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Automated Planning

Miscellaneous Topics...




Deferred Evaluation / Lazy Search




Deferred Evaluation

Standard greedy best-first search:
Remove the "best" state from the priority queue
Check whether it satisfies the goal
Generate all successors

Calculate their heuristic values Typically takes most of the time

Place in priority queue

Potentially faster: Deferred Evaluation (Fast Downward, ...)

Remove the "best" state from the priority queue

Check whether it satisfies the goal

Calculate its heuristic value (only one!)

Generate all successors

Place in priority queue using the parent's heuristic value

Takes less time, but less accurate heuristic — "one step behind"

Often faster but lower-quality plans




Dual Queue Techniques




Dual Queues

FF calculates helpful actions
Using its planning-graph-based heuristic

Then uses these to prune the search tree — only uses helpful actions

Can be very helpful, but is incomplete
=» May have to restart without helpful actions

Fast Downward uses dual queues

One queue for ordinary successors, one for preferred successors

Expansion:
Pick the best action from queue 1 (preferred); expand it
Pick the best action from queue 2 (non-preferred); expand it
Repeat

Fewer preferred successors = expanded more often, on average

Search remains complete



Boosted Dual Queues

Boosted Dual Queues:

Used in later versions of Fast Downward and LAMA

Whenever progress is made (new best h-value):
Expand 1000 preferred successors

If progress is made again within these 1000 successors:
Add another 1000, accumulating
(Progress made after 300 = keep expanding 1700 more)

Still complete, but more aggressive



Parameter Optimization and
Portfolio Planners




Parameter Optimization (1)

Some planners have many parameters to tweak

In early planning competitions, domains were known in advance

Participants could manually adapt their "domain-independent” planners...

Somewhat exaggerated citation from IPC-2008 results:

if domain name begins with “PS” and part after first letter is “SR™
use algorithm 100

else if there are 5 actions, all with 3 args, and 12 non-ground predicates:
use algorithm -1000

else if all predicates ground and 10th/11ith domain name letters “PA”:
use algorithm -1004

else if there are 11 actions and action name lengths range from 5 to 28:
use algorithm 107

From 2008, this was no longer allowed
Planners were handed in

Then the organizers ran the planners




Parameter Optimization (2)

How about automatically learning parameters?
One specific form of learning in planning - others exist

Experimental application to Fast Downward

Optimization for speed: 45 params, 2.99 * 103 possible configurations
Optimization for quality: 77 params, 1.94 * 10*° possible configurations

Example parameters:
Heuristicsused: h, ., = h,, h,, h,44, hep, h, (causal graph),

h., (context-enhanrggzl additive), h;,, (landmarks), hy (merge-and-shrink),

h, , (admissible landmarks), h;,, ., (admissible landmark-cut), goal count

Method used to combine heuristics: Max, sum, selective max (learns which
heuristic to use per state), tie-breaking, Pareto-optimal, alternation

Preferred operators used or not, for each heuristic

Like FF's helpful actions, but used for prioritization, not pruning

Search strategy combinations: Eager best-first, lazy best-first, EHC

Parameter learning framework ParamILS used



Under the diagonal = faster *** |

than default configuration

For 540 small
training instances:

Very good results
To be expected - parameters

tuned for these specific problems!

For 270 larger test instances:
From the same domains

Performance still improves

Unsolvable in 9oo seconds
by the default configuration
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Results

(4)

Results from the satisficing track of [PC-2011
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Observation:

Different planners seem good in different domains!
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Portfolio Planning (2)

Further analysis would show:

Even if two planners solve equally many problems in one domain,
they may solve different problems

Also, planners often return plans quickly or not at all

/ All problems \ / All problems \ / All problems \
/ In 9oos by B \

Solved in 450s Solve.d b}; )
runnin
/Solved in 9oos b A\ by planner B for 4555,
Solved in 450s by then running
planner A B for 450s




Portfolio Planning (3)

The competition has a fixed time limit

Can benetfit from splitting this across multiple algorithms!

=> Portfolio planning

/ All problems \

/Solved in goos b A\

Solved in 450s by
planner A

/ All problems \

/ In 9oos by B \

Solved in 450s
by planner B

/ All problems \

Solved by
running A
for 450s,
then running
B for 450s

\

L/




Portfolio Planning (4)

Fast Downward Stone Soup: Learning

Which configurations to use

How much time to assign to each one

Given test examples from older domains

Algorithm Score Time Marginal
BIJOLP 605 455 46
RHW landmarks 597 0 —
LM-cut 593 569 26
h' landmarks 588 0 —
M&S-bisim 1 447 175 8
}? I ax 4 2 7 0 .
M&S-bisim 2 426 432 20
blind 393 0 —
M&S-LFPA 10000 316 0 —
M&S-LFPA 50000 299 0 —
M&S-LFPA 100000 286 0 —
Portfolio 654 1631

“Holy Grail” 673

Configurations
learned for
sequential

optimal planning
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