (merge-and-shrink),
hLA (admissible landmarks), hLM-cut (admissible landmark-cut), goal count

▪ Method used to combine heuristics: Max, sum, selective max (learns which
heuristic to use per state), tie-breaking, Pareto-optimal, alternation

▪ Preferred operators used or not, for each heuristic

▪ Like FF's helpful actions, but used for prioritization, not pruning

▪ Search strategy combinations: Eager best-first, lazy best-first, EHC

▪ …

 Parameter learning framework ParamILS used

 Under the diagonal = faster
than default configuration

 For 540 small

training instances:

▪ Very good results

▪ To be expected – parameters
tuned for these specific problems!

 For 270 larger test instances:

▪ From the same domains

▪ Performance still improves

Unsolvable in 900 seconds
by the default configuration

 Results from the satisficing track of IPC-2011
 Two versions of FD-autotune competed, adapted to older domains

 Some were reused in this competition, most were new

D
ar

k
er

 =
 b

et
te

r!

 Observation:
 Different planners seem good in different domains!

D
ar

k
er

 =
 b

et
te

r!

All problems

Solved in 900s by A

 Further analysis would show:
 Even if two planners solve equally many problems in one domain,

they may solve different problems

 Also, planners often return plans quickly or not at all

Solved in 450s by
planner A

All problems

In 900s by B

Solved in 450s
by planner B

All problems

Solved by
running A
for 450s,

then running
B for 450s

All problems

Solved in 900s by A

 The competition has a fixed time limit
 Can benefit from splitting this across multiple algorithms!

 Portfolio planning

Solved in 450s by
planner A

All problems

In 900s by B

Solved in 450s
by planner B

All problems

Solved by
running A
for 450s,

then running
B for 450s

 Fast Downward Stone Soup: Learning
 Which configurations to use

 How much time to assign to each one

 Given test examples from older domains

Configurations
learned for
sequential

optimal planning

 Results from IPC-2011:

