Automated Planning

Planning under Uncertainty:
An Overview




Planning with Complete Information

So far, we have assumed we know in advance:

The state of the world when plan execution starts

The outcome of any action, given the state where it is executed

State + action =» unique resulting state

So if there is a solution:

There is an unconditional sequential solution

Model says: we end up Just follow the unconditional plan...
in this specific state!

Start

here...
Al

) 4




Multiple Outcomes

In reality, actions may have multiple outcomes

Nondeterministic planning:

State + action = set of possible new states (no more info during planning)

Probabilistic planning:

State + action = probability distribution over a set of possible next states

Can plan for all outcomes, or ignore the least probable outcomes

Can generate plans with high probability of reaching the goal

Model says: we end up We need something different here...
in one of these states

Start

here...
Al

(with this probability?)



Intended Qutcomes

Sometime, specific outcomes are intended or nominal

pick-up(object)

Intended outcome: carrying(object) is true

Unintended outcome: carrying(object) is false it e s
move(100,100) our interpretation!
Intended outcome: xpos(robot)=100

Unintended outcome:  xpos(robot) != 100 To a planner,

there is generally
no difference...

Sometimes there are no intended outcomes
Tossing a coin: 2 different outcomes



Plan Types

With multiple outcomes, we can generate:

Strong solutions (guaranteed to reach the goal)
Weak solutions (may reach the goal)

Probabilistic solutions (reaching the goal with probability >= limit)




Overview A

Classical planning (possibly with extensions)

?

But what about information gained during execution?




Fully Observable

Non-deterministic or probabilistic model

Fully observable: A plan could:
QIR o e (Siaunti= =>» Define which action to perform
exactly which state we are in depending on which exact state you actually ended up in
after executing an action

Model says: we end up Sensors say: we are
in one of these states in this state!

Start
here...

Start

here...
Al




Non-Observable

Non-deterministic or probabilistic model

Non-observable: A plan could:

We have no sensors =» Define which action to perform
to determine what happened depending on which set of states you might be in
Only predictions can guide us

Model says: we end up No sensors!
in one of these states No new information

Start
here...

Start

here...

Al Al




Partially Observable

Non-deterministic or probabilistic model

Partially observable: A plan could:
e vechiNe b Sny el =» Define which action to perform

properties of the world depending on which set of states you might be in
e ARSI R SR = Take into account new information after sensing

Model says: we end up Sensors say: we are in
in one of these states one of these states

Start
here...

Start
here...

O
O

Al




Overview B

Classical planning (possibly with extensions)

In general:
Full information is the easiest
Partial information is the hardest!



Overview B

Classical planning (possibly with extensions)

Non-deterministic Conditional (No specific name)
Conformant Planning (Contingent) Planning
Probabilistic Probabilistic Partially Observable MDPs
Conformant Planning Conditional Planning (POMDPs)

(Special case of POMDPs) Markov Decision
Processes (MDPs)

In general:
Full information is the easiest
Partial information is the hardest!



Automated Planning

Planning Based on
Fully Observable Markov Decision Processes




Fully Observable MDPs

Fully Observable Markov Decision Processes:

Action outcomes are:
= Probabilistic
= Fully observable

Model says: will end up Sensors say: did end up
in one of these states in this state!

Start
here...

Start

here...

Al Al




Stochastic Systems

Formal models:
Restricted state transition system > = (S,A,7)

S={sy sy ... F Finite set of world states
A={a,ay, ...} Finite set of actions
v:S x A > 25 State transition function, where |y(s,a)| < 1

Stochastic system > = (S, A, P)
P(s, a, s'): Given that we are in s and execute @, | Sometimes written
the probability of ending up in s’ P,(s"| 9)
For any state s and action a, we have >, _ ¢ P(s, a, s’) = 1:
Exactly 100% probability of ending up somewhere




Stochastic Systems (2)

Arc indicates

outcomes of a S125,204 P(S125203, drive-uphill,
single action \ 3 o At location 6 S$125204) = 0.98
S125,203
At location 5 0.02
el s P(5125203, drive-uphill,
Intermediate

) S$125222) =0.02
location



Stochastic Systems (3)

May have very unlikely outcomes...

S125,204
At location 6

S125,203
At location 5 0.019 99 S125,222
Intermediate
location
\ S247,129

Broken



Stochastic Systems (4)

And very many outcomes... $125,104
At location 6

Fuel level 650

S125,204
At location 6
Fuel level 750

5125,203
At location 5
Fuel level 980

S125,222
Intermediate
location

S247,129
Broken

As always, one state
for every combination
of properties




Stochastic Systems (5)

Like before, often many executable actions in every state

We choose
the action...

Nature chooses
the outcome!

Search yields an
AND/OR graph




Stochastic System Example

Example: A single robot qonets i)
Moving between 5 locations

For simplicity, move(12,13)

states correspond Wa'tC S2

directly to move(12,11)move(l3,12)
locations

sl: at(rl, 11)

. ove(ln,12)
s2: at(rl, 12) move(l4,1)
3: t 1, 3 i /’_\

So.a (Y ) wait C‘ s1 ,

s4: at(rl, 14) 03 -5 (.)

s5: at(r1, 15) move(l1,14) wait

Some transitions are deterministic, some are stochastic

Trying to move from 12 to 13: You may end up at 15 instead (20% risk)
Trying to move from 11 to 14: You may stay where you are instead (50% risk)

(Can’t always move in both directions, e.g. due to terrain gradient)



The Markov Property




Markov Property (1)

Recall the definition of the probability function:

P(s, a, s") isthe probability of ending up in s’
given that we are in s and execute a

Nothing else matters!




Markov Property (2)

This type of system has the Markov property: is memoryless

J S5125,204
8122,281 At location 6
At location 3
S5125,203
At location 5 0-019 99 S125.222
Intermediate
5121,284 location
At location 4 }
S5247,129
Broken
We don'’t need to Dy Thiz and the ...To find out where
know the states we . Action we may end up,
visited before... with which prob.




Remembering the Past

We can still remember some things about the past!

Example: predicate visited(location)

Keeps track of where we have been

But then this information is encoded and stored in the current state

Which is finite, has a constant size

No need to query an ever-growing sequence of past states



Plans and Policies




Policies

Two important consequences for plan structures:

Action choice must depend on the current state

And thereby on earlier execution-time outcomes!

Cannot have a limit on the number of actions executed!

wait C Y -

0.5
move(l1,14) wait

In MDP planning, we generate policies

Usually denoted by «

Defines, for each state,
which action to execute whenever we end up in that state

ml={ (s1, move(l1,12)), (s2, move(12,13)), (s3, move(13,14)),
(s4, wait), (s5, wait) }




Termination?

Since a policy defines an action for every state:

We could define a set of goal states where execution can end
Similar to classical planning

Usually one assumes a policy never terminates!

The policy always specifies
another action to execute

o oll5 ,\7—\

Objectives specified through
costs and rewards

(later!) move(12,13)

wait C S2 \0'8/ =
move(l2,11)move(l3,12)

ove(l1,12) ove(
move(l4,11)
ait /\
wal C S1 0.5 S4
0.5 '

move(l1,14) wait



Policy Example 1

Example 1

ml ={ (s1, move(11,12)),
(s2, move(12,13)), “\o\‘e\\g.,\‘).\
(s3, move(13,14)),
(s4, wait),

(s5, wait)} it C @

move(l4,11)

May end up in s4 or s5, wait there infinitely many times




Policy Example 2

Example 2

n2 ={ (s1, move(11,12)),
(s2, move(12,13)), “\o\‘e\\g.,\‘).\
(s3, move(13,14)),
(s4, wait),

5, 15,14
(s5, move( ))};Nait C @

move(l4,11)

Always reaches the state s4, waits there infinitely many times




Policy Example 3

Example 3
n3 ={ (s1, move(11,14)),
(s2, move(12,11)), ove\\r"m :
(53, move(13,14)), = (s5)0"™"
(s4, wait),
5 15,14 08 |
BT € S S o

move(l2,11)move(l3,12) move(13,J4)

ove(ld,12)

wait
Clatr,
Start 0 move(l1,14)

move(l4,11)

Reaches state s4 with 100% probability "in the limit”




Histories



Policies and Histories

Executing a policy results in a state sequence: A history

Infinite, since policies do not terminate

h =(Sg, S1, Sp» S3, Syy -+ : : e
(50> 81, 82, 83> S5 +++) s, (index zero): Variable used in histories, etc

s0: concrete state name used in diagrams
For classical planning: We may have s, = 527

We know the initial state
Actions are deterministic

=> A plan yields a single history (last state repeated infinitely)

For probabilistic planning:
Initial states can be probabilistic
For every state s, there will be a probability P(s) that we begin in the state s

Actions can have multiple outcomes
=>» A policy can yield many different histories

Which one? Only known at execution time!



History Example 1

\5\2)
Example 1 ovel @ wait
ml = { (s1, move(11,12)),
(s2, move(12,13)), — wait
(s3, move(13,14)), wait @0@ move(l5,14)
(843 Wait)a mOVE(B,IZ)
(5. wait)} move(I2,11) move(13,]4)
ove(l1,12)
move(l4,11)
wait <:f Sy
0.5\,
move(l1,14)

Start

Even if we only consider starting in s1: Two possible histories

h,=(sl,s2,s3,s4,s4,...) - Reached s4, waits indefinitely
h,=(sl,s2,85,85...) — Reached s5, waits indefinitely

How likely are these histories?




Probabilities: Initial States, Transitions (&E

Each policy induces a probability distribution over histories
Let h = <So, Sl, 82, SB’ oo >

With unknown initial state:

P({sg, S1, Soy S3y ++- ) | M) =
P(so) 11, o P(s;, 71(sy), s3,1)

The book:

Assumes you start
in a known state s,

So all histories start
with the same state

P((sg, 81, Sp» Sz, -+ ) | TT) =
[1;; ¢ PGs; 71(sy), s3,1)




History Example 1

5\
Example 1 movel @ wait
ml ={ (s1, move(11,12)),
(s2, move(12,13)), e wait
(s3, move(I3 14)), wait @0@ move(15,14)
(84) Wait)) mOVE(B,IZ)
(s5, wait)} move(l2,11) move(l13,14)
ove(l1,12) ove(l4,13)
move(l4,11)
wait C - 05 @ oo
0.5\ ®
move(l1,14) wait

Start

Two possible histories, if we always start in s1
h,=(sl,s2,s3,s4,s84,...) -P(hy|m)=1x1%x08x1x..=0.8
h,=(sl,s2,85,85...) ~Pthy | M) =1%x1%x02x1x%..=0.2

— P(h | m;) =1 x O for all other h



History Example 2

Example 2

n2 = { (s1, move(11,12)),
(s2, move(12,13)),
(s3, move(13,14)), wait C
(s4, wait),
(s5, move(15,14))}

move(l2,11)move(l3,12)

ove(l1,12)
wait C .

Start

move(l4,11)

h,=(sl,s2,s3,s4,s4,...) P(hy|m)=1x1%x0.8x1x..=0.8
hy=(sl,s2,s5,s4,54,...) P(hy|m)=1x1x02x1x..=0.2
P(h | m,) =1 x 0 for all other h



History Example 3

5 \2)
Example 3 “‘me\\ @ wait
n3 ={ (s1, move(11,14)),
(s2, move(12,11)), move(|2,13) wait
(s3, move(13,14)), wait @0@ move(l5,14)
(84’ Wait)) mOVE(B IZ)
(s5, move(l5.14)} move(l2,11) move(l3,
ove(ld,12) ove(l4,13)
move(l4,11) 9
i \
wait C « . @ “\o‘le\\k
03 &
Start move(I1,14) wait
h,=(sl,s4, s4,...) Pthy|my)=05x1x1x1x1x..=05
hs =(sl,sl,s4,s4,..) Pths | m3)=0.5x0.5x1 x 1 x 1 x..=0.25

hg=(sl,sl,sl,s4,s4,..) P(hgy| my) =0.5x0.5x0.5x1x 1 x...=0.125

h_= (sl, s1,s1,s1,s1,s1,...) P(h | m3) =0.5x0.5x0.5x0.5%x0.5x%...=0



Goals and Utility Functions




What is the Objective?

What is the objective?

In classical planning: Want a plan resulting in a goal state

Natural formulation, since a plan always ends up in the same state

In probabilistic planning: This is still possible
A weak solution may reach a goal state in a finite number of steps
A strong solution will reach a goal state in a finite number of steps

A strong cyclic solution will reach a goal state in a finite number of steps
given a fairness assumption:

Informally, ”if we can exit a loop, we eventually will”

a B

Csz/ \539

Start Destination / goal



Costs and Rewards

Alternative model, often used in MDP planning:
Numeric cost C(s,a) for each state s and action a

Numeric reward R(s) for each state s

Example:
C(s,a) = 1 for each

“horizontal” action

=0
C(s,a) = 100 for y s5 Qc
each “vertical” action @ r=0 =1
: L — o —
C(sl,wait) =1 c=1C s2

-— - s3
C(s2,wait) =1 =1 r=0

C(s4,wait) = 0 =100
C(s5,wait) =0

R(s5) =-100:

Don’t want to be there! =1
R(s4) = 100: =1 C s1 <

This is a state that we r=0 0.5 2 p—
want to reach =0

=100 =100




Utility Functions

Utility functions

Suppose a policy leads us to go through a certain history (state sequence)

How "useful / valuable" is this history to us?

W V U () \/

given policy m
First attempt:
h= <So) Sy eee > > V(h | T[) = zizo (R(Sl) B C(Si’n(si)))

Subtract the cost of

being in state s; the action chosen in s;



Utility Functions

Example:
Suppose m, happens to result in h; = (s1, s2, s3, s4, 4, ... )
V(h, | m) =(0-100)+ (0 -1) + (0-100) + 100 + 100 + ...

We stay at s4 forever, executing “wait’,
so we get an infinite amount of rewards!

This is not the only
history that could
result from the policy!

That’s why we specify
the policy and the history
to calculate a utility...




Utility Functions

What's the problem, given that we "like" being in state s4?
We can't distinguish between different ways of getting there!
s12>s22>s3>s4: -201 + 00 = o
s12s522s12s22>s32s4: -401 + 0 =0

Both appear equally good...
r=-100

$5 QC=0
w7
r=0 =1
aC T W

=

=1 r=0
=100
100 =100
=1 ‘
c=1C 61 T/\ s4 &



Discounted Utility

Solution: Use a discount factor, 5, witho < y<1
To avoid divergence (infinite utility values V(...))

To model "impatience": rewards and costs far in the future
are less important to us

Discounted utility of a history:
V(h|m) =2, 7 (R(s;) - C(s;m(sy)))
Distant rewards/costs A =100
have less influence |

Convergence (with finite results)
is guaranteed if 0 < y< 1




Expected Utility, Optimality, Solutions

Still only tells us the utility of a history
But we can’t force a history
Can only decide a policy — which can lead to many histories

Assuming a known starting state:
Expected utility of a policy: E(m) = >, P(h|m) V(h|m)

How probable is each history (outcome), and how valuable is it to us?

A policy 1 is optimal if no other policy has greater expected utility

For every m’, E(m) >= E(m)

A solution is an optimal policy!

Gives us the greatest (expected) reward that we can get,
given the specified probabilities, costs, and rewards



m, = {(s1, move(11,12)),
(s2, move(l2,13)),
(s3, move(13,14)),
(s4, wait),
(s5, wait)}

two different histories...

80% chance of history hi,
20% chance of history h2

y=0.9
Factors 1, 0.9, 0.81, 0.729, 0.6561...
h,=(sl,s2,s3,s4,s4,...)
V(hy | my) =.9%(0-100) +.91(0-1) +.92(0 -100) +.93100 + .9%100 + ... = 547.9

h,=(sl,s2,s5,s5...)
V(h, | my) =.9%(0-100) +.91(0 - 1) + .9%2(-100-0) + .93(-100-0) + ...

-910.1

E(m,) = 0.8%*547.9 + 0.2

(-910.1

R We expect a reward of 256.3 on average




m, = {(s1, move(11,12)),
(s2, move(l2,13)),
(s3, move(13,14)), =0 |
(s4, wait), C=1C 52
(s5, move(15,14)}

also two different histories...
80% chance of history hi,

20% chance of history h2

y=0.9 =0
Factors 1, 0.9, 0.81, 0.729, 0.6561...

h,=(sl,s2,s3,s4,s4,...)
V(hy | my) =.9%(0-100) +.91(0-1) +.92(0 -100) +.93100 + .9%100 + ... = 547.9

h,=(sl,s2,s5,s5...)
V(h, | my) =.9%(0-100) +.91(0 - 1) + .9%2(-100-100) + .93100 + ... = 466.9

E(m)=0.8%547.9 + 0.2 (466.9) = 531,7

Expect 531,7 on average (m, gave 256.3




Summary

Markov Decision Processes

Underlying world model: Stochastic system

Plan representation: Policy - which action to perform in any state
Goal representation: Utility function defining “solution quality”

Planning problem: Optimization: Maximize expected utility



Finding a Solution:
Preliminaries




Special Case

To simplify the presentation of important principles:

Let’s consider a special case:

We start in a known state, s,

All rewards are o

Can easily be generalized

We should minimize the expected cost of a policy:
E(m) =3, P(h | m) C(h | )
Where C(h|m)=2,., 7 C(s, 1(s;) (discounted cost)
replaces V(h | ) =2, , 7' (R(s;) - C(s,m(s;))) (discounted cost/reward)

We will also need to know:

E_(s) = the expected cost of executing 1
starting in some specific state s




Calculating Costs

How can we calculate E_(s)?

If we visit the states (s1, s2, s3, s4, s5,...) where s1 = s:
En(s) = ZZ‘Z 0 7i C(SZ') Tr(Si))

But only the first state is known in advance!



Bellman'’s Theorem: Background

If mis a policy, then

E (s) = C(s, m(s)) + i!P(s, ni(s), s)! E_(s') !i

The expected cost of executing m starting in s

Is the cost of executing the action chosen by the policy, mt(s), in s

Plus the discount factor y times...
...the sum, for all possible states s’ €S that you might end up in,

of the probability P(s, nt(s), s') of actually ending up in that state
given the action mt(s) chosen by the policy

times the expected cost E_(s') of executing  starting in that new state s’

(If you expand in one step...)

E.(s) = C(s, m(s)) + y 2y .5 P(s, m(s), s') |
C(s', m(s")) + y2g o P(s, m(s"), s") E_(s")
]



Example 1

E_,(s1) = The expected cost of executing 1, starting in s1:
The cost of the first action: move(11,12)

Plus the discount factor y times...
[Ending up in s2]
100% * E._,(s2)

=\

(=
|

c=1C 52 <~ =

=1

=100 =100
100 =100
m, = {(s1, move(11,12)), =1
(s2, move(12,13)), =1 PR LYY \)
(s3, move(I3,14)), Cls 05 i ¢
(s4, wait), o =1

=

(s5, move(l5,14)}



Example 2

E_,(s2) = the expected cost of executing 1, starting in s2:

The cost of the first action: move(12,13)
(Which has multiple outcomes!)

Plus the discount factor y times...
[Ending up in s3]
80% * E._,(s3)
Plus
[Ending up in s5]
20% * E._,(s5)

m, = {(s1, move(11,12)),
(s2, move(12,13)),
(s3, move(13,14)),
(s4, wait),
(s5, move(l5,14)}




Recursive?

Seems like we could easily calculate this recursively!
E_,(s1) defined in terms of E ,(s2)
E_,(s2) defined in terms of E ,(s3) and E, ,(s5)

Just continue until you reach the end!
=\

(=
" ﬂ $3 \

c=1C 52 -~

=1
=100 =100
100 =100
m, = {(s1, move(11,12)), =1
(s2, move(12,13)), =1 PR LYY \
(s3, move(I3,14)), Cls 05 i ¢
(s4, wait), o =1

=

(s5, move(l5,14)}



Not Recursive!

But there isn’'t always an "end”!

Modified example below is a valid policy m:
E (s1) defined in terms of E_(s2)
E (s2) defined in terms of E (s3) and E, (s5)
E (s3) defined in terms of E_(s4)




Bellman’s Theorem: Equation System

If m is a policy, ther 3

- E_(s) = C(s, me(s)) P(s, me(s), s')

= The expected cost of executing  starting in s

- Is the cost of executing the action chosen by the policy, nt(s), in s

of the probability P(s, nt(s), s') of actually ending up in that state
given the action mt(s) chosen by the policy

times the expected cost E_(s') of executing  starting in that new state s’

This is an equation system: |S| equations, |S| variables!

Requires different solution methods...



Principle of Optimality

Bellman’s Principle of Optimality:

An optimal policy has the property that

whatever the initial state and initial decision are,

the remaining decisions must constitute an optimal policy
with regard to the state resulting from the first decision

Problem: Find a policy
that minimizes cost
given that we start in s1.

Suppose that
an optimal policy m*
begins with move(l1,12),
so that the next state is s2.

Then m*

must also minimize cost
given that we start in s2!




Principle of Optimality (2)

Sounds trivial? Depends on the Markov Property!
Suppose costs depended on which states you had visited before

Suppose you want to go s5 =2 sl
First action should be move(i5,14)

Now you need to go s4 = sl

Because you have visited s5 before, move(I4,11) is very expensive

Best solution: s5>s4=>s3->s2->s1, cost of 100+201 M s5 Qc:O
But if you only wanted _— o= — \
to go s4—>sl: ‘=1C 52 ' s3

move(14,11), =1

with a cost of 1 =100

100 =100

] ¢=1usually
This can’t happen here! (=500 if we visited s5 |

Markovian! =1 C s1 — s4 AW

0.5

0.5 =1



Solution Methods (1)

Let’s hypothesize:

What if I made this local change, but kept everything else?

Let Q,(s,a) be the expected cost of m in a state s

if we start by executing the given action a, [ L& NaiE GRS
but we use the policy m from then onward

E.(s) =C(s, m(s)  +y2y s P(s m(s),s") EL(s')
Q (s,a) =C(s,a ) +y2ysP(s,a 's) E(s")



Example

Example: E_(s1)
The expected cost of following the current policy
Starting in s1, beginning with move(l1,12)

Q _(s1, move(l1,l4))

The expected cost of first trying to move from b to I4,
then following the current policy =\




Solution Methods (2)

Suppose you have an everywhere optimal policy *

That is, no other policy gives a better result for any starting state

Then, because of the principle of optimality:

For all statess, E,.(s) =min,Q .(s,a)

For all statess, E_.(s) = min_,(C(s,a) +y72g s P(s,a,  S)E_«(s"))
Choice "The
now rest”

In every state,
the local choice made by the policy
is locally optimal



Solution Methods (3)

Suggests a specific type of solution method:

Try to separate the decision in this state
from the decisions in the remainder of the policy

Use iterative refinement

Start with some initial values (for example, a random policy)

Find local improvements



Example, Revisited

Example: E, (s1)
The expected cost of following the current policy

Starting in s1, beginning with move(11,12)

Q .(s1, move(11,14))
The expected cost of first trying to move from 11 to 14,
then following the current policy =\

=1

— W $3
\/

If doing move(11,14) first
has a lower expected cost, c=1C 2

we may want to modify =1
the current policy: =100
100 =100
(s1, move(11,14))
=1
= //\ \
C 1@ s1 05 s4



Action Representations




Action Representations

Action representations:

The book only deals with the underlying semantics:
Explicit enumeration of each P(s, a, s')

Several “convenient” representations possible,
such as Bayes networks, probabilistic operators



Representation Example: PPDDL

Probabilistic PDDL: new constructs for effects, initial state
(probabilistic p, e, ... p; ;)

Effect e, takes place with probability p;, etc.
Sum of probabilities <=1 (can be strictly less = implicit empty effect)

(define (domain bomb-and-toilet)
(:requirements :conditional-effects :probabilistic-effects)
(:predicates (bomb-in-package ?pkg) (toilet-clogged) (bomb-defused))
(:action dunk-package

:parameters (?pkg) :
-effect (and First, a "standard” effect

(when (bomb-in-package ?pkg) (bomb-defused))
| (probabilistic 0.0? (toilet-clogged))))) 5% chance of toilet-clogged,
(define (problem bomb-and-toilet) 95% chance of no effect

(:domain bomb-and-toilet)
(:requirements :negative-preconditions)
(:

(:

objects package1 package2)
init (probabilistic 0.5 (bomb-in-package package1)
0.5 (bomb-in-package package2)))
(:goal (and (bomb-defused) (not (toilet-clogged)))))

Probabilistic initial state




Ladder 1

;; Authors: Sylvie Thiébaux and Iain Little

;; Story: You are stuck on a roof because the ladder you climbed up on
;; fell down. There are plenty of people around,; if you call out for

;; help someone will certaintly lift the ladder up again. Or you can

;; try the climb down without it. You aren't a very good climber

;; though, so there is a 50-50 chance that you will fall and break

;; your neck if you go it alone. What do you do?

(define (domain climber)
(:requirements :typing :strips :probabilistic-effects)
(:predicates (on-roof) (on-ground)
(ladder-raised) (ladder-on-ground) (alive))
(:action climb-without-ladder :parameters ()
:precondition (and (on-roof) (alive))
:effect (and (not (on-roof))
(on-ground)
(probabilistic 0.4 (not (alive)))))



Ladder 2

(:action climb-with-ladder :parameters ()

:precondition (and (on-roof) (alive) (ladder-raised))
-effect (and (not (on-roof)) (on-ground)))
(:action call-for-help :parameters ()
:precondition (and (on-roof) (alive) (ladder-on-ground))
-effect (and (not (ladder-on-ground))
(ladder-raised))))

(define (problem climber-problem)
(:domain climber)
(:init (on-roof) (alive) (ladder-on-ground))
(:goal (and (on-ground) (alive))))



Representation Example: RDDL

domain prop_dbn {
requirements = { reward - deterministic };
// Define the state and action variables ( not parameterized here )
pvariables {
p: { state - fluent, bool , default = false };
q : { state - fluent , bool , default = false };
r : { state - fluent, bool , default = false };
a: { action - fluent , bool , default = false };
};
// Define the conditional probability function for each next
// state variable in terms of previous state and action

cpfs {

p’ =if (p * r) then Bernoulli (.9) else Bernoulli (.3);

q =if (q * r) then Bernoulli (.9)

else if (a) then Bernoulli (.3) else Bernoulli (.8);

r’ = if (~q) then KronDelta (r) else KronDelta (r <=> q);
I8

// Define the reward function ; note that boolean functions are
// treated as 0/1 integers in arithmetic expressions
reward =p + q-1;



Automated Planning

Planning Based on
Markov Decision Processes, part 2




Example Problem

Example Problem with Rewards and Costs

=100
=100
=1
= //\ |
: 1C s1 0.5 s4




Example Problem, Simplified

In the model we used, rewards and costs are always "taken together”
Can'’t get a reward without a cost or vice versa
R(s) - C(s, a): You are in a state, and then you execute an action in that state

To simplity, we include the reward in the cost!
Decrease each C(s,a) by R(s)
Transitions from s5 are more expensive

Transitions from s4 are less expensive

Sometimes

negative costs — )
not a problem! C=1C 52

Objective is
to minimize cost =100

Automatically takes =199

rewards into account =1 51 —

r=



Finding a Solution (Optimal Policy):
Algorithm 1, Policy Iteration



Policy Iteration

First algorithm: Policy iteration

General idea:

Start out with an initial policy, maybe randomly chosen

Calculate the expected cost of executing that policy
from each state

Update the policy by making a local decision for each state :
"Which action should my improved policy choose in this state,
given the expected costs of the current policy?”

[terate until convergence (the policy no longer changes)



Policy Iteration 2: Initial Policy 1T,

Policy iteration requires an initial policy
Let’s start by choosing “wait” in every state
Let’s set a discount factor: y= 0.9

Easy to use in calculations on these slides,
but in reality we might use a larger factor
(we're not that short-sighted!)

m, = {(s1, wait),
(s2, wait),
(s3, wait),
(s4, wait),
(s5, wait)}




Policy Iteration 3: Expected Costs for 1,

Calculate expected costs for the current policy m,

Simple: Chosen transitions are deterministic + return to the same state!

= E(s) = C(s,m(s))  +y 2y s P(s,m(s),s) E(s)

= E (s1)= C(sl,wait) + y E_,(s1) =1 +0.9E_,(s1)
= E (s2)= C(s2,wait) + y E_,(s2) = +0.9E_,(s2)
= E _,(s3)= C(s3,wait) + y E_,(s3) =1 +0.9E_,(s3)
= E_,(s4)= C(s4,wait) + y E _,(s4) =-100 +0.9E_,(s4)

= E_,(s5)= C(s5,wait) + y E_,(s5) =100
Simple equations to solve:

- 0.1E(s1)=1 E_(s1) =10
- 0.1E(s2) =1 E_(s2) =10
- 0.1E_(s3)=1 E_(s3) =10

- 0.1E4(s4) = -100
- 0.1E,(s5) = 100

E_(s4) = -1000
E_(s5) = 1000

v vV

+ 0.9 E_;(s5)

Given this policy r;:

High costs if we start in s5,
high rewards if we start in s4




E_,(s1) =10 A0

E_(s2) = 10 _ -

according to the E _,(s3) =10 é 52 ‘\_0'8/ s3
expected cost E_,(s4) =-1000 =1 100 =1

of the current policy? EE{EHERI0 < 0

=100 =
=-99

. P
For every state s ol »

. (=1 1 0.5
Let mm,(s) = argmin, . , Q 11 (s,a) W ¢=-100

That is, find the action a that minimizes C(s, a) + 2., .s P(s, a, s") E_,(s")

sl: wait 1+0.9*10 =10
move(11,12) 100 +0.9*10 =109
move(l1,14) 1+0.9*(0.5*10 + 0.5*-1000) =-4445

Seems best - chosen!

These are not the true expected costs for starting in state s1!

They are only correct if we locally change the first action to execute
and then go on to use the previous policy (in this case, always waiting)!

But they can be proven to yield good guidance,
as long as you apply the improvements repeatedly (as policy iteration does)



E,,(s1) =10 A0

E_(s2) = 10 _ ol
according to the E_,(s3) =10 é 52 \_/b s3 ")
expected cost E_,(s4) =-1000 =1 0 =1
of the current policy? REEHENI <
' =100 =0
=-99
For every state s: ol “0s i«

=1
Let mm,(s) = argmin, . , Q 11 (s,a) W ¢=-100

That is, find the action a that minimizes C(s, a) + 72 .s P(s, a, ") E_(s')
s2: wait 1+0.9*10 =10

move(12,11) 100 + 0.9 %10 =109
move(12,13) 1+0.9*(0.810+ 0.2*¥1000) =188,2



E _,(s1) =10 A0

E_(s2) = 10 _ -
according to the E_,(s3) =10 é s2 | 0.8 s3 ")
expected cost E_,(s4) =-1000 =1 00 & =1
of the current policy? REEHENI <
=100 =0
=-99
For every state s: G ——fa

=1 /&M
Let mm,(s) = argmin, . , Q 11 (s,a) 0.5 =1 ¢=-100

That is, find the action a that minimizes C(s, a) + 72 .s P(s, a, ") E_(s')

s3: wait 1+0.9*10 =10
move(13,12) 1+0.9*10 =10
move(13,14) 100 + 0.9 *-1000 =-800

s4: wait -100+ 0.9 *-1000 =-1000
move(14,11) -99+0.9*10 =-90

s5: wait 100 + 0.9 1000 =1000
move(15,12) 101 +0.9*10 =110
move(15,14) 200 + 0.9 *-1000 =-700



Policy Iteration 7: Second Policy

This results in a new policy

m, = {(s1, wait), = GIHEEl m, ={ (s1, move(11,l4),
(s2, wait), E ,(s2) =10 (s2, wait),
(s3, wait), E (s3)=10 (s3, move(l13,14)),
(s4, wait), E_,(s4) =-1000 (s4, wait),
(s5, wait)} E_,(s5) =1000 (s5, move(15,14))}

Now we have made use of
earlier indications that =1
s4 seems to be a good place

=> Try to go there
from s1 / s3 / s5!

No change in s2 yet...

Costs based on
one modified
action +
following m,
(no increase!)

Q =100

=200



Policy Iteration 8: Expected Costs for mt,

Calculate true expected costs for the new policy m,

E ,(s1) = C(sl, move(l1,l4)) + y... =1 +0.9(0.5E,(s1) + 0.5E_,(s4))
E (s2) = C(s2, wait) +yE ,(s2) =1 +0.9E ,(s2)
E (s3) = C(s3, move(13,14)) + yE ,(s4) =100 +0.9E_,(s4)
E (s4) = C(s4, wait) + yE ,(s4) =-100+0.9E_,(s4)

E (s5) = C(s5, move(15,14)) + yE ,(s4) =200 +0.9E_,(s4)
Equations to solve:

0.1E ,(s2) =1 S E_(s2) = 10
0.1E_,(s4) = -100 > E_,(s4) = -1000
E_,(s3) = 100 + 0.9E_,(s4) = 100 + 0.9*-1000 = -800 > E_,(s3) =-800
E_,(s5) = 200 + 0.9E_,(s4) = 200 + 0.9*-1000 = -700 > E_,(s5) = -700
E_,(s1)=1+0.45*E_,(s1) + 0.45*E_,(s4) > E_(s1) = -816,36

0.55E ,(s1)=1+0.45*E ,(s4) =>
0.55E ,(s1) =1+ (-450) =>»

0.55E ,(s1) =-449 =>

E ,(s1) =-816,3636...

(s3, move(13,14)),

(s4, wait),
(s5, move(15,14))}




Policy Iteration 9: Second Policy

Now we have the true expected costs of the second policy...

m, = {(s1, wait), = GIHEEl my={ (s1, move(11,l4), | <=_gq4,5 |2 (GHE]= 25 R
(s2, wait), E ,(s2) =10 (s2, wait), <=10 E _,(s2) =10
(s3, wait), E (s3)=10 (s3, move(I3,14)), <=-800 [ el <0y
(s4, wait), E_,(s4) =-1000 (s4, wait), <=-1000 [ENEHEET0
(s5, wait)} E_,(s5) =1000 (s5, move(15,14))} <= -700 IGO0

S5 wasn'’t so bad after all,
5 S
since you can reach s4 - Qo
in a single step!

S1/ s3 are even better.

S2 seems much worse

in comparison,

since the benefits of s4 Q
haven'’t "propagated” that far. ‘ ‘ =100




Policy Iteration 10: Update 2a

=\ _
What is the best E ,(s1) =-816,36 ¢ . @ =100

[\
local modification E ,(s2) =10 -1
En2(33) = '800 C=1é 01 9 = =200

=

according to the

expected cost E ,(s4) =-1000 =100 =100
of the current policy? F:EHERFVY (=10( =0
=
For every state s: =1C 51 £, g
0s) o =100

= Let mg(s) = argmin, _ , Q5 (s,0)
= That is, find the action a that minimizes C(s, a) + y2.. .c P(s, a, s’) E_J(s')

= sl: wait 1+0.9*-816,36 =-733,72
move(11,12) 100+ 0.9*10 =109
move(l1,14) 1+0.9*(5*1000+.5*-816.36) =-816,36
Seems best - chosen!
= s2: wait 1+0.9*10 =10
move(12,11) 100 + 0.9 * -816,36 =-634,72
move(12,13) 1+0.9*(0.8%800 + 0.2*-700) =-701

Now we will change the action taken at s2,

since we have better expected costs for si, s3, s5...




E_,(s1) = -816,36

E (s2) =10 9 8 S
according to the E,,(s3) =-800 =1 \H—/
expected cost E ,(s4) =-1000 =100
of the current policy? F:EHERFVY =10
: -
For every state s: R

s1 \
Let m15(s) = argmin, . , Q ;5 (s,a) GNTﬂ b ¢=-100

That is, find the action a that minimizes C(s, a) + 72 .s P(s, a, ") E_(s')

s3: wait 1+0.9*-800 =-719
move(13,12) 1+0.9*10 =10
move(13,14) 100 + 0.9 *-1000 =-800

s4: wait -100+ 0.9 *-1000 - =-1000
move(14,11) -99 + 0.9 *-816,36 =-833,72

sS: wait 100 + 0.9 *-700 =-530
move(15,12) 101 +0.9%10 =110

move(15,14) 200 + 0.9 *-1000 =-700



Policy Iteration 12: Third Policy

This results in a new policy m, 1, = {(s1, move(11,14),
True expected costs are updated (s2, move(12,13)),
by solving an equation system (s3, move(13,14)),
The algorithm will iterate once more (s4, wait),

No changes will be made to the policy (s5, move(15,14))}

=» Termination with optimal policy!

=100

=1 C s1

0.5




Policy Iteration 13: Algorithm

Policy iteration is a way to find an optimal policy

Start with an arbitrary initial policy it,. Then, fori=1, 2, ...

Compute expected costs En,(s) for every s by solving a system of equations
System: For all s, En.(s) = C(s, m(s)) + y 2. . s P (s, m(s), s") En(s")
Result: The expected cost of the “current” policy in any given state s
policy Not a simple recursive calculation - the state graph is generally cyclic!
Compute an improved policy rt;,, “locally” for every s
M. ,(s) := argmin_ _, C(s, a) + 2. s P(s, a, ") En (s
Tells us the best action in any given state s given current expected costs

according to But this is a new policy - with new expected costs!

current costs

Loop back and calculate those costs

[f .., =7, then exit
We have found an optimal solution - cannot be improved anywhere
Otherwise, loop and calculate the expected cost for rt,_, etc.

1+1?



Convergence

Converges in a finite number of iterations!
We change which action to execute

if this improves expected cost for this state

This can sometimes decrease,
and never increase, the cost of other states!

So costs are monotonically improving
and we only have to consider a finite number of policies

In general:

May take many iterations
Each iteration involves can be slow

Partly because of the need to solve a large equation system!




Finding a Solution:
Value Iteration




Value Iteration

Second algorithm: Value iteration

An intuitive explanation:

Start by considering the minimum cost of proceeding zero steps
E.(s) = O for every state

Then consider the reward we can get in one step
For each state s, create E,(s) using values of E,as a basis

Then consider the reward we can get in n steps
For each state s, create E_(s) using values of E_, as a basis

No need to solve an expensive equation system
Only local calculations using the previous estimate

The policy is implicit in the calculations

Will always converge towards an optimal value function

Will converge faster if E(s) is close to the true value function
Will actually converge regardless of the initial value of E(s)
Intuition: As n goes to infinity, the importance of E(s) goes to zero



Value Iteration 2: Initial Guess EQ

Value iteration requires an initial approximation
Let’s start with E,(s) = 0 for each s

Does not correspond to any actual policy!

Does correspond to the optimal expected cost
of executing zero steps...

EO(s1) =0
E0(s2) =0
E0(s3) =0
EO0(s4) =0
E0(s5) =0




EO0(s1) =0

E0(s2) =0

according to the E0(s3) =0
current EO(s4) =0

approximation? E0(s5) =0

For every state s:

0.5 =1 ¢=-100
PI: find the action a that minimizes C(s, a) + 2y . P(s, a, s’) E_(s')
FI: find the action a that minimizes C(s, a) + 72, . s P(s, a, s) E(s")

sl: wait 1+09*0 =1
move(11,12) 100+0.9*0 =100
move(l1,14) 1+0.9*(0.5%0 + 0.5*0) =

s2: wait 1+09*0 =
move(12,11) 100+0.9*0 =100

move(12,13) 1+0.9%(0.8*0 + 0.2*0) =



EO0(s1) =0

E0(s2) =0
according to the E0(s3) =0
current E0(s4) =0

approximation? E0(s5) =0

For every state s:

0.5 =1 =-100

FI: find the action a that minimizes C(s, a) + 2 . s P(s, a, s') E_(s")

s3: wait 1+09*0 =
move(13,12) 1+09*0 =
move(13,14) 100+0.9*0 =100

s4: wait -100+0.9*0 =-100
move(14,11) 99 +0.9%0 =-99

s5: wait 100+ 0.9*%0 =100
move(15,12) 101+0.9%0 =101

move(15,14) 200+ 0.9*0 =200



Value Iteration 5: Second Policy

This results in a new approximation of the lowest expected cost

m =1{ (s1, wait), For infinite execution,
(s2, wait), : Em,(s1) = 10,
(s3, move(13,12)), FERREE il but this is not calculated...
(s4, wait), E1(s4) =-100
(s5, wait)} E1(s5) =100

E1 corresponds to one step of
many polices, including the
one shown here

Policy iteration would now
calculate the true expected
cost for a chosen policy

Value iteration instead
continues using E1, which is
only a calculation guideline,

not the true cost of any policy



El(s1) =1 0
E1(s2) = 1 _

according to the E1(s3) =1 2 ‘\_L s
current E1(s4) = -100 =1 =1
approximation? E1(s5) =100 =100
=100
=-99
For every state s: Cars
0.5 =1 =-100

PI: find the action a that minimizes C(s, a) + y2.. s P(s, a, ") E . (s"

P(s,a,s’) E,_(s)

s'eS

FI: find the action a that minimizes C(s, a) + ¥,

s'eS
sl: wait 1+09*1 =1.9
move(11,12) 100+0.9*1 =100.9
move(11,14) 1+0.9*(0.5*1 + 0.5%100) =-43,55
s2: wait 1+09*1 =1.9
move(12,11) 100+0.9*1 =100.9

move(12,13) 1+0.9%(0.8"1+0.2*1) =1.9



El(sl)=1

El(s2) =1
according to the E1l(s3)=1
current E1(s4) =-100

approximation? E1(s5) =100

For every state s:

0.5 =1 =-100

FI: find the action a that minimizes C(s, a) + 2, . s P(s, a, s') E;_(s')

s3: wait 1+0.9*%1 =19
move(13,12) 1+09*1 =1.9
move(13,14) 100 + 0.9 *-100 =10

s4: wait -100 + 0.9*-100 =-190
move(14,11) -99 +0.9*1 =-98.1

s5: wait 100+ 0.9*1 =100.9
move(l5,12) 101 +0.9%1 =101.9

move(15,14) 200 + 0.9*-100 =110



m, = { (s1, wait), : m, = { (s1, move(l1,14)), = :
(s2, wait), E1(s2) =1 (s2, wait), E2(s2)=1.9
(s3, move(13,12)), FiELEEN =l (s3, wait), E2(s3)=1.9
(s4, wait), E1(s4) =-100 (s4, wait), E2(s4) =-190
(s5, wait)} E1(s5) =100 (s5, wait)} E2(s5) =100.9

Again, E2 doesn’t represent
the true expected cost of m, : C 2
= s

Nor is it the true expected cost
of executing two steps of E2
=100
It is the true expected cost of
one step of E2, then one of E1! =99

A g e

s1 0.5 sS4
(But it will converge towards wcﬂ /i) =100

true costs...)




M ER

Significant differences from policy iteration

Less accurate basis for action selection

Based on approximate costs, not true expected costs

Policy does not necessarily change in each iteration
May first have to iterate n times, incrementally improving cost approximations

Then another action suddenly seems better in some state

=» Requires a larger number of iterations
But each iteration is cheaper

=» Can'’t terminate just because the policy does not change

Need another termination condition...



lHlustration

[llustration below, showing rewards

Notice that we already calculated rows 1 and 2

sl: wait 1+09*1 =1.9
move(11,12) 100+0.9*1 =100.9
move(11,14) 1+0.9%(0.5*1 + 0.5*-100) =-43,55
sl s2 s3 s4 s5
Action wait move-s2 move-sd |wait move-s1 move-s3 |wait move-s2 move-s4 |wait wait move-s2 move-si
0 0 0 0 0 0 0 0 0 0 0 0 0
1 -1 -100 -1 -1 -100 -1 -1 -1 -100 100 -100 -101 -200
2: -1,9 -100,9 43,55: -1,9 -100,9 -1,9 -1,9 -1,9 -10 190 -190 -101,9 -110
3] 38,195 -101,71 104,098 -2,71 -60,805 -2,71 -2,71 -2,71 71 271} -191,71 -102,71 -29
4| 92,6878 -102,439 167,794 -3,439 -6,31225 62,9 62,9 -3,439 143,9 343,9 -126,1 -103,439 43,9
5| 150,014 -43,39 229,262 55,61 51,0145 128,51 128,51 55,61 209,51 409,51 -60,49 -44,39 109,51
5| 205,336 15,659 286,448 114,659 106,336 187,559| 187,559 114,659 268,559| 468,559 -1,441 14,659 168,559
6| 256,803 68,8031 338,753| 167,803 157,803 240,703| 240,703 167,803 321,703 521,703 51,7031 67,8031 221,703
7| 303,878 116,633 386,205| 215,633 204,878 288,533| 288,533 215,633 369,533| 569,533| 99,5328 115,633 269,533
8| 346,585 159,68 429,082| 258,68 247,585 331,58| 331,58 258,68 412,58, 612,58 142,58 158,68 312,58
9| 385,174 198,422 467,748| 297,422 286,174 370,322| 370,322 297,422 451,322 651,322| 181,322 197,422 351,322
10| 419,973 233,289 502,581) 332,289 320,973 405,189, 405,189 332,289 486,189, 686,189| 216,189 232,289 386,189
11| 451,323 264,67 533,947, 363,67 352,323 436,57 436,57 363,67 517,57, 717,57 247,57 263,67 417,57
12| 479,552 292,913 562,183] 391,913 380,552 464,813| 464,813 391,913 545,813 745,813| 275,813 291,913 445,813
13| 504,964 318,332 587,598 417,332 405,964 490,232| 490,232 417,332 571,232 771,232| 301,232 317,332 471,232

=
.

527,838 341,209 610,474| 440,209 428,838 513,109) 513,109 440,209 594,109, 794,109| 324,109 340,209 494,109



lHlustration

Remember, these are “pseudo-rewards”!

sl s2 s3 s4 s5

Action wait move-s2 move-sd |wait move-s1 move-s3 |wait move-s2 move-s4 |wait wait move-s2 move-sd
0 0 0 0 0 0 0 0 0 0 0 0 0
-1 -100 -1 -1 -100 -1 -1 -1 -100 100 -100 -101 -200
-1,9 -100,9 43,55 -1,9 -100,9 -1,9 -1,9 -1,9 -10 190 -190 -101,9 -110
38,195 -101,71 104,098 -2,71 -60,805 -2,71 -2,71 -2,71 71 271 -191,71 -102,71 -29
92,6878 -102,439 167,794 -3,439 -6,31225 62,9 62,9 -3,439 143,9 343,9 -126,1 -103,439 43,9
150,014 -43,39 229,262 55,61 51,0145 128,51 128,51 55,61 209,51 409,51 -60,49 -44,39 109,51
205,336 15,659 286,448| 114,659 106,336 187,559| 187,559 114,659 268,559| 468,559 -1,441 14,659 168,559
256,803 68,8031 338,753| 167,803 157,803 240,703| 240,703 167,803 321,703 521,703| 51,7031 67,8031 221,703
303,878 116,633 386,205| 215,633 204,878 288,533| 288,533 215,633 369,533 569,533| 99,5328 115,633 269,533
346,585 159,68 429,082 258,68 247,585 331,58 331,58 258,68 412,58, 612,58, 142,58 158,68 312,58
385,174 198,422 467,748| 297,422 286,174 370,322 370,322 297,422 451,322 651,322| 181,322 197,422 351,322
419,973 233,289 502,581| 332,289 320,973 405,189 405,189 332,289 486,189, 686,189, 216,189 232,289 386,189
451,323 264,67 533,947 363,67 352,323 436,57 436,57 363,67 517,57, 717,57, 247,57 263,67 417,57
479,552 292,913 562,183| 391,913 380,552 464,813 464,813 391,913 545,813 745,813 275,813 291,913 445,813
504,964 318,332 587,598, 417,332 405,964 490,232| 490,232 417,332 571,232| 771,232 301,232 317,332 471,232
527,838 341,209 610,474| 440,209 428,838 513,109| 513,109 440,209 594,109, 794,109, 324,109 340,209 494,109

/I

W 0o ~J O »nn U B~ W N

[ O = =
B W N L O

324,109 = cost of waiting once in s5,
then continuing according to the previous 14 policies for 14 steps,
then doing nothing (which is impossible according to the model)




How Many Iterations?

[llustration, only showing eration

best reward at each step

We actually have
the optimal policy
after iteration 4
But we can’t know this
unless we calculate
true expected costs
as in policy iteration
Here we only see that
the pseudo-expected costs
continue changing...
Maybe at some point
in the future,

they will change enough
to yield another policy?

W 00~ h o s W N e O

R R R R el i = N e
o WL 0~ N s W N = O

r

E(s1)

0

-1
43,55
104,098
167,794
229,262
286,448
338,753
386,205
429,082
467,748
502,581
533,947
562,183
587,598
610,474
631,062
649,592
666,269
681,279
694,787

E(s2)

0

-1

1,9
2,71
62,9
128,51
187,559
240,703
288,533
331,58
370,322
405,189
436,57
464,813
490,232
513,109
533,698
552,228
568,905
583,915
597,423

r

E(s3)

0

-1

1,9

71
143,9
209,51
268,559
321,703
369,533
412,58
451,322
486,189
517,57
545,813
571,232
594,109
614,698
633,228
649,905
664,915
678,423

E(s4)

0

100

190
271
343,9
409,51
468,559
521,703
569,533
612,58
651,322
686,189
717,57
745,813
771,232
794,109
814,698
833,228
849,905
864,915
878,423

r

E(s5)

0

-100
-110
-29
43,9
109,51
168,559
221,703
269,533
312,58
351,322
386,189
417,57
445,813
471,232
494,109
514,698
533,228
549,905
564,915
578,423



Different Discount Factors

Suppose discount
factor is 0.99 instead

Much slower convergence

Change at step 20:
2% =» 5%

Change at step 50:
0.07% =» 1.63%

Care more about the future
=» need to consider
many more steps!

Iteration

o 00~ o s W N e O

A= = e S S B S R e e
O WLy N s W= O

48,005
121,267
206,047
296,043
388,141
480,803
573,274
665,184
756,356
846,705
936,195
1024,81
1112,55
1199,42
1285,42
1370,57
1454,86
1538,31
1620,93

1

1,99
1,99
95,0399
191,1
286,199
380,347
473,553
565,828
657,179
747,617
837,151
925,79
1013,54
1100,42
1186,42
1271,57
1355,86
1439,31
1521,93

1

1

97,01
194,04
290,1
385,199
479,347
572,553
664,828
756,179
846,617
936,151
1024,79
1112,54
1199,42
1285,42
1370,57
1454,86
1538,31
1620,93

sd

Gl"

100

199
297,01
394,04
490,1
585,199
679,347
772,553
864,828
956,179
1046,62
1136,15
1224,79
1312,54
1399,42
1485,42
1570,57
1654,86
1738,31
1820,93

s5

0

-100
-101
-2,99
94,0399
190,1
285,199
379,347
472,553
564,828
656,179
746,617
836,151
924,79
1012,54
1099,42
1185,42
1270,57
1354,86
1438,31
1520,93



How Many Iterations?

We can find bounds!

Let M be the maximum change in pseudo-cost between two iterations

Then we can find a bound on how far from the optimal cost

the current policy may be

Cost of current policy - cost of optimal policy <=

M * (2*discount) / (1-discount)

Discount factor

0,002

Absolute cost 0,02
difference M 0,2
between two y)
iterations 10
20

200

0,018
0,18
1,8
18

90
180
1800

0,038
0,38
3,8
38
190
380
3800

0,198
1,98
19,8
198
990
1980

19800

1,998
19,98
199,8
1998
9990
19980
199800




How Many Iterations? Discount 0.90

Iteration

Wo0a =] o bn s b pa = O

T R N
o o o oo

20
60
70
80
90
100

51

0

-1

43,55
104,0975
167,7939
229,2622
286,4475
338,7529
386,2052
429,0821
a67,7477
694,787
F73,9725
801,5828
811,2099
814,5666
815,7371
816,1452
816,2875
816,3371

52

0

-1

-1,9
-2,71
62,9
128,51
187,559
240,7031
288,5328
331,5795
370,3216
297,4233
676,6088
704,2191
/13,8462
717,203
718,3734
718,7815
718,9238
718,9734

53

0

-1

-1,9

71

143.9
209,51
268,559
321,7021
369,5328
412,5795
451,3216
678,4233
757,6088
785,2191
794,8462
798,203
799,3734
799,7815
799,9238
799,9734

54

0

100

190

271
343.9
409,51
468,559
221,7031
269,5328
612,5795
651,3216
878,4233
957,6088
985,2191
994,8462
998,203
999,3734
999,7815
999,9238
999,9734

53

0

-100
-110

-29

43,9
109,51
168,559
221,7021
269,5328
312,5795
351,3216
278,4233
657,6088
685,2191
694,8462
698,203
699,3734
699,7815
699,9238
699,9734

Greatest
change

100

90

81

72,9
63,61
39,045
33,1441
47,62969
43,04672
38, 74205
13,50852
4,710129
1,64232
0,372641
0,1996638
0,06962
0,024275
0,005464
0,002951

Possible
diff from
optimal

policy

1800
1620
1458

1312,2
1180,98

1062,882

956,5938

860,9344

774,841

Quit after 10
iterations =
policy appears
to cost -467.
Guarantee:

<=-467 + 697.

697,3569 |

243,1533
84,78232
29,56177

10,30755 |

3,354021
1,253157
0,436549
0,152355
0,053123

Quit after 50

iterations =

" policy appears
to cost -811.
Guarantee:
<= -811 + 10.




How Many Iterations? Discount 0.99

Iteration sl

10
20
30
50
100
150
200
250
300
400
500
60C
700
800
900
1000

0
1
756,356
1620,93
2403
3749,94
6139,68
7585,48
8460,2
8989,41
9309,59
9620,49
9734,3
9775,95
9791,2
9796,78
9798,82
9799,57

57

1
657,179
1521,93

2304
3650,94
6040,68
7486,48

8361,2
£890,41
9210,59
9521,49

9635,3
©676,95

9692,2
9697,78
9699,82
9700,57

53

1
756,179
1620,93

2403
3749,94
6139,68
7585,48

8460,2
8989,41
9309,59
9620,49

9734,3
9775,95

9791,2
9796,78
9798,82
9799,57

s
0
100
956,179
1820,93
2603
3949,94
6339,68
7785,48
8660,2
9189,41
9509,59
9820,49
9934,3
9975,95
9991,2
9996,78
9998,82
9999,57

55

0
-100
656,179
1520,93
2303
3649,94
6039,68
7485,48
8360,2
8889,41
9209,59
9520,49
9634,3
9675,95

9691,2!

9696,78
9698,82
9699,57

Greatest
change

100
91,3517
82,6169
74,7172
61,1117

36,973
22,3689
13,5333
8,18773
4,95363
1,81319
0,66369
0,24293
0,08892
0,03255
0,01191
0,00436

Possible
diff from
optimal
policy

19800
18087,6
16358,1

14794
12100,1
7320,65
4429,04
2679,59
1621,17
980,818
359,011

131,41
48,1002
17,6062
6,44445
2,35888
0,86342

o

Quit after 250
iterations =»
policy appears
to cost 8989.
Guarantee:
<= 8989+1621.

Quit after 600
iterations =>»

policy appears
to cost 9775.
Guarantee:

<= 9775+48.




Value Iteration

Value iteration to find t':

Start with an arbitrary cost E_(s) for each s and an arbitrary € > o
Fork=1,2, ...

for each sin S do

but we use the previous expected cost

foreachainAdo Q(s,a):=C(s,a) + 2., s P,(s" | s) E;_1(s)
E,(s) =min, _ ,Q(s,a)
m(s) = argmin, _ , Q(s,a)

If max_ _q | E,(s) - E;, ;(s)| < € for every s then exit // Almost no change!

seS

On an acyclic graph, the values converge in finitely many iterations
On a cyclic graph, value convergence can take infinitely many iterations
That’s why € > o is needed



Discussion

Both algorithms converge in a polynomial number of iterations
But the variable in the polynomial is the number of states
The number of states is usually huge

Need to examine the entire state space in each iteration

Thus, these algorithms take huge amounts of time and space

Probabilistic set-theoretic planning is EXPTIME-complete

Much harder than ordinary set-theoretic planning, which was only PSPACE-
complete

Methods exist for reducing the search space,
and for approximating optimal solutions

Beyond the scope of this course



