Automated Planning

Planning under Uncertainty: An Overview

Jonas Kvarnström Automated Planning Group Department of Computer and Information Science Linköping University

Planning with Complete Information

- So far, we have assumed we know in advance:
 - The state of the world when <u>plan execution</u> starts
 - The outcome of any action, given the state where it is executed
 - State + action → unique resulting state
- So if there is a solution:
 - There is an <u>unconditional</u> sequential solution

Planning	Execution
Model says: we end up in this specific state!	Just follow the unconditional plan
Start here A1	

Multiple Outcomes

3

- In reality, actions may have <u>multiple outcomes</u>
 - <u>Nondeterministic</u> planning:
 - State + action → <u>set</u> of possible new states (no more info during planning)
 - Probabilistic planning:
 - State + action → probability distribution over a set of possible next states
 - Can plan for all outcomes, or ignore the least probable outcomes
 - Can generate plans with <u>high probability</u> of reaching the goal

Intended Outcomes

- Sometime, specific outcomes are <u>intended</u> or <u>nominal</u>
 - <u>pick-up(object)</u>
 Intended outcome:
 Unintended outcome:

carrying(object) is true
carrying(object) is false

<u>move(100,100)</u>
 Intended outcome:
 Unintended outcome:

xpos(robot)=100 xpos(robot) != 100 "Intentions" are just our interpretation!

To a planner, there is generally no difference...

- Sometimes there are no intended outcomes
 - Tossing a coin: 2 different outcomes

Plan Types

- With multiple outcomes, we can generate:
 - <u>Strong</u> solutions (guaranteed to reach the goal)
 - <u>Weak</u> solutions (may reach the goal)
 - **Probabilistic** solutions (reaching the goal with probability >= limit)

Overview A

<u>Deterministic</u> : Exact outcome known in advance	Classical planning (possibly with extensions)
<u>Non-deterministic</u> : Multiple outcomes, no probabilities	?
<u>Probabilistic</u> : Multiple outcomes with probabilities	?

But what about information gained <u>during execution</u>?

Fully Observable

	Non-deterministic or probabilistic model		
<u>Fully observable:</u> Our sensors can determine exactly which state we are in after executing an action	 A plan could: → Define which action to perform depending on which <u>exact state</u> you actually ended up in 		

Non-Observable

	Non-deterministic or probabilistic model		
Non-observable: We have <i>no</i> sensors to determine what happened <i>Only</i> predictions can guide us	 A plan could: → Define which action to perform depending on which <u>set</u> of states you <u>might</u> be in 		

Partially Observable

	Non-deterministic or probabilistic model	
Partially observable: Sensors can observe <i>some</i> properties of the world → we are in a <i>set</i> of states	 A plan could: → Define which action to perform depending on which <u>set</u> of states you <u>might</u> be in → Take into account new information after sensing 	

Overview B

	<u>Non-Observable</u> :	<u>Fully Observable</u> :	Partially Observable:
	No information	Exact outcome	Some information gained
	gained after action	known after action	after action
<u>Deterministic</u> : Exact outcome known in advance	Classical planning (possibly with extensions) (Information dimension is meaningless)		

• In general:

- Full information is the easiest
- Partial information is the hardest!

Overview B

	Non-Observable: No information gained after action	<u>Fully Observable</u> : Exact outcome known after action	Partially Observable: Some information gained after action
<u>Deterministic</u> : Exact outcome known in advance	Classical planning (possibly with extensions) (Information dimension is meaningless)		
Non-deterministic: Multiple outcomes, no probabilities	Non-deterministic Conformant Planning	Conditional (Contingent) Planning	(No specific name)
<u>Probabilistic</u> : Multiple outcomes with probabilities	Probabilistic Conformant Planning	Probabilistic Conditional Planning	Partially Observable MDPs (POMDPs)
	(Special case of POMDPs)	Markov Decision Processes (MDPs)	

• In general:

- Full information is the easiest
- Partial information is the hardest!

Automated Planning

Planning Based on Fully Observable Markov Decision Processes

Jonas Kvarnström Automated Planning Group Department of Computer and Information Science Linköping University

Some slides adapted from a presentation by Dana Nau Licence: Creative Commons Attribution-NonCommercial-ShareAlike, http://creativecommons.org/licenses/by-nc-sa/2.0/

Fully Observable MDPs

Fully Observable <u>Markov Decision Processes</u>:

- Action outcomes are:
 - Probabilistic
 - <u>Fully observable</u>

Stochastic Systems

14

Formal models:

• $\gamma: S \times A \rightarrow 2^S$:

- **Restricted state transition system** $\Sigma = (S, A, \gamma)$
 - $S = \{ s_0, s_1, \dots \}$: Finite set of <u>world states</u>
 - $A = \{ a_0, a_1, ... \}$: Finite set of <u>actions</u>
 - **<u>State transition function</u>**, where $|\gamma(s,a)| \leq 1$
- **<u>Stochastic system</u>** $\Sigma = (S, A, P)$
 - *P*(s, a, s'): Given that we are in s and execute a, the **probability** of ending up in s'
 - For any state *s* and action *a*, we have $\sum_{s' \in S} P(s, a, s') = 1$: Exactly 100% probability of ending up *somewhere*

Sometimes written $P_a(s' \mid s)$

Stochastic Systems (3)

6

Stochastic Systems (4)

Stochastic Systems (5)

Like before, often <u>many executable actions</u> in every state

Probability sum = 1 (single certain outcome)

Probability sum = 1 (three possible outcomes)

Probability sum = 1 (three possible outcomes) We choose the action...

Nature chooses the outcome!

Search yields an AND/OR graph

Stochastic System Example

- Some transitions are <u>deterministic</u>, some are <u>stochastic</u>
 - Trying to move from 12 to 13: You may end up at 15 instead (20% risk)
 - Trying to move from l1 to l4: You may stay where you are instead (50% risk)
- (Can't always move in both directions, e.g. due to terrain gradient)

The Markov Property

Markov Property (1)

- Recall the definition of the probability function:
 - *P*(s, a, s') is the **probability** of ending up in s'
 given that we **are in s** and **execute a**

Nothing else matters!

Markov Property (2)

- 22
- This type of system has the <u>Markov property</u>: is <u>memoryless</u>

Remembering the Past

- 23
- We can still remember some things about the past!
 - Example: predicate <u>visited(location)</u>
 - Keeps track of where we have been
 - But then this information is <u>encoded and stored</u> in the <u>current state</u>
 - Which is finite, has a constant size
 - No need to query an ever-growing sequence of past states

Plans and Policies

Policies

- Two important consequences for plan structures:
 - Action choice must depend on the current state
 - And thereby on earlier execution-time outcomes!
 - Cannot have a limit on the number of actions executed!

- In MDP planning, we generate policies
 - Usually denoted by π
 - Defines, <u>for each state</u>, which action to execute <u>whenever</u> we end up in that state
 - π1 = { (s1, move(l1,l2)), (s2, move(l2,l3)), (s3, move(l3,l4)), (s4, wait), (s5, wait) }

Termination?

- Since a policy defines an action for every state:
 - We <u>could</u> define a set of goal states where <u>execution can end</u>
 - Similar to classical planning
 - <u>Usually</u> one assumes a policy <u>never terminates</u>!
 - The policy <u>always</u> specifies another action to execute
 - Objectives specified through costs and rewards (later!)

Policy Example 1

• Example 1

May end up in s4 or s5, wait there infinitely many times

Policy Example 2

• Example 2

Always reaches the state s4, waits there infinitely many times

Policy Example 3

Reaches state s4 with 100% probability "in the limit"

Histories

Policies and Histories

- 31) j
- Executing a policy results in a <u>state sequence</u>: A <u>history</u>
 - Infinite, since policies do not terminate
 - $h = \langle s_0, s_1, s_2, s_3, s_4, \dots \rangle$
- For classical planning:
 - We know the initial state
 - Actions are deterministic

 s_0 (index zero): Variable used in histories, etc s0: concrete state name used in diagrams We may have $s_0 = s27$

- → A plan yields a <u>single</u> history (last state repeated infinitely)
- For probabilistic planning:
 - Initial states can be probabilistic
 - For every state *s*, there will be a **probability** P(s) that we **begin** in the state *s*
 - Actions can have multiple outcomes
 - ► A policy can yield <u>many</u> different histories
 - Which one? Only known at execution time!

Even if we only consider starting in s1: Two possible histories

• $h_1 = \langle s1, s2, s3, s4, s4, ... \rangle$ - Reached s4, waits indefinitely $h_2 = \langle s1, s2, s5, s5 ... \rangle$ - Reached s5, waits indefinitely

How likely are these histories?

Probabilities: Initial States, Transitions

- Each policy induces a probability distribution over histories
 - Let $h = \langle s_0, s_1, s_2, s_3, ... \rangle$
 - With unknown initial state:
 - $P(\langle s_0, s_1, s_2, s_3, ... \rangle \mid \pi) =$ $P(s_0) \prod_{i \ge 0} P(s_i, \pi(s_i), s_{i+1})$
 - The book:
 - Assumes you start in a known state s₀
 - So all histories start with the same state
 - $P(\langle s_0, s_1, s_2, s_3, ... \rangle \mid \pi) = \prod_{i \ge 0} P(s_i, \pi(s_i), s_{i+1})$

33

• Two possible histories, if we always start in si

•
$$h_1 = \langle s1, s2, s3, s4, s4, ... \rangle$$
 $-P(h_1 \mid \pi_1) = 1 \times 1 \times 0.8 \times 1 \times ... = 0.8$
 $h_2 = \langle s1, s2, s5, s5 ... \rangle$ $-P(h_2 \mid \pi_1) = 1 \times 1 \times 0.2 \times 1 \times ... = 0.2$
 $-P(h \mid \pi_1) = 1 \times 0$ for all other h

• $h_1 = \langle s1, s2, s3, s4, s4, ... \rangle$ $P(h_1 \mid \pi_2) = 1 \times 1 \times 0.8 \times 1 \times ... = 0.8$

 $h_3 = \langle s1, s2, s5, s4, s4, ... \rangle$ $P(h_3 \mid \pi_2) = 1 \times 1 \times 0.2 \times 1 \times ... = 0.2$ $P(h \mid \pi_2) = 1 \times 0$ for all other *h*

Goals and Utility Functions

What is the Objective?

38

- What is the <u>objective</u>?
 - In classical planning: Want a plan resulting in a goal state
 - Natural formulation, since a plan always ends up in the same state
 - In probabilistic planning: This is still possible
 - A <u>weak solution</u> *may* reach a goal state in a finite number of steps
 - A strong solution will reach a goal state in a finite number of steps
 - A <u>strong cyclic solution</u> will reach a goal state in a finite number of steps given a fairness assumption: Informally, "if we can exit a loop, we eventually will"

Costs and Rewards

- Alternative model, often used in MDP planning:
 - Numeric **<u>cost</u>** C(s,a) for each state *s* and action *a*
 - Numeric **reward** R(s) for each state *s*
- Example:
 - C(s,a) = 1 for each "horizontal" action
 - C(s,a) = 100 for each "vertical" action
 - C(s1,wait) = 1C(s2,wait) = 1C(s4,wait) = 0C(s5,wait) = 0
 - R(s5) = -100: Don't want to be there!
 - R(s4) = 100: This is a state that we want to reach

Utility Functions

40

Utility functions

- Suppose a policy leads us to go through a certain history (state sequence)
- How "useful / valuable" is this history to us?

Utility Functions

- Example:
 - Suppose π_1 happens to result in $h_1 = \langle s1, s2, s3, s4, s4, ... \rangle$
 - $V(h_1 \mid \pi_1) = (0 100) + (0 1) + (0 100) + 100 + 100 + \dots$
 - We stay at s4 forever, executing "wait", so we get an <u>infinite</u> amount of rewards!

This is not the only history that could result from the policy!

That's why we specify the policy <u>and</u> the history to calculate a utility...

Utility Functions

- What's the problem, given that we "like" being in state s4?
 - We can't distinguish between different ways of getting there!
 - $s1 \rightarrow s2 \rightarrow s3 \rightarrow s4$: $-201 + \infty = \infty$
 - $s1 \rightarrow s2 \rightarrow s1 \rightarrow s2 \rightarrow s3 \rightarrow s4$: $-401 + \infty = \infty$
 - Both appear equally good...

Discounted Utility

Solution: Use a <u>discount factor</u>, γ , with $o \le \gamma \le 1$

- To avoid divergence (infinite utility values V(...))
- To model "impatience": rewards and costs far in the future are less important to us

Discounted utility of a history:

•
$$V(h \mid \pi) = \sum_{i \ge 0} \gamma^i (R(s_i) - C(s_i, \pi(s_i)))$$

- Distant rewards/costs have <u>less influence</u>
- <u>Convergence</u> (with finite results) is guaranteed if $0 \le \gamma < 1$

Expected Utility, Optimality, Solutions

44

- Still only tells us the utility of a <u>history</u>
 - But we can't force a history
 - Can only decide a policy which can lead to <u>many</u> histories
- Assuming a known starting state:
 - **Expected utility** of a **policy**: $E(\pi) = \sum_{h} P(h \mid \pi) V(h \mid \pi)$
 - How <u>probable</u> is each history (outcome), and how <u>valuable</u> is it to us?
 - A policy π is **optimal** if no other policy has greater expected utility
 - For every π' , $E(\pi) > = E(\pi')$
 - A solution is an <u>optimal policy</u>!
 - Gives us the greatest (expected) reward that we <u>can</u> get, given the specified probabilities, costs, and rewards

Example

Example

Summary

Markov Decision Processes

- Underlying world model:
- Plan representation:
- Goal representation:
- Planning problem:

Stochastic system

Policy – which action to perform in **any** state **<u>Utility function</u>** defining "solution quality" **Optimization**: Maximize **expected** utility

Finding a Solution: Preliminaries

Special Case

- To simplify the presentation of important **principles**:
 - Let's consider a <u>special case</u>:
 - We start in a known state, *s*_o
 - All rewards are o
 - Can easily be generalized
- We should **minimize** the expected **<u>cost</u> of a policy**:
 - $E(\pi) = \sum_{h} P(h \mid \pi) C(h \mid \pi)$
 - Where $C(h \mid \pi) = \sum_{i \ge 0} \gamma^i C(s_i, \pi(s_i))$ (discounted cost)
 - replaces $V(h \mid \pi) = \sum_{i \ge 0} \gamma^i (R(s_i) C(s_i, \pi(s_i)))$ (discounted cost/reward)
- We will also need to know:
 - $E_{\pi}(s)$ = the expected cost of executing π starting in some specific state s

Calculating Costs

50

- How can we calculate $E_{\pi}(s)$?
 - If we visit the states $\langle s1, s2, s3, s4, s5, ... \rangle$ where s1 = s:
 - $E_{\pi}(s) = \sum_{i \ge 0} \gamma^i C(s_i, \pi(s_i))$
 - But only the <u>first</u> state is known in advance!

Bellman's Theorem: Background

- If π is a policy, then $E_{\pi}(s) = C(s, \pi(s)) + \gamma \sum_{s' \in S} P(s, \pi(s), s') E_{\pi}(s')$
 - The expected cost of executing π starting in s
 - Is the cost of executing the action chosen by the policy, $\pi(s)$, in s
 - Plus the discount factor γ times...
 - ...the sum, for all possible states $s' \in S$ that you <u>might</u> end up in,

of the probability $P(s, \pi(s), s')$ of actually ending up in that state given the action $\pi(s)$ chosen by the policy

times the expected cost $E_{\pi}(s')$ of executing π starting in that new state s'

(If you expand in one step...)

$$E_{\pi}(s) = C(s, \pi(s)) + \gamma \sum_{s' \in S} P(s, \pi(s), s') [$$

$$C(s', \pi(s')) + \gamma \sum_{s'' \in S} P(s', \pi(s''), s'') \quad E_{\pi}(s'')$$

Example 1

- $E_{\pi_2}(s1)$ = The expected cost of executing π_2 starting in **<u>s1</u>**:
 - The cost of the first action: move(l1,l2)
 - Plus the discount factor *γ* times...
 - [Ending up in s2] 100% * $E_{\pi 2}$ (s2)

Example 2

- 53
- $E_{\pi 2}(s2)$ = the expected cost of executing π_2 starting in **<u>s2</u>**:
 - The cost of the first action: move(l2,l3)
 - (Which has multiple outcomes!)
 - Plus the discount factor γ times...
 - [Ending up in s3] 80% * E_{π2}(s3)
 - Plus
 [Ending up in s5]
 20% * E_{π2}(s5)

 $\pi_2 = \{(s1, move(l1, l2)), \\(s2, move(l2, l3)), \\(s3, move(l3, l4)), \\(s4, wait), \\(s5, move(l5, l4)\}$

Recursive?

- Seems like we could easily calculate this <u>recursively</u>!
 - $E_{\pi 2}(s1)$ defined in terms of $E_{\pi 2}(s2)$
 - $E_{\pi 2}(s2)$ defined in terms of $E_{\pi 2}(s3)$ and $E_{\pi 2}(s5)$
 - Just continue until you reach the end!

Not Recursive!

But <u>there isn't always an "end"</u>!

- Modified example below is a valid policy π:
 - $E_{\pi}(s1)$ defined in terms of $E_{\pi}(s2)$
 - $E_{\pi}(s2)$ defined in terms of $E_{\pi}(s3)$ and $E_{\pi}(s5)$
 - $E_{\pi}(s3)$ defined in terms of $E_{\pi}(s4)$
 - $E_{\pi}(s5)$ defined in terms of $E_{\pi}(s2)$...

Bellman's Theorem: Equation System

56

- If π is a policy, then for all states *s*:
 - $= \underline{E_{\pi}(s)} = \underline{C(s, \pi(s))} + \gamma \sum_{s' \in S} \underline{P(s, \pi(s), s')} \quad E_{\pi}(s')$
 - The expected cost of executing π starting in s
 - Is the cost of executing the action chosen by the policy, $\pi(s)$, in s
 - Plus the discount factor γ times...
 - ...the sum, for all possible states $s' \in S$ that you <u>might</u> end up in,
 - of the probability $P(s, \pi(s), s')$ of actually ending up in that state given the action $\pi(s)$ chosen by the policy
 - times the expected cost $E_{\pi}(s')$ of executing π starting in that new state s'

This is an **<u>equation system</u>**: |S| equations, |S| variables!

Requires different solution methods...

Principle of Optimality

Bellman's **Principle of Optimality**:

 An <u>optimal policy</u> has the property that whatever the initial state and initial decision are, the <u>remaining decisions must constitute an optimal policy</u> with regard to the state resulting from the first decision

<u>**Problem</u>**: Find a policy that minimizes cost given that we start in s1.</u>

Suppose that an <u>optimal policy</u> π^{*} begins with move(l1,l2), so that the next state is s2.

Then π* <u>must also minimize cost</u> given that we start in s2!

Principle of Optimality (2)

- Sounds trivial? Depends on the Markov Property!
 - Suppose <u>costs</u> depended on <u>which states you had visited before</u>

58

c=0

s5

- Suppose you want to go s5 \rightarrow s1
 - First action should be <u>move(15,14)</u>
- Now you need to go s4 \rightarrow s1
 - Because you have visited s5 before, <u>move(l4,l1)</u> is very expensive
 - Best solution: $s5 \rightarrow s4 \rightarrow s3 \rightarrow s2 \rightarrow s1$, cost of 100+201

Solution Methods (1)

• Let's **hypothesize**:

What if I made <u>this</u> local change, but kept everything else?

Local change!

• Let $Q_{\pi}(s,a)$ be the expected cost of π in a state s if we **start** by executing the given action a, but we use the **policy** π from then onward

 $E_{\pi}(s) = C(s, \pi(s)) + \gamma \sum_{s' \in S} P(s, \pi(s), s') E_{\pi}(s')$ $= Q_{\pi}(s, a) = C(s, a) + \gamma \sum_{s' \in S} P(s, a, s') E_{\pi}(s')$

Example

- Example: $E_{\pi}(s_1)$
 - The expected cost of following the current policy
 - Starting in s1, beginning with move(l1,l2)
- $Q_{\pi}(s_{1}, \text{move}(l_{1}, l_{4}))$
 - The expected cost of first trying to move from li to l4, then following the current policy

Solution Methods (2)

- Suppose you have an <u>everywhere optimal</u> policy π*
 - That is, no other policy gives a better result for <u>any</u> starting state

- Then, because of the principle of optimality:
 - For all states s, $E_{\pi^*}(s) = \min_a Q_{\pi^*}(s,a)$
 - For all states s, $E_{\pi^*}(s) = \min_a (C(s,a) + \gamma \sum_{s' \in S} P(s, a, s') E_{\pi^*}(s'))$ Choice <u>now</u> $\begin{array}{c} \text{"The rest"} \\ \end{array}$
 - In every state, the <u>local</u> choice made by the policy is <u>locally</u> optimal

Solution Methods (3)

- Suggests a **specific type** of solution method:
 - Try to separate the decision in <u>this</u> state from the decisions in the <u>remainder</u> of the policy
 - Use <u>iterative refinement</u>
 - Start with some initial values (for example, a random policy)
 - Find local improvements

Example, Revisited

- Example: $E_{\pi}(s1)$
 - The expected cost of following the current policy
 - Starting in s1, beginning with move(l1,l2)
- $Q_{\pi}(s1, \text{move}(11, 14))$
 - The expected cost of first trying to move from l1 to l4, then following the current policy

If doing move(l1,l4) first has a lower expected cost, we may want to modify the current policy:

(s1, move(l1,l4))

Details: Next time!

Action Representations

Action Representations

Action representations:

- The book only deals with the <u>underlying semantics</u>: Explicit enumeration of each P(s, a, s')
- Several "convenient" representations possible, such as Bayes networks, probabilistic operators

Representation Example: PPDDL

• **<u>Probabilistic PDDL</u>**: new constructs for effects, initial state

- (probabilistic $p_1 e_1 \dots p_k e_k$)
 - Effect e_1 takes place with probability p_1 , etc.
 - <u>Sum</u> of probabilities <= 1 (can be strictly less → implicit empty effect)
 - (define (domain bomb-and-toilet)

(:requirements :conditional-effects :**probabilistic-effects**) (:predicates (bomb-in-package ?pkg) (toilet-clogged) (bomb-defused)) (:action dunk-package

:parameters (?pkg)

:effect (and

(when (bomb-in-package ?pkg) (bomb-defused))

(probabilistic 0.05 (toilet-clogged)))))

- (define (problem bomb-and-toilet)
 - (:domain bomb-and-toilet)

(:requirements :negative-preconditions)

(:objects package1 package2)

(:init (probabilistic 0.5 (bomb-in-package package1)

0.5 (bomb-in-package package2)))

(:goal (and (bomb-defused) (not (toilet-clogged)))))

First, a "standard" effect

66

5% chance of toilet-clogged, 95% chance of no effect

Probabilistic initial state

Ladder 1

- ;; Authors: Sylvie Thiébaux and Iain Little
- ;; Story: You are stuck on a roof because the ladder you climbed up on
- ;; fell down. There are plenty of people around; if you call out for
- ;; help someone will certaintly lift the ladder up again. Or you can
- ;; try the climb down without it. You aren't a very good climber
- ;; though, so there is a 50-50 chance that you will fall and break
- ;; your neck if you go it alone. What do you do?
- (define (domain climber)
- (:requirements :typing :strips :probabilistic-effects)
- (:predicates (on-roof) (on-ground)
 - (ladder-raised) (ladder-on-ground) (alive))
- (:action climb-without-ladder :parameters ()
- :precondition (and (on-roof) (alive))
- :effect (and (not (on-roof))
 - (on-ground)
 - (probabilistic 0.4 (not (alive)))))

Ladder 2

68

- (:action climb-with-ladder :parameters ()
- :precondition (and (on-roof) (alive) (ladder-raised))
- :effect (and (not (on-roof)) (on-ground)))
- (:action call-for-help :parameters ()
- :precondition (and (on-roof) (alive) (ladder-on-ground))
- :effect (and (not (ladder-on-ground))

(ladder-raised))))

- (define (problem climber-problem)
- (:domain climber)
- (:init (on-roof) (alive) (ladder-on-ground))
- (:goal (and (on-ground) (alive))))

Representation Example: RDDL

69

domain prop_dbn {

```
requirements = { reward - deterministic };
// Define the state and action variables (not parameterized here)
pvariables {
           p : { state - fluent , bool , default = false };
           q : { state - fluent , bool , default = false };
           r: { state - fluent , bool , default = false };
           a : { action - fluent , bool , default = false };
};
// Define the conditional probability function for each next
// state variable in terms of previous state and action
cpfs {
          p' = if (p \wedge r) then Bernoulli (.9) else Bernoulli (.3);
           q' = if (q \wedge r) then Bernoulli (.9)
           else if (a) then Bernoulli (.3) else Bernoulli (.8);
           r' = if (~q) then KronDelta (r) else KronDelta (r <=> q);
};
// Define the reward function ; note that boolean functions are
// treated as 0/1 integers in arithmetic expressions
```

reward = p + q - r;

}

Automated Planning Planning Based on Markov Decision Processes, part 2

Example Problem

Example Problem with Rewards and Costs

Example Problem, Simplified

- In the model we used, rewards and costs are always "taken together"
 - Can't get a reward without a cost or vice versa
 - R(s) C(s, a): You are <u>in a state</u>, and then you execute an action <u>in that state</u>
- To simplify, we **include the reward in the cost**!
 - Decrease each C(s,a) by R(s)
 - Transitions from s5 are more expensive
 - Transitions from s4 are less expensive
 - Sometimes negative costs not a problem!
- **Objective** is to <u>minimize cost</u>
 - Automatically takes rewards into account

Finding a Solution (Optimal Policy): Algorithm 1, Policy Iteration

Policy Iteration

First algorithm: <u>Policy iteration</u>

- General idea:
 - Start out with an *initial policy*, maybe randomly chosen
 - Calculate the <u>expected cost</u> of executing that policy from each state
 - <u>Update</u> the policy by making a <u>local</u> decision <u>for each state</u>: "Which action should my <u>improved</u> policy choose in this state, given the expected costs of the <u>current</u> policy?"
 - Iterate until convergence (the policy no longer changes)

Policy Iteration 2: Initial Policy π_1

- Policy iteration requires an **<u>initial policy</u>**
 - Let's start by choosing "wait" in every state
 - Let's set a discount factor: $\gamma = 0.9$
 - Easy to use in calculations on these slides, but in reality we might use a larger factor (we're not <u>that</u> short-sighted!)

 $\pi_1 = \{(s1, wait), \\(s2, wait), \\(s3, wait), \\(s4, wait), \\(s5, wait)\}$

Policy Iteration 3: Expected Costs for π_1

- Calculate expected costs for the <u>current</u> policy π₁
 - Simple: Chosen transitions are deterministic + return to the same state!
 - $E_{\pi}(s) = C(s, \pi(s)) + \gamma \sum_{s' \in S} P(s, \pi(s), s') E_{\pi}(s')$

- Simple equations to solve:
 - $0.1E_{\pi 1}(s1) = 1$
 - $0.1E_{\pi 1}(s2) = 1$
 - $0.1E_{\pi 1}(s3) = 1$
 - $0.1E_{\pi 1}(s4) = -100$
 - $0.1E_{\pi 1}(s5) = 100$

<u>Given this policy</u> π_1 : High costs if we start in s5, high rewards if we start in s4

Policy Iteration 4: Update 1a

- These are not the <u>true</u> expected costs for starting in state s1!
 - They are only correct if we locally change the <u>first</u> action to execute and then go on to use the previous policy (in this case, always waiting)!
 - But they can be proven to yield good guidance, as long as you apply the improvements repeatedly (as policy iteration does)

Policy Iteration 5: Update 1b

Policy Iteration 6: Update 1c

Policy Iteration 7: Second Policy

80

This results in a <u>new policy</u>

$\pi_1 = \{(s1, wait),$	$E_{\pi 1}(s1) = 10$	$\pi_2 = \{ (s1, move(l1, l4), $	<= <u>-444,5</u>	Costs based on	
(s2, wait),	$E_{\pi 1}(s2) = 10$	(s2, wait),	<= 10	one modified	
(s3, wait),	$E_{\pi 1}(s3) = 10$	(s3, move(l3,l4)),	<= -800	action +	
(s4, wait),	$E_{\pi 1}(s4) = -1000$	(s4, wait),	<= -1000	following π_1	
(s5, wait)}	$E_{\pi 1}(s5) = 1000$	(s5, move(l5,l4))}	<= -700	(no increase!)	

Now we have made use of earlier indications that s4 seems to be a good place

→ Try to go there from s1 / s3 / s5!

No change in s2 yet...

Policy Iteration 8: Expected Costs for π_2

Calculate <u>true</u> expected costs for the <u>new</u> policy π₂

- $E_{\pi 2}(s1) = C(s1, move(l1, l4)) + \gamma \dots = 1 + 0.9 (0.5E_{\pi 2}(s1) + 0.5E_{\pi 2}(s4))$ • $E_{\pi 2}(s2) = C(s2, wait) + \gamma E_{\pi 2}(s2) = 1 + 0.9 E_{\pi 2}(s2)$
- $E_{\pi 2}(s3) = C(s3, move(13, 14)) + \gamma E_{\pi 2}(s4) = 100 + 0.9 E_{\pi 2}(s4)$
- $E_{\pi 2}(s4) = C(s4, wait) + \gamma E_{\pi 2}(s4) = -100 + 0.9 E_{\pi 2}(s4)$
- $E_{\pi 2}(s5) = C(s5, move(15, 14)) + \gamma E_{\pi 2}(s4) = 200 + 0.9 E_{\pi 2}(s4)$
- Equations to solve:
 - $0.1E_{\pi 2}(s2) = 1$
 - $0.1E_{\pi 2}(s4) = -100$
 - $E_{\pi 2}(s3) = 100 + 0.9E_{\pi 2}(s4) = 100 + 0.9^*-1000 = -800$
 - $E_{\pi 2}(s5) = 200 + 0.9E_{\pi 2}(s4) = 200 + 0.9^*-1000 = -700$
 - $E_{\pi 2}(s1) = 1 + 0.45 * E_{\pi 2}(s1) + 0.45 * E_{\pi 2}(s4) \rightarrow 0.55 E_{\pi 2}(s1) = 1 + 0.45 * E_{\pi 2}(s4) \rightarrow 0.55 E_{\pi 2}(s1) = 1 + (-450) \rightarrow 0.55 E_{\pi 2}(s1) = -449 \rightarrow E_{\pi 2}(s1) = -816,3636...$

- → $E_{\pi 2}(s2) = 10$ → $E_{\pi 2}(s4) = -1000$ → $E_{\pi 2}(s3) = -800$ → $E_{\pi 2}(s5) = -700$
- → $E_{\pi 2}(s1) = -816,36$
 - $\pi_2 = \{(s1, move(l1, l4), \\(s2, wait), \\(s3, move(l3, l4)), \\(s4, wait), \\(s5, move(l5, l4))\}$

Policy Iteration 9: Second Policy

Now we have the <u>true</u> expected costs of the second policy...

$\pi_1 = \{(s1, wait),$	$E_{\pi 1}(s1) = 10$	$\pi_2 = \{ (s1, move(l1, l4), $	<= <u>-444,5</u>	$E_{\pi 2}(s1) = -816,36$
(s2, wait),	$E_{\pi 1}(s2) = 10$	(s2, wait),	<= 10	$E_{\pi 2}(s2) = 10$
(s3, wait),	$E_{\pi 1}(s3) = 10$	(s3, move(l3,l4)),	<= -800	$E_{\pi 2}(s3) = -800$
(s4, wait),	$E_{\pi 1}(s4) = -1000$	(s4, wait),	<= -1000	$E_{\pi 2}(s4) = -1000$
(s5, wait)}	$E_{\pi 1}(s5) = 1000$	(s5, move(l5,l4))}	<= -700	$E_{\pi 2}(s5) = -700$

S5 wasn't so bad after all, since you can reach s4 in a single step!

S1 / s3 are even better.

S2 seems much worse in comparison, since the benefits of s4 haven't "propagated" that far.

Policy Iteration 10: Update 2a

<u>Now</u> we will change the action taken at s2, since we have better expected costs for s1, s3, s5...

Policy Iteration 11: Update 2b

Policy Iteration 12: Third Policy

- This results in a <u>**new policy**</u> π_3
 - <u>**True expected costs</u>** are updated by solving an equation system</u>
 - The algorithm will iterate once more
 - No changes will be made to the policy
 - → Termination with optimal policy!

85

Policy Iteration 13: Algorithm

- **Policy iteration** is a way to find an optimal policy π^*
 - Start with an **<u>arbitrary</u>** initial policy π_1 . Then, for i = 1, 2, ...
 - Compute expected costs $E_{\pi_i}(s)$ for every *s* by **solving a system of equations**
- Find costs according to For all s, $E\pi_i(s) = C(s, \pi_i(s)) + \gamma \sum_{s' \in S} P(s, \pi_i(s), s') E\pi_i(s')$
 - Result: The expected cost of the "current" policy in <u>any</u> given state s
 - Not a simple recursive calculation the state graph is generally cyclic!
 - Compute an improved policy π_{i+1} "locally" for every *s*
 - $\pi_{i+1}(s) := \operatorname{argmin}_{a \in A} C(s, a) + \gamma \sum_{s' \in S} P(s, a, s') E \pi_i(s')$
 - Tells us the best action in <u>any</u> given state s given <u>current</u> expected costs
- according to current costs - But this is a new policy – with <u>new</u> expected costs!
 - Loop back and calculate <u>those</u> costs
 - If $\pi_{i+1} = \pi_i$ then exit

current policy

Find best

policy

- We have found an optimal solution cannot be improved anywhere
- Otherwise, loop and calculate the expected cost for π_{i+1} , etc.

Convergence

- Converges in a finite number of iterations!
 - We change which action to execute if this <u>improves expected cost</u> for this state
 - This can sometimes decrease, and <u>never increase</u>, the cost of other states!
 - So costs are <u>monotonically improving</u> and we only have to consider a finite number of policies
- In general:
 - May take <u>many</u> iterations
 - Each iteration involves can be slow
 - Partly because of the need to <u>solve a large equation system</u>!

Finding a Solution: Value Iteration

Value Iteration

Second algorithm: <u>Value iteration</u>

- An *intuitive* explanation:
 - Start by considering the minimum cost of proceeding <u>zero</u> steps
 - $E_0(s) = 0$ for every state
 - Then consider the reward we can get in <u>one</u> step
 - For each state *s*, create $E_1(s)$ using values of E_0 as a basis
 - • •
 - Then consider the reward we can get in <u>n</u> steps
 - For each state *s*, create $E_n(s)$ using values of E_{n-1} as a basis
- No need to solve an expensive equation system
 - Only local calculations using the <u>previous estimate</u>
 - The policy is implicit in the calculations
- Will always converge towards an <u>optimal value function</u>
 - Will converge <u>**faster</u>** if $E_0(s)$ is close to the true value function</u>
 - <u>Will</u> actually converge regardless of the initial value of $E_0(s)$
 - Intuition: As *n* goes to infinity, the importance of $E_0(s)$ goes to zero

Value Iteration 2: Initial Guess E0

- Value iteration requires an <u>initial approximation</u>
 - Let's start with $E_0(s) = 0$ for each s
 - Does not correspond to any actual policy!
 - Does correspond to the optimal expected cost of executing zero steps...

E0(s1) = 0E0(s2) = 0E0(s3) = 0E0(s4) = 0E0(s5) = 0

90

Value Iteration 3: Update 1a

c = 200

c=0

c=100

s5

0.2

s3

:=0

s4

c=-100

c=1 c=100

c=-99

c=1

0.5

What is the best <u>local</u> modification according to the <u>current</u> <u>approximation</u> ?	EO(s1) = 0 EO(s2) = 0 EO(s3) = 0 EO(s4) = 0 EO(s5) = 0	c=1 $c=101$ $c=101$ $c=100$ $c=1$ $c=100$
		¢=100

For every state *s*:

<u>PI</u>: find the action *a* that minimizes $C(s, a) + \gamma \sum_{s' \in S} P(s, a, s') E_{\pi_1}(s')$

s1

0.5

<u>FI</u>: find the action *a* that minimizes $C(s, a) + \gamma \sum_{s' \in S} P(s, a, s') E_0(s')$

s1: wait			+ 0.9 * (= 1
move(l1,l2)	100	+ 0.9 *	0	= 100
move(1,14)	1	+ 0.9 *	(0.5*0 + 0.5*0)	= 1
s2: wait			+ 0.9 * (= 1
move(l2,l1)	100	+ 0.9 *	0	= 100
move(12,13)	1	+ 0.9 *	(0.8*0 + 0.2*0)	= 1
-					

Value Iteration 4: Update 1b

What is the best	E0(s1) = 0
local modification	E0(s2) = 0
according to the	E0(s3) = 0
current	E0(s4) = 0
approximation?	E0(s5) = 0

- For every state *s*:
 - FI: find the action *a* that minimizes $C(s, a) + \gamma \sum_{s' \in S} P(s, a, s') E_o(s')$

 s3: wait 	1 + 0.9 * 0	= 1
move(13,12)	1 + 0.9 * 0	= 1
move(13,14)	100 + 0.9 * 0	= 100
s4: wait	<mark>-100</mark> + 0.9 * 0	= -100
move(l4,l1)	<mark>-99</mark> + 0.9 * 0	= -99
s5: wait	100 + 0.9 * 0	= 100
move(15,12)	101 + 0.9 * 0	= 101
move(15,14)	200 + 0.9 * 0	= 200
		-

Value Iteration 5: Second Policy

This results in a <u>new approximation</u> of the lowest expected cost

E0(s1) = 0	$\pi_1 = \{ (s1, wait), \}$	E1(s1) = 1 🥌	For infinite execution,
E0(s2) = 0	(s2, wait),	E1(s2) = 1	$E\pi_{1}(s1) = 10,$
EO(s3) = 0	(s3, move(l3,l2)),	E1(s3) = 1	but this is not calculated
E0(s4) = 0	(s4, wait),	E1(s4) = -100	
EO(s5) = 0	(s5, wait)}	E1(s5) = 100	

E1 corresponds to <u>one step</u> of many polices, including the one shown here

Policy iteration would now calculate the <u>true</u> expected cost for a chosen policy

Value iteration instead continues using E1, which is only a calculation guideline, not the true cost of <u>any</u> policy

Value Iteration 6: Update 2a

What is the best <u>local</u> modification according to the <u>current</u> <u>approximation</u> ?	E1(s1) = 1 E1(s2) = 1 E1(s3) = 1 E1(s4) = -100 E1(s5) = 100	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
• For every state <i>s</i>	3:	c=100 c=-99 c=1 0.5 c=1 0.5 c=-100 c=-100

- PI: find the action *a* that minimizes $C(s, a) + \gamma \sum_{s' \in S} P(s, a, s') E_{\pi k}(s')$
- FI: find the action *a* that minimizes $C(s, a) + \gamma \sum_{s' \in S} P(s, a, s') E_{k-1}(s')$

s1: wait	1+0.9*1	= 1.9
move(l1,l2)	100 + 0.9 * 1	= 100.9
move(l1,l4)	1 + 0.9 * (0.5*1 + 0.5*-100)	= -43,55
 s2: wait 	1+0.9*1	= 1.9
move(l2,l1)	100 + 0.9 * 1	= 100.9
move(12,13)	1 + 0.9 * (0.8*1 + 0.2*1)	= 1.9

Value Iteration 7: Update 2b

What is the best	E1(s1) = 1
local modification	E1(s2) = 1
according to the	E1(s3) = 1
<u>current</u>	E1(s4) = -100
approximation?	E1(s5) = 100

- For every state s:
 - FI: find the action *a* that minimizes $C(s, a) + \gamma \sum_{s' \in S} P(s, a, s') E_{k-1}(s')$

		ED () /
 s3: wait 	1+0.9*1	= 1.9
move(13,12)	1 + 0.9 * 1	= 1.9
move(13,14)	100 + 0.9 * -100	= 10
• s4: wait	<mark>-100</mark> + 0.9 * -100	= -190
move(l4,l1)	<mark>-99</mark> + 0.9 * 1	= -98.1
•••		
 s5: wait 	100 + 0.9 * 1	= 100.9
move(15,12)	101 + 0.9 * 1	= 101.9
move(15,14)	200 + 0.9 * -100	= 110

Value Iteration 8: Second Policy

96

This results in another <u>new approximation</u>

Again, E2 doesn't represent the true expected cost of π_2

Nor is it the true expected cost of executing two steps of E2

It is the true expected cost of one step of E2, then one of E1!

(But it <u>will converge</u> towards true costs...)

Differences

• **<u>Significant differences</u>** from policy iteration

- Less accurate basis for action selection
 - Based on <u>approximate costs</u>, not true expected costs
- Policy does not necessarily change in each iteration
 - May first have to iterate *n* times, incrementally improving cost approximations
 - <u>Then</u> another action suddenly seems better in some state
- → Requires a larger number of iterations
 - But each iteration is cheaper
- → Can't terminate just because the policy does not change
 - Need another termination condition...

Illustration

Illustration below, showing <u>rewards</u>

• Notice that we already calculated rows 1 and 2

s1: wait	1 + 0.9 * 1	= 1.9
move(l1,l2)	100 + 0.9 * 1	= 100.9
move(l1,l4)	1 + 0.9 * (0.5*1 + 0.5*-100)	= -43,55

	s1			s2			s3			s4 s5			
Action	wait	move-s2	move-s4	wait	move-s1	move-s3	wait	move-s2	move-s4	wait	wait	move-s2	move-s4
	0	0	0	0	0	0	0	0	0	0	0	0	0
1	-1	-100	-1	-1	-100	-1	-1	-1	-100	100	-100	-101	-200
2	-1,9	-100,9	43,55	-1,9	-100,9	-1,9	-1,9	-1,9	-10	190	-190	-101,9	-110
3	38,195	-101,71	104,098	-2,71	-60,805	-2,71	-2,71	-2,71	71	271	-191,71	-102,71	-29
4	92,6878	-102,439	167,794	-3,439	-6,31225	62,9	62,9	-3,439	143,9	343,9	-126,1	-103,439	43,9
5	150,014	-43,39	229,262	55,61	51,0145	128,51	128,51	55,61	209,51	409,51	-60,49	-44,39	109,51
5	205,336	15,659	286,448	114,659	106,336	187,559	187,559	114,659	268,559	468,559	-1,441	14,659	168,559
6	256,803	68,8031	338,753	167,803	157,803	240,703	240,703	167,803	321,703	521,703	51,7031	67,8031	221,703
7	303,878	116,633	386,205	215,633	204,878	288,533	288,533	215,633	369,533	569,533	99,5328	115,633	269,533
8	346,585	159,68	429,082	258,68	247,585	331,58	331,58	258,68	412,58	612,58	142,58	158,68	312,58
9	385,174	198,422	467,748	297,422	286,174	370,322	370,322	297,422	451,322	651,322	181,322	197,422	351,322
10	419,973	233,289	502,581	332,289	320,973	405,189	405,189	332,289	486,189	686,189	216,189	232,289	386,189
11	451,323	264,67	533,947	363,67	352,323	436,57	436,57	363,67	517,57	717,57	247,57	263,67	417,57
12	479,552	292,913	562,183	391,913	380,552	464,813	464,813	391,913	545,813	745,813	275,813	291,913	445,813
13	504,964	318,332	587,598	417,332	405,964	490,232	490,232	417,332	571,232	771,232	301,232	317,332	471,232
14	527,838	341,209	610,474	440,209	428,838	513,109	513,109	440,209	594,109	794,109	324,109	340,209	494,109

Illustration

Remember, these are "pseudo-rewards"!

	s1			s2			s3 :			s4 s5			
Action	wait	move-s2	move-s4	wait	move-s1	move-s3	wait	move-s2	move-s4	wait	wait	move-s2	move-s4
	0	0	0	0	0	0	0	0	0	0	0	0	0
1	-1	-100	-1	-1	-100	-1	-1	-1	-100	100	-100	-101	-200
2	-1,9	-100,9	43,55	-1,9	-100,9	-1,9	-1,9	-1,9	-10	190	-190	-101,9	-110
3	38,195	-101,71	104,098	-2,71	-60,805	-2,71	-2,71	-2,71	71	271	-191,71	-102,71	-29
4	92,6878	-102,439	167,794	-3,439	-6,31225	62,9	62,9	-3,439	143,9	343,9	-126,1	-103,439	43,9
5	150,014	-43,39	229,262	55,61	51,0145	128,51	128,51	55,61	209,51	409,51	-60,49	-44,39	109,51
5	205,336	15,659	286,448	114,659	106,336	187,559	187,559	114,659	268,559	468,559	-1,441	14,659	168,559
6	256,803	68,8031	338,753	167,803	157,803	240,703	240,703	167,803	321,703	521,703	51,7031	67,8031	221,703
7	303,878	116,633	386,205	215,633	204,878	288,533	288,533	215,633	369,533	569,533	99,5328	115,633	269,533
8	346,585	159,68	429,082	258,68	247,585	331,58	331,58	258,68	412,58	612,58	142,58	158,68	312,58
9	385,174	198,422	467,748	297,422	286,174	370,322	370,322	297,422	451,322	651,322	181,322	197,422	351,322
10	419,973	233,289	502,581	332,289	320,973	405,189	405,189	332,289	486,189	686,189	216,189	232,289	386,189
11	451,323	264,67	533,947	363,67	352,323	436,57	436,57	363,67	517,57	717,57	247,57	263,67	417,57
12	479,552	292,913	562,183	391,913	380,552	464,813	464,813	391,913	545,813	745,813	275,813	291,913	445,813
13	504,964	318,332	587,598	417,332	405,964	490,232	490,232	417,332	571,232	771,232	301,232	317,332	471,232
14	527,838	341,209	610,474	440,209	428,838	513,109	513,109	440,209	594,109	794,109	324,109	340,209	494,109

324,109 = cost of waiting <u>once</u> in s5,

then continuing according to the **previous** 14 policies for 14 steps, then **doing nothing** (which is impossible according to the model)

How Many Iterations?

Illustration, only showing <u>best</u> reward at each step

- We actually have the optimal policy after iteration 4
 - But we can't know this unless we calculate true expected costs as in policy iteration
- Here we only see that the pseudo-expected costs continue changing...
 - Maybe at some point in the future, they will change enough to yield another policy?

Iteration	E(s1)	E(s2)	E(s3)	E(s4)	E(s5)
0	0	0	0	0	0
1	-1	-1	-1	100	-100
2	43,55	-1,9	-1,9	190	-110
3	104,098	-2,71	71	271	-29
4	167,794	62,9	143,9	343,9	43,9
5	229,262	128,51	209,51	409,51	109,51
6	286,448	187,559	268,559	468,559	168,559
7	338,753	240,703	321,703	521,703	221,703
8	386,205	288,533	369,533	569,533	269,533
9	429,082	331,58	412,58	612,58	312,58
10	467,748	370,322	451,322	651,322	351,322
11	502,581	405,189	486,189	686,189	386,189
12	533,947	436,57	517,57	717,57	417,57
13	562,183	464,813	545,813	745,813	445,813
14	587,598	490,232	571,232	771,232	471,232
15	610,474	513,109	594,109	794,109	494,109
16	631,062	533,698	614,698	814,698	514,698
17	649,592	552,228	633,228	833,228	533,228
18	666,269	568,905	649,905	849,905	549,905
19	681,279	583,915	664,915	864,915	564,915
20	694,787	597,423	678,423	878,423	578,423

Different Discount Factors

Suppose discount factor is 0.99 instead

- Much slower convergence
 - Change at step 20:
 2% → 5%
 - Change at step 50:
 0.07% → 1.63%
- Care more about the future
 need to consider many more steps!

Iteration	s1	s2	s3	s4	s5
0	0	0	0	0	0
1	-1	-1	-1	100	-100
2	48,005	-1,99	-1	199	-101
3	121,267	-1,99	97,01	297,01	-2,99
4	206,047	95,0399	194,04	394 , 04	94,0399
5	296,043	191,1	290,1	490,1	190,1
6	388,141	286,199	385,199	585,199	285,199
7	480,803	380,347	479,347	679,347	379,347
8	573,274	473,553	572,553	772,553	472,553
9	665,184	565,828	664,828	864,828	564,828
10	756,356	657,179	756,179	956,179	656,179
11	846,705	747,617	846,617	1046,62	746,617
12	936,195	837,151	936,151	1136,15	836,151
13	1024,81	925,79	1024,79	1224,79	924,79
14	1112,55	1013,54	1112,54	1312,54	1012,54
15	1199,42	1100,42	1199,42	1399,42	1099,42
16	1285,42	1186,42	1285,42	1485,42	1185,42
17	1370,57	1271,57	1370,57	1570,57	1270,57
18	1454,86	1355,86	1454,86	1654,86	1354,86
19	1538,31	1439,31	1538,31	1738,31	1438,31
20	1620,93	1521,93	1620,93	1820,93	1520,93

How Many Iterations?

- We can find bounds!
 - Let M be the maximum change in pseudo-cost between two iterations
 - Then we can find a bound on how far from the optimal cost the current policy may be
 - Cost of current policy cost of optimal policy <= M * (2*discount) / (1-discount)

			Discount factor					
		0,5	0,9	0,95	0,99	0,999		
	0,001	0,002	0,018	0,038	0,198	1,998		
Absolute cost	0,01	0,02	0,18	0,38	1,98	19,98		
difference M	0,1	0,2	1,8	3,8	19,8	199,8		
between two	1	2	18	38	198	1998		
iterations	5	10	90	190	990	9990		
	10	20	180	380	1980	19980		
	100	200	1800	3800	19800	199800		

How Many Iterations? Discount 0.90

							Possible	
							diff from	Doundanno
						Greatest	optimal	Bounds are
Iteration	s1	s2	s3	s4	s5	change	policy	incrementally
0	0	0	0	0	0			tightened!
1	-1	-1	-1	100	-100	100	1800	
2	43,55	-1,9	-1,9	190	-110	90	1620	
3	104,0975	-2,71	71	271	-29	81	1458	Ouit after 10
4	167,7939	62,9	143,9	343,9	43,9	72,9	1312,2	Quit after 10
5	229,2622	128,51	209,51	409,51	109,51	65,61	1180,98	iterations →
6	286,4475	187,559	268,559	468,559	168,559	59,049	1062,882	policy <u>appears</u>
7	338,7529	240,7031	321,7031	521,7031	221,7031	53,1441	956,5938	to cost -467.
8	386,2052	288,5328	369,5328	569,5328	269,5328	47,82969	860,9344	<u>Guarantee</u> :
9	429,0821	331,5795	412,5795	612,5795	312,5795	43,04672	774,841	<= -467 + 697.
10	467,7477	370,3216	451,3216	651,3216	351,3216	38,74205	697,3569	
20	694,787	597,4233	678,4233	878,4233	578,4233	13,50852	243,1533	
30	773,9725	676,6088	757,6088	957,6088	657,6088	4,710129	84,78232	Quit after 50
40	801,5828	704,2191	785,2191	985,2191	685,2191	1,64232	29,56177	iterations →
50	811,2099	713,8462	794,8462	994,8462	694,8462	0,572642	10,30755	
60	814,5666	717,203	798,203	998,203	698,203	0,199668	3,594021	policy <u>appears</u>
70	815,7371	718,3734	799,3734	999,3734	699,3734	0,06962	1,253157	to cost -811.
80	816,1452	718,7815	799,7815	999,7815	699,7815	0,024275	0,436949	<u>Guarantee</u> :
90	816,2875	718,9238	799,9238	999,9238	699,9238	0,008464	0,152355	<= -811 + 10.
100	816,3371	718,9734	799,9734	999,9734	699,9734	0,002951	0,053123	
80 90	816,1452 816,2875	718,7815 718,9238	799,7815 799,9238	999,7815 999,9238	699,7815 699,9238	0,024275 0,008464	0,436949 0,152355	

103

How Many Iterations? Discount 0.99

104	
- Carl	

Internation Internation <thinternation< th=""> <thinternation< th=""></thinternation<></thinternation<>								Possible							
Iteration s1 s2 s3 s4 s5 change policy tightened! 0 0 0 0 0 0 0 0 1 1 1 1 1 10 100 100 19800 19800 19800 19800 19807,6 0 0 0 100 19807,6 0 0 100 19800 19807,6 0 0 0 0 100 19807,6 0 0 0 0 0 0 100 100 19800 19807,6 0 0 0 0 0 100 100 19807,6 0 <								diff from							
000 <th< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td>Greatest</td><td>optimal</td><td>incrementally</td></th<>							Greatest	optimal	incrementally						
1 -1 -1 100 -100 100 19800 10 756,356 657,179 756,179 956,179 656,179 91,3517 18087,6 20 1620,93 1521,93 1620,93 1820,93 1520,93 82,6169 16358,1 30 2403 2304 2403 2603 2303 74,7172 14794 50 3749,94 3650,94 3749,94 3949,94 3649,94 61,1117 12100,1 100 6139,68 6040,68 6139,68 6339,68 36,973 7320,65 150 7585,48 7486,48 7585,48 7785,48 7485,48 22,3689 4429,04 200 8460,2 8361,2 8660,2 8360,2 13,5333 2679,59 200 8460,2 8361,2 860,2 8360,2 13,5333 2679,59 200 8460,2 8361,3 989,41 889,41 9189,41 8889,41 8,18773 1621,17 300 9309,59 921,59 9309,59 9209,59 4,95363 980,818 <	Iteration	s1	s2	s3	s4	s5	change	policy	tightened!						
10756,356657,179756,179956,179656,17991,351718087,6201620,931521,931620,931820,931520,9382,616916358,1302403230424032603230374,717214794503749,943650,943749,943949,943649,9461,111712100,11006139,686040,686139,686339,686039,6836,9737320,657320,651507585,487486,487585,487785,487485,4822,36894429,04Guarantee:2008460,28361,28460,28660,28360,213,53332679,5960 cost 8989.12508989,418989,419189,419889,418,187731621,171621,173009309,599210,599309,599509,599209,594,95363980,8184009620,499521,499620,499520,491,81319359,0115009734,39635,39734,39934,39634,30,66369131,416009775,959675,959975,959675,950,2429348,10027009791,29692,29791,29991,29691,20,0889217,60628009796,78967,789796,78996,789696,780,032556,444459009798,829699,829798,829698,820,011912,3588810 cost 9775.	0	0	0	0	0	0									
20 1620,93 1521,93 1620,93 1820,93 1520,93 82,6169 16358,1 Quit after 250 30 2403 2304 2403 2603 2303 74,7172 14794 policy appears 50 3749,94 3650,94 3749,94 3949,94 3649,94 61,1117 12100,1 policy appears 100 6139,68 6040,68 6139,68 6339,68 6039,68 36,973 7320,65 to cost 8989. 100 6139,68 6140,2 8660,2 8360,2 13,533 2679,59 guarantee: 200 8460,2 8361,2 8460,2 8660,2 8360,2 13,533 2679,59 guarantee: 250 8989,41 8989,41 9189,41 8889,41 8,18773 1621,17 guarantee: 300 9309,59 9210,59 9309,59 9209,59 4,95363 980,818 guarantee: <= 8989+1621.	1	-1	-1	-1	100	-100	100	19800							
1021022,931022,931022,931022,931022,931022,931022,931032,933024032304240326032303 $74,7172$ 14794503749,943650,943749,943949,943649,9461,111712100,11006139,686040,686139,686339,686039,6836,9737320,651507585,487486,487585,487785,487485,4822,36894429,042008460,28361,28460,28660,28360,213,5332679,592508989,418899,419189,418889,418,187731621,173009309,599210,599309,599209,594,95363980,8184009620,499521,499620,499520,491,81319359,0115009734,39635,39734,39934,39634,30,66369131,416009775,959676,959775,959975,950,2429348,10027009791,29692,29791,29991,29691,20,0889217,60628009796,789697,789796,789996,789696,780,032556,444459009798,829699,829798,829698,820,011912,35888Guarantee:	10	756,356	657,179	756,179	956,179	656,179	91,3517	18087,6	Quitefue						
50240320042403200520052005140514154503749,943650,943749,943949,943649,9461,111712100,1141541006139,686040,686139,686339,686039,6836,9737320,651507585,487486,487585,487785,487485,4822,36894429,04162,1171200,11141542008460,28361,28460,28660,28360,213,53332679,592679,59250,8989,418890,418989,4181,87731621,173009309,599210,599309,599509,599209,594,95363980,8182< <td><<td><<td><<td><<td><<td><<</td><td>20</td><td>1620,93</td><td>1521,93</td><td>1620,93</td><td>1820,93</td><td>1520,93</td><td>82,6169</td><td>16358,1</td><td></td></td></td></td></td></td>	< <td><<td><<td><<td><<td><<</td><td>20</td><td>1620,93</td><td>1521,93</td><td>1620,93</td><td>1820,93</td><td>1520,93</td><td>82,6169</td><td>16358,1</td><td></td></td></td></td></td>	< <td><<td><<td><<td><<</td><td>20</td><td>1620,93</td><td>1521,93</td><td>1620,93</td><td>1820,93</td><td>1520,93</td><td>82,6169</td><td>16358,1</td><td></td></td></td></td>	< <td><<td><<td><<</td><td>20</td><td>1620,93</td><td>1521,93</td><td>1620,93</td><td>1820,93</td><td>1520,93</td><td>82,6169</td><td>16358,1</td><td></td></td></td>	< <td><<td><<</td><td>20</td><td>1620,93</td><td>1521,93</td><td>1620,93</td><td>1820,93</td><td>1520,93</td><td>82,6169</td><td>16358,1</td><td></td></td>	< <td><<</td> <td>20</td> <td>1620,93</td> <td>1521,93</td> <td>1620,93</td> <td>1820,93</td> <td>1520,93</td> <td>82,6169</td> <td>16358,1</td> <td></td>	<<	20	1620,93	1521,93	1620,93	1820,93	1520,93	82,6169	16358,1	
1006139,686040,686139,686339,686039,6836,9737320,65to cost 8989.1507585,487486,487585,487785,487485,4822,36894429,041112008460,28361,28460,28660,28360,213,53332679,59128989,41899,419189,418889,418,187731621,1711 <t< td=""><td>30</td><td>2403</td><td>2304</td><td>2403</td><td>2603</td><td>2303</td><td>74,7172</td><td>14794</td><td></td></t<>	30	2403	2304	2403	2603	2303	74,7172	14794							
150 7585,48 7486,48 7585,48 7785,48 7485,48 22,3689 4429,04 Guarantee: 200 8460,2 8361,2 8460,2 8660,2 8360,2 13,5333 2679,59 250 8989,41 8899,41 9189,41 8889,41 8,18773 1621,17 300 9309,59 9210,59 9309,59 9509,59 9209,59 4,95363 980,818 400 9620,49 9521,49 9620,49 9820,49 9520,49 1,81319 359,011 500 9734,3 9635,3 9734,3 9934,3 9634,3 0,66369 131,41 600 9775,95 9676,95 9775,95 9975,95 9675,95 0,24293 48,1002 700 9791,2 9692,2 9791,2 9991,2 9691,2 0,08892 17,6062 800 9796,78 9697,78 9796,78 9696,78 0,03255 6,44445 0 cost 9775. 900 9798,82 9699,82 9798,82 9698,82 0,01191 2,35888 Guarantee:	50	3749,94	3650,94	3749,94	3949,94	3649,94	61,1117	12100,1	policy <u>appears</u>						
200 8460,2 8361,2 8460,2 8660,2 8360,2 13,5333 2679,59 <= 8989,41	100	6139,68	6040,68	6139,68	6339,68	6039,68	36,973	7320,65	to cost 8989.						
250 8989,41 8890,41 8989,41 9189,41 8889,41 8,18773 1621,17 300 9309,59 9210,59 9309,59 9509,59 9209,59 4,95363 980,818 400 9620,49 9521,49 9620,49 9820,49 9520,49 1,81319 359,011 500 9734,3 9635,3 9734,3 9934,3 9634,3 0,66369 131,41 600 9775,95 9676,95 9775,95 9975,95 9675,95 0,24293 48,1002 700 9791,2 9692,2 9791,2 9991,2 9691,2 0,08892 17,6062 800 9796,78 9697,78 9796,78 9966,78 9696,78 0,03255 6,44445 900 9798,82 9699,82 9798,82 9698,82 0,01191 2,35888 Euarantee:	150	7585,48	7486,48	7585,48	7785,48	7485,48	22,3689	4429,04	<u>Guarantee</u> :						
250 8989,41 8890,41 8989,41 9189,41 8889,41 8,18773 1621,17 300 9309,59 9210,59 9309,59 9509,59 9209,59 4,95363 980,818 400 9620,49 9521,49 9620,49 9820,49 9520,49 1,81319 359,011 500 9734,3 9635,3 9734,3 9934,3 9634,3 0,66369 131,41 600 9775,95 •676,95 9775,95 9975,95 9675,95 0,24293 48,1002 700 9791,2 9692,2 9791,2 9991,2 9691,2 0,08892 17,6062 policy appears 800 9796,78 9697,78 9796,78 9696,78 9696,78 0,01191 2,35888 to cost 9775. 900 9798,82 9699,82 9798,82 9698,82 0,01191 2,35888 Guarantee:	200	8460,2	8361,2	8460,2	8660,2	8360,2	13,5333	2679,59	<= 8989+1621.						
400 9620,49 9521,49 9620,49 9820,49 9520,49 1,81319 359,011 500 9734,3 9635,3 9734,3 9934,3 9634,3 0,66369 131,41 600 9775,95 9676,95 9775,95 9975,95 9675,95 0,24293 48,1002 700 9791,2 9692,2 9791,2 9991,2 9691,2 0,08892 17,6062 800 9796,78 9697,78 9796,78 9996,78 9696,78 0,03255 6,44445 900 9798,82 9699,82 9798,82 9998,82 9698,82 0,01191 2,35888 Cuit after 600	250	8989,41	8890,41	8989,41	9189,41	8889,41	8,18773	1621,17							
500 9734,3 9635,3 9734,3 9934,3 9634,3 0,66369 131,41 600 9775,95 9676,95 9775,95 9975,95 9675,95 0,24293 48,1002 700 9791,2 9692,2 9791,2 9991,2 9691,2 0,08892 17,6062 policy appears 800 9796,78 9697,78 9796,78 9996,78 9696,78 0,03255 6,44445 to cost 9775. 900 9798,82 9699,82 9798,82 9698,82 0,01191 2,35888 Guarantee:	300	9309,59	9210,59	9309,59	9509,59	9209,59	4,95363	980,818							
500 9734,3 9635,3 9734,3 9934,3 9634,3 0,66369 131,41 iterations → 600 9775,95 9676,95 9775,95 9975,95 9675,95 0,24293 48,1002 policy appears 700 9791,2 9692,2 9791,2 9991,2 9691,2 0,08892 17,6062 policy appears 800 9796,78 9697,78 9796,78 9996,78 9696,78 0,03255 6,44445 to cost 9775. 900 9798,82 9699,82 9798,82 9698,82 0,01191 2,35888 Guarantee:	400	9620,49	9521,49	9620,49	9820,49	9520,49	1,81319	359,011	Quit after 600						
600 9775,95 9676,95 9975,95 9675,95 0,24293 48,1002 700 9791,2 9692,2 9791,2 9991,2 9691,2 0,08892 17,6062 policy <u>appears</u> 800 9796,78 9697,78 9796,78 9996,78 9696,78 0,03255 6,44445 to cost 9775. 900 9798,82 9699,82 9798,82 9698,82 0,01191 2,35888 Guarantee:	500	9734,3	9635,3	9734,3	9934,3	9634,3	0,66369	131,41							
800 9796,78 9697,78 9796,78 9996,78 9696,78 0,03255 6,44445 to cost 9775. 900 9798,82 9699,82 9798,82 9698,82 0,01191 2,35888 Guarantee:	600	9775,95	9676,95	9775,95	9975,95	9675,95	0,24293	48,1002							
900 9798,82 9699,82 9798,82 9998,82 9698,82 0,01191 2,35888 Guarantee:	700	9791,2	9692,2	9791,2	9991,2	9691,2	0,08892	17,6062							
	800	9796,78	9697,78	9796,78	9996,78	9696,78	0,03255	6,44445							
1000 9799,57 9700,57 9799,57 9999,57 9699,57 0,00436 0,86342 <= 9775+48 .	900	9798,82	9699,82	9798,82	9998,82	9698,82	0,01191	2,35888	<u>Guarantee</u> :						
	1000	9799,57	9700,57	9799,57	9999,57	9699,57	0,00436	0,86342	<= 9775+48.						

Value Iteration

• **Value iteration** to find π^* :

- Start with an <u>arbitrary cost</u> $E_o(s)$ for each *s* and an arbitrary $\varepsilon > o$
- For *k* = 1, 2, ...
 - for each *s* in *S* do

Almost as in the definition of Q(s,a), but we use the **previous** expected cost

- for each a in A do $Q(s,a) := C(s,a) + \gamma \sum_{s' \in S} P_a(s' \mid s) E_{k-1}(s')$
- $E_k(s) = \min_{a \in A} Q(s,a)$
- $\pi(s) = \operatorname{argmin}_{a \in A} Q(s, a)$
- If $\max_{s \in S} |E_k(s) E_{k-1}(s)| < \varepsilon$ for every *s* then exit // Almost no change!
- On an acyclic graph, the values converge in finitely many iterations
- On a cyclic graph, <u>value</u> convergence can take infinitely many iterations
- That's why ε > o is needed

Discussion

- Both algorithms converge in a polynomial number of iterations
 - But the variable in the polynomial is the number of states
 - The number of states is usually huge
 - Need to examine the entire state space in each iteration
- Thus, these algorithms take huge amounts of time and space
 - Probabilistic set-theoretic planning is EXPTIME-complete
 - Much harder than ordinary set-theoretic planning, which was only PSPACEcomplete
 - Methods exist for reducing the search space, and for approximating optimal solutions
 - Beyond the scope of this course