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 So far, we have assumed we know in advance: 
 The state of the world when plan execution starts 

 The outcome of any action, given the state where it is executed 

▪ State + action  unique resulting state 

 So if there is a solution: 
 There is an unconditional sequential solution 

 

Start 
here… 

Model says: we end up 
in this specific state! 

Planning Execution 

Just follow the unconditional plan… 



 In reality, actions may have multiple outcomes 
 Nondeterministic planning: 

▪ State + action  set of possible new states (no more info during planning) 

 Probabilistic planning:  

▪ State + action  probability distribution over a set of possible next states 

▪ Can plan for all outcomes, or ignore the least probable outcomes 

▪ Can generate plans with high probability of reaching the goal 

Start 
here… 

Model says: we end up 
in one of these states 

Planning Execution 

We need something different here… 

(with this probability?) 



 Sometime, specific outcomes are intended or nominal 


Intended outcome:  is true 
Unintended outcome:  is false 

  
Intended outcome:  
Unintended outcome: 

 

 Sometimes there are no intended outcomes 
 Tossing a coin:  different outcomes 

 

 

"Intentions" are just 
our interpretation! 

 
To a planner, 

there is generally 
no difference… 



 With multiple outcomes, we can generate: 
 Strong solutions (guaranteed to reach the goal) 

 Weak solutions (may reach the goal) 

 Probabilistic solutions (reaching the goal with probability >= limit) 

 



Deterministic: 

Exact outcome known in advance 

Classical planning (possibly with extensions) 

Non-deterministic: 

Multiple outcomes, no probabilities 

? 

Probabilistic: 

Multiple outcomes with probabilities 

? 

 But what about information gained during execution? 



 

 

 

Non-deterministic or probabilistic model 

Fully observable: 
Our sensors can determine 

exactly which state we are in 
after executing an action 

A plan could: 
 Define which action to perform 
      depending on which exact state you actually ended up in 

Start 
here… 

Model says: we end up 
in one of these states 

Planning Execution 

Start 
here… 

Sensors say: we are 
in this state! 



Non-deterministic or probabilistic model 

Non-observable:  
We have no sensors 

to determine what happened 
Only predictions can guide us 

A plan could: 
 Define which action to perform 
      depending on which set of states you might be in 

Start 
here… 

Model says: we end up 
in one of these states 

Planning Execution 

Start 
here… 

No sensors! 
No new information 



 

 

 

Non-deterministic or probabilistic model 

Partially observable: 
Sensors can observe some 

properties of the world 
 we are in a set of states 

A plan could: 
 Define which action to perform 
      depending on which set of states you might be in 
 Take into account new information after sensing 

Start 
here… 

Model says: we end up 
in one of these states 

Planning Execution 

Start 
here… 

Sensors say: we are in 
one of these states 



Non-Observable: 

No information 

gained after action 

Fully Observable: 

Exact outcome 

known after action 

Partially Observable: 

Some information gained 

after action 

Deterministic: 

Exact outcome 

known in advance 

Classical planning (possibly with extensions) 

(Information dimension is meaningless) 

Non-deterministic: 

Multiple outcomes, 

no probabilities 

Non-deterministic 

Conformant Planning 

Conditional 

(Contingent) Planning 

(No specific name) 

Probabilistic: 

Multiple outcomes 

with probabilities 

Probabilistic  

Conformant Planning 

 

(Special case of POMDPs) 

Probabilistic 

Conditional Planning 

 

Markov Decision 

Processes (MDPs) 

Partially Observable MDPs 

(POMDPs) 

 In general: 
 Full information is the easiest 

 Partial information is the hardest! 
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 Fully Observable Markov Decision Processes: 
 Action outcomes are: 

▪ Probabilistic  

▪ Fully observable 

Start 
here… 

Model says: will end up 
in one of these states 

Planning Execution 

Start 
here… 

Sensors say: did end up 
in this state! 



 Formal models: 
 Restricted state transition system  

▪  Finite set of world states 

▪  Finite set of actions 

▪    State transition function, where 

 Stochastic system 

▪ P(s, a, s'): Given that we are in s and execute a, 
 the probability of ending up in s’ 

▪ For any state s and action a, we have   : 
Exactly 100% probability of ending up somewhere 

Sometimes written 



 
At location 5 

 
At location 6 

 
Intermediate 

location 

Action: drive-uphill 

Model says: 2% risk 
of slipping, ending 
up somewhere else 

Arc indicates 
outcomes of a 
single action 



 May have very unlikely outcomes… 

 
At location 5 

 
At location 6 

 
Intermediate 

location 

 
Broken 

Very unlikely, but may 
still be important to 
handle: Contingency 
plans using other 
vehicles, etc.  

Probability sum = 



 And very many outcomes… 

 
At location 5 
Fuel level 

 
At location 6 
Fuel level 

 
Intermediate 

location 

 
Broken 

 
At location 6 
Fuel level 

As always, one state 
for every combination 

of properties 



 Like before, often many executable actions in every state 

Probability sum = 1 
(single certain outcome) 

Probability sum = 1 
(three possible outcomes) 

Probability sum = 1 
(three possible outcomes) 

We choose 
the action… 

 
Nature chooses 
the outcome! 

 
Search yields an 
AND/OR graph 



 Example: A single robot 
 Moving between  locations 

 For simplicity, 
states correspond 
directly to 
locations 

▪

▪

▪

▪

▪

 

 Some transitions are deterministic, some are stochastic 

▪ Trying to move from  to : You may end up at  instead ( % risk) 

▪ Trying to move from  to : You may stay where you are instead ( % risk) 

 (Can’t always move in both directions, e.g. due to terrain gradient) 

 

s2 s3 

s4 s1 

s5 





 Recall the definition of the probability function: 
 P(s, a, s') is the probability of ending up in s’ 

  given that we are in s and execute a 

 
Nothing else matters! 



a 

 This type of system has the Markov property: is memoryless 

 
At location 5 

 
At location 6 

 
Intermediate 

location 

 
Broken 

 
At location 3 

At location 4 

… 

… 

Only the 
current state 

We don’t need to 
know the states we 

visited before… 

…To find out where 
we may end up, 

with which prob. 

and the 
action… 



 We can still remember some things about the past! 
 Example: predicate visited(location) 

▪ Keeps track of where we have been 

 

 But then this information is encoded and stored in the current state 

▪ Which is finite, has a constant size 

▪ No need to query an ever-growing sequence of past states 





 Two important consequences for plan structures: 
 Action choice must depend on the current state 

▪ And thereby on earlier execution-time outcomes! 

 Cannot have a limit on the number of actions executed! 

 

 

 

 

 

 In MDP planning, we generate policies 
 Usually denoted by π 

 Defines, for each state, 
which action to execute whenever we end up in that state 

▪

s4 s1 



 Since a policy defines an action for every state: 
 We could define a set of goal states where execution can end 

▪ Similar to classical planning 

 Usually one assumes a policy never terminates! 

▪ The policy always specifies 
another action to execute 

▪ Objectives specified through 
costs and rewards 
(later!) 

s2 s3 

s4 s1 

s5 



 Example 


 
s2 s3 

s4 s1 

s5 

May end up in  or , wait there infinitely many times 



 Example 


 
s2 s3 

s4 s1 

s5 

Always reaches the state , waits there infinitely many times 



 Example 


 
s2 s3 

s4 s1 

s5 

Reaches state  with % probability ”in the limit” 





 Executing a policy results in a state sequence: A history 
 Infinite, since policies do not terminate 

  

 

 For classical planning: 
 We know the initial state 

 Actions are deterministic 

  A plan yields a single history (last state repeated infinitely) 

 

 For probabilistic planning: 
 Initial states can be probabilistic 

▪ For every state s, there will be a probability P(s) that we begin in the state s 

 Actions can have multiple outcomes 

  A policy can yield many different histories 

▪ Which one? Only known at execution time! 

 

 (index zero): Variable used in histories, etc 

: concrete state name used in diagrams 

We may have  = 



 Example 1 


 

 

 

 

 

 Even if we only consider starting in : Two possible histories 

   – Reached , waits indefinitely 
  – Reached , waits indefinitely 

s2 s3 

s4 s1 

s5 

How likely are these histories? 



 Each policy induces a probability distribution over histories 

 Let  

 

 With unknown initial state: 

▪  



 

 The book: 

▪ Assumes you start 
in a known state 

▪ So all histories start 
with the same state 

▪  



 

s2 s3 

s4 s1 

s5 



 Example 


 

 

 

 

 

 Two possible histories, if we always start in s1 
      

     



 

s2 s3 

s4 s1 

s5 



 Example 


 

 

 

 

 

 
      

     



 

s2 s3 

s4 s1 

s5 



 Example 


 

 
 

 

 
       

      

      

      

s2 s3 

s4 s1 

s5 





 What is the objective? 
 In classical planning: Want a plan resulting in a goal state 

▪ Natural formulation, since a plan always ends up in the same state 

 

 In probabilistic planning: This is still possible 

▪ A weak solution may reach a goal state in a finite number of steps 

▪ A strong solution will reach a goal state in a finite number of steps 

▪ A strong cyclic solution will reach a goal state in a finite number of steps 
given a fairness assumption: 
Informally, ”if we can exit a loop, we eventually will” 

s2 s3 

s5 

Start Destination / goal 



 Alternative model, often used in MDP planning: 

 Numeric cost C(s,a) for each state s and action a 

 Numeric reward R(s) for each state s 

 Example: 
▪

▪

▪

▪

▪



 Utility functions 
 Suppose a policy leads us to go through a certain history (state sequence) 

 How ”useful / valuable" is this history to us? 

 

 

 First attempt: 

 h = s0, s1, …  V(h | π) = i ≥ 0 (R(si) – C(si,π(si))) 

 
Add the reward for 

being in state si 
Subtract the cost of 

the action chosen in si 

Utility of history h 
given policy π 



 Example: 
 Suppose π1 happens to result in  



 We stay at  forever, executing “wait”, 
so we get an infinite amount of rewards! 

This is not the only 
history that could 

result from the policy! 
 

That’s why we specify 
the policy and the history 

to calculate a utility… 



 What’s the problem, given that we "like" being in state ? 

 We can’t distinguish between different ways of getting there! 

     

       

 Both appear equally good… 

 

 



 Solution: Use a discount factor, , with 0 ≤  ≤ 1 

 To avoid divergence (infinite utility values V(…)) 

 To model "impatience": rewards and costs far in the future 
are less important to us 

 

 Discounted utility of a history: 

 V(h | π) = i ≥ 0  i  (R(si) – C(si,π(si)))  

 Distant rewards/costs 
have less influence 

 Convergence (with finite results) 
is guaranteed if 

 

 



 Still only tells us the utility of a history 
 But we can’t force a history 

 Can only decide a policy – which can lead to many histories 

 

 Assuming a known starting state: 
 Expected utility of a policy: 

▪ How probable is each history (outcome), and how valuable is it to us? 

 

 A policy  is optimal if no other policy has greater expected utility 

▪ For every 

 

 A solution is an optimal policy! 

▪ Gives us the greatest (expected) reward that we can get, 
given the specified probabilities, costs, and rewards 

 

 





 

 

Given that we start in s1, 
this simple policy can lead to only 

two different histories… 
80% chance of history h1, 
20% chance of history h2 

We expect a reward of 256.3 on average 





 

 

Given that we start in s1, 
also two different histories… 

80% chance of history h1, 
20% chance of history h2 

Expect 531,7 on average (π1 gave 256.3) 



 Markov Decision Processes 
 Underlying world model: Stochastic system 

 Plan representation: Policy – which action to perform in any state 

 Goal representation: Utility function defining “solution quality” 

 Planning problem: Optimization: Maximize expected utility 

 





 To simplify the presentation of important principles: 
 Let’s consider a special case: 

▪ We start in a known state, s0 

▪ All rewards are 0 

 Can easily be generalized 
 

 We should minimize the expected cost of a policy: 

 E(π) = h P(h | π) C(h | π) 

▪ Where  C(h | π) = i ≥ 0  i C(si, π(si)) (discounted cost) 

▪ replaces V(h | π) = i ≥ 0  i (R(si) – C(si,π(si))) (discounted cost/reward) 

 

 We will also need to know: 
 Eπ(s) = the expected cost of executing π 

starting in some specific state s 

 



 How can we calculate ? 

 If we visit the states   where 

▪  

 

 But only the first state is known in advance! 



 If π is a policy, then 

 Eπ(s) = C(s, π(s)) +  s’ S P(s, π(s), s')   Eπ(s') 

 

 The expected cost of executing π starting in s 

 Is the cost of executing the action chosen by the policy, π(s), in s 

 Plus the discount factor  times… 

▪ …the sum, for all possible states s’ S that you might end up in, 

▪ of the probability P(s, π(s), s') of actually ending up in that state 
given the action π(s) chosen by the policy 

▪ times the expected cost Eπ(s') of executing π starting in that new state s’ 

 

 (If you expand in one step…) 

 Eπ(s) = C(s, π(s)) +  s’ S P(s, π(s), s') [ 
           C(s', π(s')) +  s’’ S P(s’, π(s''), s'')   Eπ(s'') 
] 



 = The expected cost of executing  starting in : 

 The cost of the first action: ) 

 Plus the discount factor   times… 

▪ [Ending up in ] 

 



  = the expected cost of executing  starting in : 

 The cost of the first action: )  

▪ (Which has multiple outcomes!) 

 Plus the discount factor  times… 

▪ [Ending up in ] 

▪ Plus 
[Ending up in ] 

 
 

 



 Seems like we could easily calculate this recursively! 
  defined in terms of )  

  defined in terms of ) and )  

 … 

 Just continue until you reach the end! 

 

 



 But there isn’t always an ”end”! 
 Modified example below is a valid policy π: 

▪  defined in terms of )  

▪ ) defined in terms of ) and )  

▪ ) defined in terms of ) 

▪ ) defined in terms of )… 

 

 



 If π is a policy, then for all states s: 

 Eπ(s) = C(s, π(s)) +  s’ S P(s, π(s), s')   Eπ(s') 

 

 The expected cost of executing π starting in s 

 Is the cost of executing the action chosen by the policy, π(s), in s 

 Plus the discount factor  times… 

▪ …the sum, for all possible states s’ S that you might end up in, 

▪ of the probability P(s, π(s), s') of actually ending up in that state 
given the action π(s) chosen by the policy 

▪ times the expected cost Eπ(s') of executing π starting in that new state s’ 

 

This is an equation system: |S| equations, |S| variables! 
 

Requires different solution methods… 



 Bellman’s Principle of Optimality: 
 An optimal policy has the property that 

whatever the initial state and initial decision are, 
the remaining decisions must constitute an optimal policy 
with regard to the state resulting from the first decision 

 

 Problem: Find a policy 
that minimizes cost 

given that we start in . 
 

Suppose that 
an optimal policy  

begins with , 
so that the next state is . 

 
Then  

must also minimize cost 
given that we start in ! 



 Sounds trivial? Depends on the Markov Property! 
 Suppose costs depended on which states you had visited before 

 Suppose you want to go 

▪ First action should be 

 Now you need to go 

▪ Because you have visited  before, ) is very expensive 

▪ Best solution:     , cost of 

 But if you only wanted 
to go  : 

▪ ), 
with a cost of 

 
 This can’t happen here! 

▪ Markovian! 



Local change! 

 Let’s hypothesize:  
What if I made this local change, but kept everything else? 

▪ Let Qπ(s,a) be the expected cost of π in a state s 
if we start by executing the given action a, 
but we use the policy π from then onward 
 

▪ Eπ(s)  = C(s, π(s)) +  s' S P(s, π(s), s’)  Eπ(s') 
▪ Q π(s,a) = C(s, a     ) +  s' S P(s, a,      s’)  Eπ(s') 

 



 Example: Eπ(s1) 

▪ The expected cost of following the current policy 

▪ Starting in s1, beginning with move(l1,l2) 

 Q π(s1, move(l1,l4)) 

▪ The expected cost of first trying to move from l1 to l4, 
then following the current policy 

 



 Suppose you have an everywhere optimal policy π* 
 That is, no other policy gives a better result for any starting state 

 

 

 Then, because of the principle of optimality: 
 For all states s, Eπ*(s) = mina Q π*(s,a) 

 For all states s, Eπ*(s) = mina (C(s,a) +  s' S P(s, a,      s’) Eπ*(s')) 

 

 

 

 In every state, 
the local choice made by the policy 
is locally optimal 

Choice 
now 

”The 
rest” 



 Suggests a specific type of solution method: 
 Try to separate the decision in this state 

from the decisions in the remainder of the policy 

 

 Use iterative refinement 

▪ Start with some initial values (for example, a random policy) 

▪ Find local improvements 



 Example: 

▪ The expected cost of following the current policy 

▪ Starting in , beginning with ) 



▪ The expected cost of first trying to move from  to , 
then following the current policy 

 

If doing ) first 
has a lower expected cost, 

we may want to modify 
the current policy: 

 

Details: Next time! 





 Action representations: 
 The book only deals with the underlying semantics: 

Explicit enumeration of each P(s, a, s') 

 Several “convenient” representations possible, 
such as Bayes networks, probabilistic operators 



 Probabilistic PDDL: new constructs for effects, initial state 


▪ Effect  takes place with probability , etc. 

▪ Sum of probabilities  (can be strictly less  implicit empty effect) 

▪ (define (domain bomb-and-toilet)  

 (:requirements :conditional-effects :probabilistic-effects)  

 (:predicates (bomb-in-package ?pkg) (toilet-clogged) (bomb-defused)) 

 (:action dunk-package 

  :parameters (?pkg) 

  :effect (and 

   (when (bomb-in-package ?pkg) (bomb-defused)) 

   (probabilistic 0.05 (toilet-clogged))))) 

▪ (define (problem bomb-and-toilet)  

 (:domain bomb-and-toilet)  

 (:requirements :negative-preconditions)  

 (:objects package1 package2)  

 (:init (probabilistic 0.5 (bomb-in-package package1)  

   0.5 (bomb-in-package package2)))  

 (:goal (and (bomb-defused) (not (toilet-clogged))))) 

5% chance of toilet-clogged, 
95% chance of no effect 

First, a "standard" effect 

Probabilistic initial state 



▪

▪

▪

▪

▪

▪

▪

▪

▪

▪

▪

▪

▪

▪

▪

▪



▪

▪

▪

▪

▪

▪

▪

▪

▪

▪

▪



▪





 Example Problem with Rewards and Costs 
 

 



 In the model we used, rewards and costs are always ”taken together” 

▪ Can’t get a reward without a cost or vice versa 

▪ R(s) – C(s, a): You are in a state, and then you execute an action in that state 

 To simplify, we include the reward in the cost! 

▪ Decrease each C(s,a) by R(s) 

▪ Transitions from s5 are more expensive 

▪ Transitions from s4 are less expensive 

▪ Sometimes 
negative costs – 
not a problem! 

 

 Objective is 
to minimize cost 

▪ Automatically takes 
rewards into account 





 First algorithm: Policy iteration 
 General idea: 

▪ Start out with an initial policy, maybe randomly chosen 

▪ Calculate the expected cost of executing that policy 
from each state 

▪ Update the policy by making a local decision for each state : 
”Which action should my improved policy choose in this state, 
given the expected costs of the current policy?” 

▪ Iterate until convergence (the policy no longer changes) 

 



π1

 Policy iteration requires an initial policy 
 Let’s start by choosing “wait” in every state 

 Let’s set a discount factor: 

▪ Easy to use in calculations on these slides, 
but in reality we might use a larger factor 
(we’re not that short-sighted!) 

 



π1

 Calculate expected costs for the current policy π1 
 Simple: Chosen transitions are deterministic + return to the same state! 

▪   

▪ 

▪ 

▪ 

▪ 

▪ 

 Simple equations to solve: 

▪ 

▪ 

▪ 

▪ 

▪ 

 

Given this policy π1: 
High costs if we start in s5, 

high rewards if we start in s4 



Seems best – chosen! 

 

 
 

 

 For every state s: 
 Let 

 That is, find the action a that minimizes   

▪

 

 These are not the true expected costs for starting in state s1! 

▪ They are only correct if we locally change the first action to execute 
and then go on to use the previous policy (in this case, always waiting)! 

▪ But they can be proven to yield good guidance, 
as long as you apply the improvements repeatedly (as policy iteration does) 

What is the best 
local modification 

according to the 
expected cost 

of the current policy? 



 

 

 

 

 For every state s: 
 Let 

 That is, find the action a that minimizes C(s, a) +  s' S P(s, a, s’)  Eπ1(s') 

▪

What is the best 
local modification 

according to the 
expected cost 

of the current policy? 



 

 

 

 

 For every state s: 
 Let 

 That is, find the action a that minimizes C(s, a) +  s' S P(s, a, s’)  Eπ1(s') 

▪

▪

▪

What is the best 
local modification 

according to the 
expected cost 

of the current policy? 



 This results in a new policy 
 

Now we have made use of 
earlier indications that 

s4 seems to be a good place 
 

 Try to go there 
from s1 / s3 / s5! 

 
No change in s2 yet… 

Costs based on 
one modified 
action + 
following 
(no increase!) 



π2

 Calculate true expected costs for the new policy π2 
▪ 

▪ 

▪ 

▪ 

▪ 

 Equations to solve: 

▪ 

▪ 

▪ 

▪ 

▪  









 Now we have the true expected costs of the second policy… 

π

π

π

π

π

S5 wasn’t so bad after all, 
since you can reach s4 

in a single step! 
 

S1 / s3 are even better. 
 

S2 seems much worse 
in comparison, 

since the benefits of s4 
haven’t ”propagated” that far. 

<= -444,5 
<= 10 
<= -800 
<= -1000 
<= -700 



Seems best – chosen! 

 

 

 

 

 For every state s: 
 Let 

 That is, find the action a that minimizes C(s, a) +  s' S P(s, a, s’)  Eπ2(s') 

▪

▪

What is the best 
local modification 

according to the 
expected cost 

of the current policy? 

Now we will change the action taken at s2, 
since we have better expected costs for s1, s3, s5… 



 

 

 

 

 For every state s: 
 Let 

 That is, find the action a that minimizes C(s, a) +  s' S P(s, a, s’)  Eπ1(s') 

▪

▪

▪

What is the best 
local modification 

according to the 
expected cost 

of the current policy? 



 This results in a new policy π3 

 True expected costs are updated 
by solving an equation system 

 The algorithm will iterate once more 

 No changes will be made to the policy 

  Termination with optimal policy! 

 

 

 

 



 Policy iteration is a way to find an optimal policy π* 
 Start with an arbitrary initial policy π1. Then, for i = 1, 2, … 

▪ Compute expected costs Eπi(s) for every s by solving a system of equations 

▪ System: For all s,   

▪ Result: The expected cost of the “current” policy in any given state s 

▪ Not a simple recursive calculation – the state graph is generally cyclic! 

▪ Compute an improved policy πi+1 “locally” for every s 

▪    

▪ Tells us the best action in any given state s given current expected costs 

▪ But this is a new policy – with new expected costs! 

▪ Loop back and calculate those costs 

▪ If  then exit 

▪ We have found an optimal solution – cannot be improved anywhere 

▪ Otherwise, loop and calculate the expected cost for πi+1 , etc. 

 

Find costs 
according to 

current 
policy 

Find best 
policy 

according to 
current costs 



 Converges in a finite number of iterations! 
 We change which action to execute 

if this improves expected cost for this state 

▪ This can sometimes decrease, 
and never increase, the cost of other states! 

▪ So costs are monotonically improving 
and we only have to consider a finite number of policies 

 

 In general: 
 May take many iterations 

 Each iteration involves can be slow 

 Partly because of the need to solve a large equation system! 

 





 Second algorithm: Value iteration 
 An intuitive explanation: 

▪ Start by considering the minimum cost of proceeding zero steps 

▪  for every state 

▪ Then consider the reward we can get in one step 

▪ For each state , create using values of as a basis 

▪ … 

▪ Then consider the reward we can get in n steps 

▪ For each state , create using values of as a basis 

 No need to solve an expensive equation system 

▪ Only local calculations using the previous estimate 

▪ The policy is implicit in the calculations  

 Will always converge towards an optimal value function 

▪ Will converge faster if is close to the true value function 

▪ Will actually converge regardless of the initial value of  

▪ Intuition: As n goes to infinity, the importance of goes to zero 

 



 Value iteration requires an initial approximation 
 Let’s start with for each s 

 Does not correspond to any actual policy! 

▪ Does correspond to the optimal expected cost 
of executing zero steps… 

 

 
 



 

 
 

 

 For every state s: 
 

 PI: find the action a that minimizes C(s, a) +  s' S P(s, a, s’)  Eπ1(s') 

 FI: find the action a that minimizes C(s, a) +  s'  S P(s, a, s’) E0(s')  
▪

▪

 

 

What is the best 
local modification 

according to the 
current 

approximation? 



 

 

 

 

 For every state s: 
 

 FI: find the action a that minimizes C(s, a) +  s'  S P(s, a, s’) E0(s') 

▪

▪

▪

What is the best 
local modification 

according to the 
current 

approximation? 



 This results in a new approximation of the lowest expected cost 
 

E1 corresponds to one step of 
many polices, including the 

one shown here 
 

Policy iteration would now 
calculate the true expected 

cost for a chosen policy 
 

Value iteration instead 
continues using E1, which is 
only a calculation guideline, 

not the true cost of any policy 

 



 

 
 

 

 For every state s: 
 

 PI: find the action a that minimizes   

 FI: find the action a that minimizes   

▪

▪

What is the best 
local modification 

according to the 
current 

approximation? 



 

 

 

 

 For every state s: 
 

 FI: find the action a that minimizes C(s, a) +  s'  S P(s, a, s’) Ek–1(s') 

▪

▪

▪

What is the best 
local modification 

according to the 
current 

approximation? 



 This results in another new approximation 
 

Again,  doesn’t represent 
the true expected cost of  

 
Nor is it the true expected cost 

of executing two steps of  
 

It is the true expected cost of 
one step of , then one of  

 
(But it will converge towards 

true costs…) 



 Significant differences from policy iteration 
 Less accurate basis for action selection 

▪ Based on approximate costs, not true expected costs 

 

 Policy does not necessarily change in each iteration 

▪ May first have to iterate n times, incrementally improving cost approximations 

▪ Then another action suddenly seems better in some state 

 

  Requires a larger number of iterations 

▪ But each iteration is cheaper 

 

  Can’t terminate just because the policy does not change 

▪ Need another termination condition… 



 Illustration below, showing rewards 
 Notice that we already calculated rows 1 and 2 

▪



 Remember, these are “pseudo-rewards”! 
 

 

324,109 = cost of waiting once in s5, 
then continuing according to the previous 14 policies for 14 steps, 
then doing nothing (which is impossible according to the model) 



 Illustration, only showing 
best reward at each step 
 We actually have 

the optimal policy 
after iteration 4 

▪ But we can’t know this 
unless we calculate 
true expected costs 
as in policy iteration 

 Here we only see that 
the pseudo-expected costs 
continue changing… 

▪ Maybe at some point 
in the future, 
they will change enough 
to yield another policy? 



 Suppose discount 
factor is 0.99 instead 
 Much slower convergence 

▪



▪



 

 Care more about the future 
 need to consider  
many more steps! 
 



 We can find bounds! 
 Let M be the maximum change in pseudo-cost between two iterations 

 Then we can find a bound on how far from the optimal cost 
the current policy may be 

 

 Cost of current policy – cost of optimal policy <= 
M * (2*discount) / (1-discount) 

 

 
Discount factor 

Absolute cost 
difference M 
between two 

iterations 



Quit after 10 
iterations  

policy appears 
to cost -467. 
Guarantee: 

<= -467 + 697. 

Quit after 50 
iterations  

policy appears 
to cost -811. 
Guarantee: 
<= -811 + 10. 

Bounds are 
incrementally 

tightened! 



Quit after 250 
iterations  

policy appears 
to cost 8989. 
Guarantee: 

<= 8989+1621. 

Quit after 600 
iterations  

policy appears 
to cost 9775. 
Guarantee: 
<= 9775+48. 

Bounds are 
incrementally 

tightened! 



 Value iteration to find π*: 

 Start with an arbitrary cost E0(s) for each s and an arbitrary  > 0 



▪

▪   

▪ 

▪ 

▪  

 

 On an acyclic graph, the values converge in finitely many iterations 

 On a cyclic graph, value convergence can take infinitely many iterations 

 That’s why  > 0 is needed 

Almost as in the definition of Q(s,a), 
but we use the previous expected cost 



 Both algorithms converge in a polynomial number of iterations 
 But the variable in the polynomial is the number of states 

▪ The number of states is usually huge 

 Need to examine the entire state space in each iteration 

 

 Thus, these algorithms take huge amounts of time and space 
 Probabilistic set-theoretic planning is EXPTIME-complete 

▪ Much harder than ordinary set-theoretic planning, which was only PSPACE-
complete 

▪ Methods exist for reducing the search space, 
and for approximating optimal solutions 

▪ Beyond the scope of this course 

 

 


