
Jonas Kvarnström

Automated Planning Group

Department of Computer and Information Science

Linköping University

 So far, we have assumed we know in advance:
 The state of the world when plan execution starts

 The outcome of any action, given the state where it is executed

▪ State + action  unique resulting state

 So if there is a solution:
 There is an unconditional sequential solution

Start
here…

Model says: we end up
in this specific state!

Planning Execution

Just follow the unconditional plan…

 In reality, actions may have multiple outcomes
 Nondeterministic planning:

▪ State + action  set of possible new states (no more info during planning)

 Probabilistic planning:

▪ State + action  probability distribution over a set of possible next states

▪ Can plan for all outcomes, or ignore the least probable outcomes

▪ Can generate plans with high probability of reaching the goal

Start
here…

Model says: we end up
in one of these states

Planning Execution

We need something different here…

(with this probability?)

 Sometime, specific outcomes are intended or nominal


Intended outcome: is true
Unintended outcome: is false


Intended outcome:
Unintended outcome:

 Sometimes there are no intended outcomes
 Tossing a coin: different outcomes

"Intentions" are just
our interpretation!

To a planner,

there is generally
no difference…

 With multiple outcomes, we can generate:
 Strong solutions (guaranteed to reach the goal)

 Weak solutions (may reach the goal)

 Probabilistic solutions (reaching the goal with probability >= limit)

Deterministic:

Exact outcome known in advance

Classical planning (possibly with extensions)

Non-deterministic:

Multiple outcomes, no probabilities

?

Probabilistic:

Multiple outcomes with probabilities

?

 But what about information gained during execution?

Non-deterministic or probabilistic model

Fully observable:
Our sensors can determine

exactly which state we are in
after executing an action

A plan could:
 Define which action to perform
 depending on which exact state you actually ended up in

Start
here…

Model says: we end up
in one of these states

Planning Execution

Start
here…

Sensors say: we are
in this state!

Non-deterministic or probabilistic model

Non-observable:
We have no sensors

to determine what happened
Only predictions can guide us

A plan could:
 Define which action to perform
 depending on which set of states you might be in

Start
here…

Model says: we end up
in one of these states

Planning Execution

Start
here…

No sensors!
No new information

Non-deterministic or probabilistic model

Partially observable:
Sensors can observe some

properties of the world
 we are in a set of states

A plan could:
 Define which action to perform
 depending on which set of states you might be in
 Take into account new information after sensing

Start
here…

Model says: we end up
in one of these states

Planning Execution

Start
here…

Sensors say: we are in
one of these states

Non-Observable:

No information

gained after action

Fully Observable:

Exact outcome

known after action

Partially Observable:

Some information gained

after action

Deterministic:

Exact outcome

known in advance

Classical planning (possibly with extensions)

(Information dimension is meaningless)

Non-deterministic:

Multiple outcomes,

no probabilities

Non-deterministic

Conformant Planning

Conditional

(Contingent) Planning

(No specific name)

Probabilistic:

Multiple outcomes

with probabilities

Probabilistic

Conformant Planning

(Special case of POMDPs)

Probabilistic

Conditional Planning

Markov Decision

Processes (MDPs)

Partially Observable MDPs

(POMDPs)

 In general:
 Full information is the easiest

 Partial information is the hardest!

Non-Observable:

No information

gained after action

Fully Observable:

Exact outcome

known after action

Partially Observable:

Some information gained

after action

Deterministic:

Exact outcome

known in advance

Classical planning (possibly with extensions)

(Information dimension is meaningless)

Non-deterministic:

Multiple outcomes,

no probabilities

Non-deterministic

Conformant Planning

Conditional

(Contingent) Planning

(No specific name)

Probabilistic:

Multiple outcomes

with probabilities

Probabilistic

Conformant Planning

(Special case of POMDPs)

Probabilistic

Conditional Planning

Markov Decision

Processes (MDPs)

Partially Observable MDPs

(POMDPs)

 In general:
 Full information is the easiest

 Partial information is the hardest!

Jonas Kvarnström

Automated Planning Group

Department of Computer and Information Science

Linköping University

 Fully Observable Markov Decision Processes:
 Action outcomes are:

▪ Probabilistic

▪ Fully observable

Start
here…

Model says: will end up
in one of these states

Planning Execution

Start
here…

Sensors say: did end up
in this state!

 Formal models:
 Restricted state transition system  

▪ Finite set of world states

▪ Finite set of actions

▪   State transition function, where 

 Stochastic system 

▪ P(s, a, s'): Given that we are in s and execute a,
 the probability of ending up in s’

▪ For any state s and action a, we have   :
Exactly 100% probability of ending up somewhere

Sometimes written

At location 5

At location 6

Intermediate

location

Action: drive-uphill

Model says: 2% risk
of slipping, ending
up somewhere else

Arc indicates
outcomes of a
single action

 May have very unlikely outcomes…

At location 5

At location 6

Intermediate

location

Broken

Very unlikely, but may
still be important to
handle: Contingency
plans using other
vehicles, etc.

Probability sum =

 And very many outcomes…

At location 5
Fuel level

At location 6
Fuel level

Intermediate

location

Broken

At location 6
Fuel level

As always, one state
for every combination

of properties

 Like before, often many executable actions in every state

Probability sum = 1
(single certain outcome)

Probability sum = 1
(three possible outcomes)

Probability sum = 1
(three possible outcomes)

We choose
the action…

Nature chooses
the outcome!

Search yields an
AND/OR graph

 Example: A single robot
 Moving between locations

 For simplicity,
states correspond
directly to
locations

▪

▪

▪

▪

▪

 Some transitions are deterministic, some are stochastic

▪ Trying to move from to : You may end up at instead (% risk)

▪ Trying to move from to : You may stay where you are instead (% risk)

 (Can’t always move in both directions, e.g. due to terrain gradient)

s2 s3

s4 s1

s5

 Recall the definition of the probability function:
 P(s, a, s') is the probability of ending up in s’

 given that we are in s and execute a

Nothing else matters!

a

 This type of system has the Markov property: is memoryless

At location 5

At location 6

Intermediate

location

Broken

At location 3

At location 4

…

…

Only the
current state

We don’t need to
know the states we

visited before…

…To find out where
we may end up,

with which prob.

and the
action…

 We can still remember some things about the past!
 Example: predicate visited(location)

▪ Keeps track of where we have been

 But then this information is encoded and stored in the current state

▪ Which is finite, has a constant size

▪ No need to query an ever-growing sequence of past states

 Two important consequences for plan structures:
 Action choice must depend on the current state

▪ And thereby on earlier execution-time outcomes!

 Cannot have a limit on the number of actions executed!

 In MDP planning, we generate policies
 Usually denoted by π

 Defines, for each state,
which action to execute whenever we end up in that state

▪

s4 s1

 Since a policy defines an action for every state:
 We could define a set of goal states where execution can end

▪ Similar to classical planning

 Usually one assumes a policy never terminates!

▪ The policy always specifies
another action to execute

▪ Objectives specified through
costs and rewards
(later!)

s2 s3

s4 s1

s5

 Example


s2 s3

s4 s1

s5

May end up in or , wait there infinitely many times

 Example


s2 s3

s4 s1

s5

Always reaches the state , waits there infinitely many times

 Example


s2 s3

s4 s1

s5

Reaches state with % probability ”in the limit”

 Executing a policy results in a state sequence: A history
 Infinite, since policies do not terminate

  

 For classical planning:
 We know the initial state

 Actions are deterministic

  A plan yields a single history (last state repeated infinitely)

 For probabilistic planning:
 Initial states can be probabilistic

▪ For every state s, there will be a probability P(s) that we begin in the state s

 Actions can have multiple outcomes

  A policy can yield many different histories

▪ Which one? Only known at execution time!

 (index zero): Variable used in histories, etc

: concrete state name used in diagrams

We may have =

 Example 1


 Even if we only consider starting in : Two possible histories

   – Reached , waits indefinitely
  – Reached , waits indefinitely

s2 s3

s4 s1

s5

How likely are these histories?

 Each policy induces a probability distribution over histories

 Let  

 With unknown initial state:

▪  



 The book:

▪ Assumes you start
in a known state

▪ So all histories start
with the same state

▪  



s2 s3

s4 s1

s5

 Example


 Two possible histories, if we always start in s1
      

     



s2 s3

s4 s1

s5

 Example


      

     



s2 s3

s4 s1

s5

 Example


       

      

      

      

s2 s3

s4 s1

s5

 What is the objective?
 In classical planning: Want a plan resulting in a goal state

▪ Natural formulation, since a plan always ends up in the same state

 In probabilistic planning: This is still possible

▪ A weak solution may reach a goal state in a finite number of steps

▪ A strong solution will reach a goal state in a finite number of steps

▪ A strong cyclic solution will reach a goal state in a finite number of steps
given a fairness assumption:
Informally, ”if we can exit a loop, we eventually will”

s2 s3

s5

Start Destination / goal

 Alternative model, often used in MDP planning:

 Numeric cost C(s,a) for each state s and action a

 Numeric reward R(s) for each state s

 Example:
▪

▪

▪

▪

▪

 Utility functions
 Suppose a policy leads us to go through a certain history (state sequence)

 How ”useful / valuable" is this history to us?

 First attempt:

 h = s0, s1, …  V(h | π) = i ≥ 0 (R(si) – C(si,π(si)))

Add the reward for

being in state si
Subtract the cost of

the action chosen in si

Utility of history h
given policy π

 Example:
 Suppose π1 happens to result in  



 We stay at forever, executing “wait”,
so we get an infinite amount of rewards!

This is not the only
history that could

result from the policy!

That’s why we specify
the policy and the history

to calculate a utility…

 What’s the problem, given that we "like" being in state ?

 We can’t distinguish between different ways of getting there!

     

       

 Both appear equally good…

 Solution: Use a discount factor, , with 0 ≤  ≤ 1

 To avoid divergence (infinite utility values V(…))

 To model "impatience": rewards and costs far in the future
are less important to us

 Discounted utility of a history:

 V(h | π) = i ≥ 0  i (R(si) – C(si,π(si)))

 Distant rewards/costs
have less influence

 Convergence (with finite results)
is guaranteed if 

 Still only tells us the utility of a history
 But we can’t force a history

 Can only decide a policy – which can lead to many histories

 Assuming a known starting state:
 Expected utility of a policy: 

▪ How probable is each history (outcome), and how valuable is it to us?

 A policy is optimal if no other policy has greater expected utility

▪ For every

 A solution is an optimal policy!

▪ Gives us the greatest (expected) reward that we can get,
given the specified probabilities, costs, and rewards



 

 

Given that we start in s1,
this simple policy can lead to only

two different histories…
80% chance of history h1,
20% chance of history h2

We expect a reward of 256.3 on average



 

 

Given that we start in s1,
also two different histories…

80% chance of history h1,
20% chance of history h2

Expect 531,7 on average (π1 gave 256.3)

 Markov Decision Processes
 Underlying world model: Stochastic system

 Plan representation: Policy – which action to perform in any state

 Goal representation: Utility function defining “solution quality”

 Planning problem: Optimization: Maximize expected utility

 To simplify the presentation of important principles:
 Let’s consider a special case:

▪ We start in a known state, s0

▪ All rewards are 0

 Can easily be generalized

 We should minimize the expected cost of a policy:

 E(π) = h P(h | π) C(h | π)

▪ Where C(h | π) = i ≥ 0  i C(si, π(si)) (discounted cost)

▪ replaces V(h | π) = i ≥ 0  i (R(si) – C(si,π(si))) (discounted cost/reward)

 We will also need to know:
 Eπ(s) = the expected cost of executing π

starting in some specific state s

 How can we calculate ?

 If we visit the states   where

▪  

 But only the first state is known in advance!

 If π is a policy, then

 Eπ(s) = C(s, π(s)) +  s’ S P(s, π(s), s') Eπ(s')

 The expected cost of executing π starting in s

 Is the cost of executing the action chosen by the policy, π(s), in s

 Plus the discount factor  times…

▪ …the sum, for all possible states s’ S that you might end up in,

▪ of the probability P(s, π(s), s') of actually ending up in that state
given the action π(s) chosen by the policy

▪ times the expected cost Eπ(s') of executing π starting in that new state s’

 (If you expand in one step…)

 Eπ(s) = C(s, π(s)) +  s’ S P(s, π(s), s') [
 C(s', π(s')) +  s’’ S P(s’, π(s''), s'') Eπ(s'')
]

 = The expected cost of executing starting in :

 The cost of the first action:)

 Plus the discount factor  times…

▪ [Ending up in]

 = the expected cost of executing starting in :

 The cost of the first action:)

▪ (Which has multiple outcomes!)

 Plus the discount factor  times…

▪ [Ending up in]

▪ Plus
[Ending up in]

 Seems like we could easily calculate this recursively!
 defined in terms of)

 defined in terms of) and)

 …

 Just continue until you reach the end!

 But there isn’t always an ”end”!
 Modified example below is a valid policy π:

▪ defined in terms of)

▪) defined in terms of) and)

▪) defined in terms of)

▪) defined in terms of)…

 If π is a policy, then for all states s:

 Eπ(s) = C(s, π(s)) +  s’ S P(s, π(s), s') Eπ(s')

 The expected cost of executing π starting in s

 Is the cost of executing the action chosen by the policy, π(s), in s

 Plus the discount factor  times…

▪ …the sum, for all possible states s’ S that you might end up in,

▪ of the probability P(s, π(s), s') of actually ending up in that state
given the action π(s) chosen by the policy

▪ times the expected cost Eπ(s') of executing π starting in that new state s’

This is an equation system: |S| equations, |S| variables!

Requires different solution methods…

 Bellman’s Principle of Optimality:
 An optimal policy has the property that

whatever the initial state and initial decision are,
the remaining decisions must constitute an optimal policy
with regard to the state resulting from the first decision

 Problem: Find a policy
that minimizes cost

given that we start in .

Suppose that
an optimal policy

begins with ,
so that the next state is .

Then

must also minimize cost
given that we start in !

 Sounds trivial? Depends on the Markov Property!
 Suppose costs depended on which states you had visited before

 Suppose you want to go 

▪ First action should be

 Now you need to go 

▪ Because you have visited before,) is very expensive

▪ Best solution:     , cost of

 But if you only wanted
to go  :

▪),
with a cost of

 This can’t happen here!

▪ Markovian!

Local change!

 Let’s hypothesize:
What if I made this local change, but kept everything else?

▪ Let Qπ(s,a) be the expected cost of π in a state s
if we start by executing the given action a,
but we use the policy π from then onward

▪ Eπ(s) = C(s, π(s)) +  s' S P(s, π(s), s’) Eπ(s')
▪ Q π(s,a) = C(s, a) +  s' S P(s, a, s’) Eπ(s')

 Example: Eπ(s1)

▪ The expected cost of following the current policy

▪ Starting in s1, beginning with move(l1,l2)

 Q π(s1, move(l1,l4))

▪ The expected cost of first trying to move from l1 to l4,
then following the current policy

 Suppose you have an everywhere optimal policy π*
 That is, no other policy gives a better result for any starting state

 Then, because of the principle of optimality:
 For all states s, Eπ*(s) = mina Q π*(s,a)

 For all states s, Eπ*(s) = mina (C(s,a) +  s' S P(s, a, s’) Eπ*(s'))

 In every state,
the local choice made by the policy
is locally optimal

Choice
now

”The
rest”

 Suggests a specific type of solution method:
 Try to separate the decision in this state

from the decisions in the remainder of the policy

 Use iterative refinement

▪ Start with some initial values (for example, a random policy)

▪ Find local improvements

 Example:

▪ The expected cost of following the current policy

▪ Starting in , beginning with)



▪ The expected cost of first trying to move from to ,
then following the current policy

If doing) first
has a lower expected cost,

we may want to modify
the current policy:

Details: Next time!

 Action representations:
 The book only deals with the underlying semantics:

Explicit enumeration of each P(s, a, s')

 Several “convenient” representations possible,
such as Bayes networks, probabilistic operators

 Probabilistic PDDL: new constructs for effects, initial state


▪ Effect takes place with probability , etc.

▪ Sum of probabilities (can be strictly less  implicit empty effect)

▪ (define (domain bomb-and-toilet)

 (:requirements :conditional-effects :probabilistic-effects)

 (:predicates (bomb-in-package ?pkg) (toilet-clogged) (bomb-defused))

 (:action dunk-package

 :parameters (?pkg)

 :effect (and

 (when (bomb-in-package ?pkg) (bomb-defused))

 (probabilistic 0.05 (toilet-clogged)))))

▪ (define (problem bomb-and-toilet)

 (:domain bomb-and-toilet)

 (:requirements :negative-preconditions)

 (:objects package1 package2)

 (:init (probabilistic 0.5 (bomb-in-package package1)

 0.5 (bomb-in-package package2)))

 (:goal (and (bomb-defused) (not (toilet-clogged)))))

5% chance of toilet-clogged,
95% chance of no effect

First, a "standard" effect

Probabilistic initial state

▪

▪

▪

▪

▪

▪

▪

▪

▪

▪

▪

▪

▪

▪

▪

▪

▪

▪

▪

▪

▪

▪

▪

▪

▪

▪

▪

▪

 Example Problem with Rewards and Costs

 In the model we used, rewards and costs are always ”taken together”

▪ Can’t get a reward without a cost or vice versa

▪ R(s) – C(s, a): You are in a state, and then you execute an action in that state

 To simplify, we include the reward in the cost!

▪ Decrease each C(s,a) by R(s)

▪ Transitions from s5 are more expensive

▪ Transitions from s4 are less expensive

▪ Sometimes
negative costs –
not a problem!

 Objective is
to minimize cost

▪ Automatically takes
rewards into account

 First algorithm: Policy iteration
 General idea:

▪ Start out with an initial policy, maybe randomly chosen

▪ Calculate the expected cost of executing that policy
from each state

▪ Update the policy by making a local decision for each state :
”Which action should my improved policy choose in this state,
given the expected costs of the current policy?”

▪ Iterate until convergence (the policy no longer changes)

π1

 Policy iteration requires an initial policy
 Let’s start by choosing “wait” in every state

 Let’s set a discount factor: 

▪ Easy to use in calculations on these slides,
but in reality we might use a larger factor
(we’re not that short-sighted!)

π1

 Calculate expected costs for the current policy π1
 Simple: Chosen transitions are deterministic + return to the same state!

▪   

▪ 

▪ 

▪ 

▪ 

▪ 

 Simple equations to solve:

▪ 

▪ 

▪ 

▪ 

▪ 

Given this policy π1:
High costs if we start in s5,

high rewards if we start in s4

Seems best – chosen!

 For every state s:
 Let 

 That is, find the action a that minimizes   

▪

 These are not the true expected costs for starting in state s1!

▪ They are only correct if we locally change the first action to execute
and then go on to use the previous policy (in this case, always waiting)!

▪ But they can be proven to yield good guidance,
as long as you apply the improvements repeatedly (as policy iteration does)

What is the best
local modification

according to the
expected cost

of the current policy?

 For every state s:
 Let 

 That is, find the action a that minimizes C(s, a) +  s' S P(s, a, s’) Eπ1(s')

▪

What is the best
local modification

according to the
expected cost

of the current policy?

 For every state s:
 Let 

 That is, find the action a that minimizes C(s, a) +  s' S P(s, a, s’) Eπ1(s')

▪

▪

▪

What is the best
local modification

according to the
expected cost

of the current policy?

 This results in a new policy

Now we have made use of
earlier indications that

s4 seems to be a good place

 Try to go there
from s1 / s3 / s5!

No change in s2 yet…

Costs based on
one modified
action +
following
(no increase!)

π2

 Calculate true expected costs for the new policy π2
▪ 

▪ 

▪ 

▪ 

▪ 

 Equations to solve:

▪ 

▪ 

▪ 

▪ 

▪  







 Now we have the true expected costs of the second policy…

π

π

π

π

π

S5 wasn’t so bad after all,
since you can reach s4

in a single step!

S1 / s3 are even better.

S2 seems much worse
in comparison,

since the benefits of s4
haven’t ”propagated” that far.

<= -444,5
<= 10
<= -800
<= -1000
<= -700

Seems best – chosen!

 For every state s:
 Let 

 That is, find the action a that minimizes C(s, a) +  s' S P(s, a, s’) Eπ2(s')

▪

▪

What is the best
local modification

according to the
expected cost

of the current policy?

Now we will change the action taken at s2,
since we have better expected costs for s1, s3, s5…

 For every state s:
 Let 

 That is, find the action a that minimizes C(s, a) +  s' S P(s, a, s’) Eπ1(s')

▪

▪

▪

What is the best
local modification

according to the
expected cost

of the current policy?

 This results in a new policy π3

 True expected costs are updated
by solving an equation system

 The algorithm will iterate once more

 No changes will be made to the policy

  Termination with optimal policy!

 Policy iteration is a way to find an optimal policy π*
 Start with an arbitrary initial policy π1. Then, for i = 1, 2, …

▪ Compute expected costs Eπi(s) for every s by solving a system of equations

▪ System: For all s,   

▪ Result: The expected cost of the “current” policy in any given state s

▪ Not a simple recursive calculation – the state graph is generally cyclic!

▪ Compute an improved policy πi+1 “locally” for every s

▪    

▪ Tells us the best action in any given state s given current expected costs

▪ But this is a new policy – with new expected costs!

▪ Loop back and calculate those costs

▪ If then exit

▪ We have found an optimal solution – cannot be improved anywhere

▪ Otherwise, loop and calculate the expected cost for πi+1 , etc.

Find costs
according to

current
policy

Find best
policy

according to
current costs

 Converges in a finite number of iterations!
 We change which action to execute

if this improves expected cost for this state

▪ This can sometimes decrease,
and never increase, the cost of other states!

▪ So costs are monotonically improving
and we only have to consider a finite number of policies

 In general:
 May take many iterations

 Each iteration involves can be slow

 Partly because of the need to solve a large equation system!

 Second algorithm: Value iteration
 An intuitive explanation:

▪ Start by considering the minimum cost of proceeding zero steps

▪ for every state

▪ Then consider the reward we can get in one step

▪ For each state , create using values of as a basis

▪ …

▪ Then consider the reward we can get in n steps

▪ For each state , create using values of as a basis

 No need to solve an expensive equation system

▪ Only local calculations using the previous estimate

▪ The policy is implicit in the calculations

 Will always converge towards an optimal value function

▪ Will converge faster if is close to the true value function

▪ Will actually converge regardless of the initial value of

▪ Intuition: As n goes to infinity, the importance of goes to zero

 Value iteration requires an initial approximation
 Let’s start with for each s

 Does not correspond to any actual policy!

▪ Does correspond to the optimal expected cost
of executing zero steps…

 For every state s:

 PI: find the action a that minimizes C(s, a) +  s' S P(s, a, s’) Eπ1(s')

 FI: find the action a that minimizes C(s, a) +  s'  S P(s, a, s’) E0(s')
▪

▪

What is the best
local modification

according to the
current

approximation?

 For every state s:

 FI: find the action a that minimizes C(s, a) +  s'  S P(s, a, s’) E0(s')

▪

▪

▪

What is the best
local modification

according to the
current

approximation?

 This results in a new approximation of the lowest expected cost

E1 corresponds to one step of
many polices, including the

one shown here

Policy iteration would now
calculate the true expected

cost for a chosen policy

Value iteration instead
continues using E1, which is
only a calculation guideline,

not the true cost of any policy

 For every state s:

 PI: find the action a that minimizes   

 FI: find the action a that minimizes   

▪

▪

What is the best
local modification

according to the
current

approximation?

 For every state s:

 FI: find the action a that minimizes C(s, a) +  s'  S P(s, a, s’) Ek–1(s')

▪

▪

▪

What is the best
local modification

according to the
current

approximation?

 This results in another new approximation

Again, doesn’t represent
the true expected cost of

Nor is it the true expected cost

of executing two steps of

It is the true expected cost of
one step of , then one of

(But it will converge towards

true costs…)

 Significant differences from policy iteration
 Less accurate basis for action selection

▪ Based on approximate costs, not true expected costs

 Policy does not necessarily change in each iteration

▪ May first have to iterate n times, incrementally improving cost approximations

▪ Then another action suddenly seems better in some state

  Requires a larger number of iterations

▪ But each iteration is cheaper

  Can’t terminate just because the policy does not change

▪ Need another termination condition…

 Illustration below, showing rewards
 Notice that we already calculated rows 1 and 2

▪

 Remember, these are “pseudo-rewards”!

324,109 = cost of waiting once in s5,
then continuing according to the previous 14 policies for 14 steps,
then doing nothing (which is impossible according to the model)

 Illustration, only showing
best reward at each step
 We actually have

the optimal policy
after iteration 4

▪ But we can’t know this
unless we calculate
true expected costs
as in policy iteration

 Here we only see that
the pseudo-expected costs
continue changing…

▪ Maybe at some point
in the future,
they will change enough
to yield another policy?

 Suppose discount
factor is 0.99 instead
 Much slower convergence

▪



▪



 Care more about the future
 need to consider
many more steps!

 We can find bounds!
 Let M be the maximum change in pseudo-cost between two iterations

 Then we can find a bound on how far from the optimal cost
the current policy may be

 Cost of current policy – cost of optimal policy <=
M * (2*discount) / (1-discount)

Discount factor

Absolute cost
difference M
between two

iterations

Quit after 10
iterations 

policy appears
to cost -467.
Guarantee:

<= -467 + 697.

Quit after 50
iterations 

policy appears
to cost -811.
Guarantee:
<= -811 + 10.

Bounds are
incrementally

tightened!

Quit after 250
iterations 

policy appears
to cost 8989.
Guarantee:

<= 8989+1621.

Quit after 600
iterations 

policy appears
to cost 9775.
Guarantee:
<= 9775+48.

Bounds are
incrementally

tightened!

 Value iteration to find π*:

 Start with an arbitrary cost E0(s) for each s and an arbitrary  > 0



▪

▪   

▪ 

▪ 

▪  

 On an acyclic graph, the values converge in finitely many iterations

 On a cyclic graph, value convergence can take infinitely many iterations

 That’s why  > 0 is needed

Almost as in the definition of Q(s,a),
but we use the previous expected cost

 Both algorithms converge in a polynomial number of iterations
 But the variable in the polynomial is the number of states

▪ The number of states is usually huge

 Need to examine the entire state space in each iteration

 Thus, these algorithms take huge amounts of time and space
 Probabilistic set-theoretic planning is EXPTIME-complete

▪ Much harder than ordinary set-theoretic planning, which was only PSPACE-
complete

▪ Methods exist for reducing the search space,
and for approximating optimal solutions

▪ Beyond the scope of this course

