Automated Planning

Planning under Uncertainty: An Overview

Jonas Kvarnström
Automated Planning Group

Department of Computer and Information Science
Linköping University

Planning with Complete Information

- So far, we have assumed we know in advance:
- The state of the world when plan execution starts
- The outcome of any action, given the state where it is executed
- State + action $\boldsymbol{\rightarrow}$ unique resulting state
- So if there is a solution:
- There is an unconditional sequential solution

Planning
Model says: we end up in this specific state!

Execution

Just follow the unconditional plan...

Start
here...

A1

Multiple Outcomes

- In reality, actions may have multiple outcomes
- Nondeterministic planning:
- State + action \rightarrow set of possible new states (no more info during planning)
- Probabilistic planning:
- State + action \rightarrow probability distribution over a set of possible next states
- Can plan for all outcomes, or ignore the least probable outcomes
- Can generate plans with high probability of reaching the goal

Planning
Model says: we end up in one of these states

Start

Execution

We need something different here...

Intended Outcomes

- Sometime, specific outcomes are intended or nominal
- pick-up(object)

Intended outcome:
Unintended outcome:

- move $(100,100)$

Intended outcome: $\quad x p o s(r o b o t)=100$
Unintended outcome: $\quad \operatorname{xpos}$ (robot) $!=100$

- Sometimes there are no intended outcomes
- Tossing a coin: 2 different outcomes
"Intentions" are just our interpretation!

To a planner, there is generally no difference...

- With multiple outcomes, we can generate:
- Strong solutions (guaranteed to reach the goal)
- Weak solutions (may reach the goal)
- Probabilistic solutions (reaching the goal with probability >= limit)

Overview A

Deterministic:
Exact outcome known in advance
Non-deterministic:
Multiple outcomes, no probabilities
Probabilistic:
Multiple outcomes with probabilities

Classical planning (possibly with extensions)?

- But what about information gained during execution?

Fully Observable

Non-deterministic or probabilistic model

Fully observable:
Our sensors can determine exactly which state we are in after executing an action

A plan could:
\rightarrow Define which action to perform depending on which exact state you actually ended up in

Planning

Model says: we end up in one of these states

Start here...

Execution

Sensors say: we are in this state!

Start here...

Non-Observable

Non-deterministic or probabilistic model

Non-observable:

We have no sensors
to determine what happened Only predictions can guide us

A plan could:
\rightarrow Define which action to perform depending on which set of states you might be in

Planning

Model says: we end up in one of these states

Start here...

Execution

No sensors!
No new information
Start here...

Partially Observable

Non-deterministic or probabilistic model

Partially observable:
Sensors can observe some properties of the world
\Rightarrow we are in a set of states

A plan could:
\rightarrow Define which action to perform depending on which set of states you might be in
\rightarrow Take into account new information after sensing

Planning

Model says: we end up in one of these states

Start here...

Execution

Sensors say: we are in one of these states

Start here...

Overview B

Non-Observable:	Fully Observable:	Partially Observable:
Exact outcome gained afmation	Some information gained after action	

Deterministic:

Exact outcome
known in advance

Classical planning (possibly with extensions) (Information dimension is meaningless)

- In general:
- Full information is the easiest
- Partial information is the hardest!

Overview B

| Non-Observable: | Fully Observable:
 No information
 gained after action | Partially Observable:
 known after action | Some information gained
 after action |
| :---: | :---: | :---: | :---: | :---: |
| Deterministic: | | | |

- In general:
- Full information is the easiest
- Partial information is the hardest!

Automated Planning

Planning Based on
 Fully Observable Markov Decision Processes

Jonas Kvarnström
 Automated Planning Group

Department of Computer and Information Science
Linköping University
Some slides adapted from a presentation by Dana Nau
Licence: Creative Commons Attribution-NonCommercial-ShareAlike, http://creativecommons.org/licenses/by-nc-sa/2.0/

Fully Observable MDPs

- Fully Observable Markov Decision Processes:
- Action outcomes are:
- Probabilistic
- Fully observable

Planning

Model says: will end up in one of these states

Start here...

Execution

Sensors say: did end up in this state!

Start here...
A1

Stochastic Systems

- Formal models:
- Restricted state transition system $\Sigma=(S, A, \gamma)$
- $S=\left\{s_{0}, s_{1}, \ldots\right\}: \quad$ Finite set of world states
- $A=\left\{a_{0}, a_{1}, \ldots\right\}$: Finite set of actions
" $\gamma: S \times \mathrm{A} \rightarrow 2^{s}: \quad$ State transition function, where $|\gamma(\mathrm{s}, \mathrm{a})| \leq 1$
- Stochastic system $\Sigma=(S, A, P)$
- $P\left(\mathrm{~s}, \mathrm{a}, \mathrm{s}^{\prime}\right)$:

Given that we are in s and execute a, the probability of ending up in s '

Sometimes written
$P_{a}\left(s^{\prime} \mid s\right)$

- For any state s and action a, we have $\sum_{s^{\prime} \in S} P\left(s, a, s^{\prime}\right)=1$: Exactly 100\% probability of ending up somewhere

Stochastic Systems (2)

Arc indicates outcomes of a single action	Action: drive-uphill	$\begin{gathered} \text { S125,204 } \\ \text { At location } 6 \end{gathered}$	$P(S 125203$, drive-uphill, $S 125204)=0.98$
S125,203 At location 5	-		
	0.02	S125,222 Intermediate location	P(S125203, drive-uphill, $S 125222)=0.02$
	Model says: 2\% risk of slipping, ending up somewhere else		

Stochastic Systems (3)

- May have very unlikely outcomes...

Very unlikely, but may still be important to handle: Contingency plans using other vehicles, etc.

Stochastic Systems (4)

- And very many outcomes...

S125,203
At location 5 Fuel level 980

S125,104
At location 6
Fuel level 650

As always, one state for every combination of properties

Stochastic Systems (5)

- Like before, often many executable actions in every state

Probability sum = 1
 (single certain outcome)

Probability sum = 1
 (three possible outcomes)

Probability sum = 1
 (three possible outcomes)

We choose the action...

Nature chooses the outcome!

Search yields an AND/OR graph

Stochastic System Example

- Example: A single robot
- Moving between 5 locations
- For simplicity, states correspond directly to locations

$$
\begin{aligned}
& \text { - s1: at(r1, l1) } \\
& \text { - s2: at(r1, 12) } \\
& \text { - s3: at(r1,l3) } \\
& \text { - s4: at(r1, 14) } \\
& \text { " s5: at(r1, 15) }
\end{aligned}
$$

- Some transitions are deterministic, some are stochastic
- Trying to move from 12 to 13 : You may end up at 15 instead (20% risk)
- Trying to move from 11 to 14: You may stay where you are instead (50\% risk)
- (Can't always move in both directions, e.g. due to terrain gradient)

The Markov Property

Markov Property (1)

- Recall the definition of the probability function:
- $P\left(\mathrm{~s}, \mathrm{a}, s^{\prime}\right)$ is the probability of ending up in s^{\prime} given that we are in s and execute a

Nothing else matters!

Markov Property (2)

- This type of system has the Markov property: is memoryless

Remembering the Past

- We can still remember some things about the past!
- Example: predicate visited(location)
- Keeps track of where we have been
- But then this information is encoded and stored in the current state
* Which is finite, has a constant size
" No need to query an ever-growing sequence of past states

Plans and Policies

- Two important consequences for plan structures:
- Action choice must depend on the current state
- And thereby on earlier execution-time outcomes!
- Cannot have a limit on the number of actions executed!

- In MDP planning, we generate policies
- Usually denoted by π
- Defines, for each state, which action to execute whenever we end up in that state

Termination?

- Since a policy defines an action for every state:
- We could define a set of goal states where execution can end
- Similar to classical planning
- Usually one assumes a policy never terminates!
- The policy always specifies another action to execute
- Objectives specified through costs and rewards (later!)

Policy Example 1

- Example 1
- $\quad \pi 1=\{(s 1$, move(11,12$))$, (s2, move(12,13)), (s3, move(13,14)), (s4, wait), (s5, wait)\}

May end up in s4 or s5, wait there infinitely many times

Policy Example 2

- Example 2
- $\quad \pi 2=\{(s 1$, move $(11,12))$, (s2, move(12,13)), (s3, move(13,14)), (s4, wait), (s5, move($\mathbf{1 5 , 1 4}$))\}

Always reaches the state s4, waits there infinitely many times

Policy Example 3

- Example 3
- $\quad \pi 3=\{(\mathbf{s} 1$, move $(\mathbf{1 1}, \mathbf{1 4})$), (s2, move(12,11)), (s3, move(13,14)), (s4, wait), (s5, move(15,14)\}

Reaches state s4 with 100\% probability "in the limit"

Histories

Policies and Histories

- Executing a policy results in a state sequence: A history
- Infinite, since policies do not terminate
- $h=\left\langle s_{0}, s_{1}, s_{2}, s_{3}, s_{4}, \ldots\right\rangle$
- For classical planning:
s_{0} (index zero): Variable used in histories, etc $s 0$: concrete state name used in diagrams
We may have $\mathrm{s}_{0}=\mathrm{s} 27$
- We know the initial state
- Actions are deterministic
- \rightarrow A plan yields a single history (last state repeated infinitely)
- For probabilistic planning:
- Initial states can be probabilistic
- For every state s, there will be a probability $P(s)$ that we begin in the state s
- Actions can have multiple outcomes
- \rightarrow A policy can yield many different histories
" Which one? Only known at execution time!

History Example 1

- Example 1
- $\quad \pi 1=\{(s 1$, move(11,12$))$, (s2, move(12,13)), (s3, move(l3,14)), (s4, wait), (s5, wait)\}

- Even if we only consider starting in s1: Two possible histories
- $h_{1}=\langle s 1, s 2$, s3, s4, s4, ... $\rangle \quad$ - Reached s4, waits indefinitely
$h_{2}=\langle s 1, \mathrm{~s} 2, \mathrm{~s} 5, \mathrm{~s} 5 \ldots\rangle \quad-$ Reached s5, waits indefinitely

Probabilities: Initial States, Transitions 33

- Each policy induces a probability distribution over histories
- Let $h=\left\langle\mathrm{s}_{0}, \mathrm{~s}_{1}, \mathrm{~s}_{2}, \mathrm{~s}_{3}, \ldots\right\rangle$
- With unknown initial state:
- $P\left(\left\langle\mathrm{~s}_{0}, \mathrm{~s}_{1}, \mathrm{~s}_{2}, \mathrm{~s}_{3}, \ldots\right\rangle \mid \pi\right)=$ $P\left(s_{0}\right) \prod_{i \geq 0} P\left(s_{i}, \pi\left(s_{i}\right), s_{i+1}\right)$
- The book:
- Assumes you start in a known state s_{0}
- So all histories start with the same state

= $P\left(\left\langle\mathrm{~s}_{0}, \mathrm{~s}_{1}, \mathrm{~s}_{2}, \mathrm{~s}_{3}, \ldots\right\rangle \mid \pi\right)=$ $\prod_{i \geq 0} P\left(s_{i}, \pi\left(s_{i}\right), s_{i+1}\right)$

History Example 1

- Example 1
- $\quad \pi 1=\{(s 1$, move(11,12$))$, (s2, move(12,13)), (s3, move(l3,14)), (s4, wait), (s5, wait)\}

- Two possible histories, if we always start in s1
- $h_{1}=\langle\mathrm{s} 1, \mathrm{~s} 2, \mathrm{~s} 3, \mathrm{~s} 4, \mathrm{~s} 4, \ldots\rangle \quad-P\left(h_{1} \mid \pi_{1}\right)=1 \times 1 \times 0.8 \times 1 \times \ldots=0.8$
$h_{2}=\langle\mathrm{s} 1, \mathrm{~s} 2, \mathrm{~s} 5, \mathrm{~s} 5 \ldots\rangle \quad-P\left(h_{2} \mid \pi_{1}\right)=1 \times 1 \times 0.2 \times 1 \times \ldots=0.2$
$-P\left(h \mid \pi_{1}\right)=1 \times 0$ for all other h

History Example 2

- Example 2
- $\quad \pi 2=\{(s 1$, move $(11,12))$, (s2, move(12,13)), (s3, move(l3,14)), (s4, wait), (s5, move($\mathbf{1 5 , 1 4)}$)\}

- $h_{1}=\langle\mathrm{s} 1, \mathrm{~s} 2, \mathrm{~s} 3, \mathrm{~s} 4, \mathrm{~s} 4, \ldots\rangle \quad P\left(h_{1} \mid \pi_{2}\right)=1 \times 1 \times 0.8 \times 1 \times \ldots=0.8$
$h_{3}=\langle\mathrm{s} 1, \mathrm{~s} 2, \mathrm{~s} 5, \mathrm{~s} 4, \mathrm{~s} 4, \ldots\rangle \quad P\left(h_{3} \mid \pi_{2}\right)=1 \times 1 \times 0.2 \times 1 \times \ldots=0.2$
$P\left(h \mid \pi_{2}\right)=1 \times 0$ for all other h

History Example 3

- Example 3

Goals and Utility Functions

What is the Objective?

- What is the objective?
- In classical planning: Want a plan resulting in a goal state
- Natural formulation, since a plan always ends up in the same state
- In probabilistic planning: This is still possible
- A weak solution may reach a goal state in a finite number of steps
- A strong solution will reach a goal state in a finite number of steps
" A strong cyclic solution will reach a goal state in a finite number of steps given a fairness assumption:
Informally, "if we can exit a loop, we eventually will"

Costs and Rewards

- Alternative model, often used in MDP planning:
- Numeric cost $C(s, a)$ for each state s and action a
- Numeric reward $R(s)$ for each state s
- Example:
- $C(s, a)=1$ for each "horizontal" action
- $C(s, a)=100$ for each "vertical" action
- $C($ s 1, wait $)=1$
$C($ s2,wait $)=1$
$C($ s 4, wait $)=0$
$C(\mathrm{~s} 5$,wait $)=0$
- $R(\mathrm{~s} 5)=-100$:

Don't want to be there!

- $R(s 4)=100$:

This is a state that we want to reach

Utility Functions

- Utility functions
- Suppose a policy leads us to go through a certain history (state sequence)
- How "useful / valuable" is this history to us?

Utility of history h given policy π

- First attempt:
bereporiy
- $h=\left\langle s_{0}, s_{1}, \ldots\right\rangle \rightarrow V(h \mid \pi)=\sum_{i \geq 0}\left(R\left(s_{i}\right)-C\left(s_{i}, \pi\left(s_{i}\right)\right)\right)$

Add the reward for
being in state s_{i}

Subtract the cost of the action chosen in s_{i}

Utility Functions

- Example:
- Suppose π_{1} happens to result in $h_{1}=\langle s 1, s 2, s 3, s 4, s 4, \ldots\rangle$
- $V\left(h_{1} \mid \pi_{1}\right)=(0-100)+(0-1)+(0-100)+100+100+\ldots$
- We stay at $s 4$ forever, executing "wait", so we get an infinite amount of rewards!

This is not the only history that could result from the policy!

That's why we specify the policy and the history to calculate a utility...

Utility Functions

- What's the problem, given that we "like" being in state s4?
- We can't distinguish between different ways of getting there!
- $\mathrm{s} 1 \rightarrow \mathrm{~s} 2 \rightarrow \mathrm{~s} 3 \rightarrow \mathrm{~s} 4:$

$$
-201+\infty=\infty
$$

- $\mathrm{s} 1 \rightarrow \mathrm{~s} 2 \rightarrow \mathrm{~s} 1 \rightarrow \mathrm{~s} 2 \rightarrow \mathrm{~s} 3 \rightarrow \mathrm{~s} 4:$
$-401+\infty=\infty$
- Both appear equally good...

Discounted Utility

- Solution: Use a discount factor, γ, with $\mathrm{o} \leq \gamma \leq 1$
- To avoid divergence (infinite utility values V(...))
- To model "impatience": rewards and costs far in the future are less important to us
- Discounted utility of a history:
- $V(h \mid \pi)=\sum_{i \geq o} \gamma^{i}\left(R\left(s_{i}\right)-C\left(s_{i}, \pi\left(s_{i}\right)\right)\right)$
- Distant rewards/costs have less influence
- Convergence (with finite results) is guaranteed if $0 \leq \gamma<1$

Expected Utility, Optimality, Solutions

- Still only tells us the utility of a history
- But we can't force a history
- Can only decide a policy - which can lead to many histories
- Assuming a known starting state:
" Expected utility of a policy: $E(\pi)=\sum_{h} P(h \mid \pi) V(h \mid \pi)$
" How probable is each history (outcome), and how valuable is it to us?
- A policy π is optimal if no other policy has greater expected utility
- For every $\pi^{\prime}, E(\pi)>=E(\pi)$
- A solution is an optimal policy!
" Gives us the greatest (expected) reward that we can get, given the specified probabilities, costs, and rewards

Example

$$
\begin{aligned}
\Pi_{1}=\{ & (s 1, \operatorname{move}(11,12)), \\
& (s 2, \operatorname{move}(12,13)), \\
& (s 3, \operatorname{move}(13,14)), \\
& (s 4, \text { wait }) \\
& (s 5, \text { wait })\}
\end{aligned}
$$

Given that we start in s1, this simple policy can lead to only two different histories... 80\% chance of history h1, 20\% chance of history h2
$\gamma=0.9$
Factors 1, 0.9, 0.81, 0.729, 0.6561...
 $h_{1}=\langle s 1, s 2, s 3, s 4, s 4, \ldots\rangle$

$$
V\left(h_{1} \mid \pi_{1}\right)=.9^{0}(0-100)+.9^{1}(0-1)+.9^{2}(0-100)+.9^{3} 100+.9^{4} 100+\ldots=547.9
$$

$$
h_{2}=\langle s 1, s 2, s 5, s 5 \ldots\rangle
$$

$$
V\left(h_{2} \mid \pi_{1}\right)=.9^{0}(0-100)+.9^{1}(0-1)+.9^{2}(-100-0)+.9^{3}(-100-0)+\ldots=-910.1
$$

$E\left(\pi_{1}\right)=0.8 * 547.9+0.2(-910.1)=256.3$ We expect a reward of 256.3 on average

Example

$$
\begin{aligned}
\pi_{2}=\{ & (s 1, \text { move }(11,12)), \\
& (s 2, \text { move }(12,13)), \\
& (s 3, \text { move }(13,14)), \\
& (s 4, \text { wait }) \\
& (s 5, \text { move }(\mathbf{1 5}, \mathbf{1 4})\}
\end{aligned}
$$

Given that we start in s1, also two different histories... 80\% chance of history hi, 20\% chance of history h2

$\gamma=0.9$

Factors 1, 0.9, 0.81, 0.729, 0.6561...
 $h_{1}=\langle s 1, s 2, s 3, s 4, s 4, \ldots\rangle$

$$
V\left(h_{1} \mid \pi_{1}\right)=.9^{0}(0-100)+.9^{1}(0-1)+.9^{2}(0-100)+.9^{3} 100+.9^{4} 100+\ldots=547.9
$$

$$
h_{2}=\langle s 1, s 2, s 5, s 5 \ldots\rangle
$$

$$
V\left(h_{2} \mid \pi_{1}\right)=.9^{0}(0-100)+.9^{1}(0-1)+.9^{2}(-100-100)+.9^{3} 100+\ldots=466.9
$$

$$
E\left(\pi_{1}\right)=0.8 * 547.9+0.2(466.9)=531,7
$$

Summary

- Markov Decision Processes
- Underlying world model: Stochastic system
- Plan representation:
- Goal representation:
- Planning problem:

Policy - which action to perform in any state Utility function defining "solution quality"
Optimization: Maximize expected utility

Finding a Solution:
Preliminaries

Special Case

- To simplify the presentation of important principles:
- Let's consider a special case:
- We start in a known state, s_{o}
- All rewards are o
- Can easily be generalized
- We should minimize the expected cost of a policy:
- $E(\pi)=\sum_{h} P(h \mid \pi) C(h \mid \pi)$
" Where $C(h \mid \pi)=\sum_{i \geq 0} \gamma^{i} C\left(s_{i} ; \pi\left(s_{i}\right)\right) \quad$ (discounted cost)
" replaces $V(h \mid \pi)=\sum_{i \geq 0} \gamma^{i}\left(R\left(s_{i}\right)-C\left(s_{i}, \pi\left(s_{i}\right)\right)\right) \quad$ (discounted cost/reward)
- We will also need to know:
- $E_{\pi}(s)=$ the expected cost of executing π starting in some specific state s

Calculating Costs

- How can we calculate $E_{\pi}(s)$?
- If we visit the states $\langle s 1, s 2, s 3, s 4, s 5, \ldots\rangle$ where $s 1=s$:
" $E_{\pi}(s)=\sum_{i \geq 0} \gamma^{i} C\left(s_{i}, \pi\left(s_{i}\right)\right)$
- But only the first state is known in advance!

Bellman's Theorem: Background

- If π is a policy, then
- $E_{\pi}(s)=C(s, \pi(s))+\gamma \sum_{s^{\prime} \in S} P\left(\mathrm{~s}, \pi(s), s^{\prime}\right) E_{\pi}\left(s^{\prime}\right)$
- The expected cost of executing π starting in s
- Is the cost of executing the action chosen by the policy, $\pi(s)$, in s
- Plus the discount factor γ times...
...the sum, for all possible states $s^{\prime} \in S$ that you might end up in,
of the probability $P\left(s, \pi(s), s^{\prime}\right)$ of actually ending up in that state given the action $\pi(\mathrm{s})$ chosen by the policy
times the expected cost $E_{\pi}\left(s^{\prime}\right)$ of executing π starting in that new state s'
- (If you expand in one step...)
- $E_{\pi}(s)=C(s, \pi(s))+\gamma \sum_{s^{\prime} \in S} P\left(s, \pi(s), s^{\prime}\right)[$ $C\left(s^{\prime}, \pi\left(s^{\prime}\right)\right)+\gamma \sum_{s^{\prime \prime} \in S} P\left(s^{\prime}, \pi\left(s^{\prime \prime}\right), s^{\prime \prime}\right) \quad E_{\pi}\left(s^{\prime \prime}\right)$
]

Example 1

- $E_{\pi 2}(s 1)=$ The expected cost of executing π_{2} starting in $\underline{\mathbf{s} \mathbf{1}}$:
- The cost of the first action: move $(11,12)$
- Plus the discount factor γ times...
- [Ending up in s2] $100 \%{ }^{*} E_{\pi 2}(\mathrm{~s} 2)$

$$
\begin{aligned}
\pi_{2}=\{ & (s 1, \operatorname{move}(11,12)), \\
& (\mathrm{s} 2, \operatorname{move}(12,13)), \\
& (\mathrm{s} 3, \operatorname{move}(13,14)), \\
& (\mathrm{s} 4, \text { wait }), \\
& (\mathrm{s} 5, \operatorname{move}(15,14)\}
\end{aligned}
$$

Example 2

- $E_{\pi 2}(s 2)=$ the expected cost of executing π_{2} starting in $\underline{\mathbf{s 2}}$:
- The cost of the first action: move $(12,13)$
" (Which has multiple outcomes!)
- Plus the discount factor γ times...
" [Ending up in s3] $80 \%{ }^{*} E_{\pi 2}(s 3)$
- Plus
[Ending up in s5] $20 \%{ }^{*} E_{\pi 2}(s 5)$

$$
\begin{aligned}
\pi_{2}=\{ & (s 1, \operatorname{move}(11,12)), \\
& (\mathrm{s} 2, \operatorname{move}(12,13)), \\
& (\mathrm{s} 3, \operatorname{move}(13,14)), \\
& (\mathrm{s} 4, \text { wait }) \\
& (\mathrm{s} 5, \operatorname{move}(15,14)\}
\end{aligned}
$$

Recursive?

- Seems like we could easily calculate this recursively!
- $E_{\pi 2}(s 1)$ defined in terms of $E_{\pi 2}(s 2)$
- $E_{\pi 2}(\mathrm{~s} 2)$ defined in terms of $E_{\pi 2}(\mathrm{~s} 3)$ and $E_{\pi 2}(\mathrm{~s} 5)$
- Just continue until you reach the end!

$$
\begin{aligned}
\pi_{2}=\{ & (s 1, \operatorname{move}(11,12)), \\
& (\mathrm{s} 2, \operatorname{move}(12,13)), \\
& (\mathrm{s} 3, \operatorname{move}(13,14)), \\
& (\mathrm{s} 4, \text { wait }), \\
& (\mathrm{s} 5, \text { move }(15,14)\}
\end{aligned}
$$

Not Recursive!

- But there isn't always an "end"!
- Modified example below is a valid policy π :
- $E_{\pi}(\mathrm{s} 1)$ defined in terms of $E_{\pi}(\mathrm{s} 2)$
- $E_{\pi}(\mathrm{s} 2)$ defined in terms of $E_{\pi}(\mathrm{s} 3)$ and $E_{\pi}(\mathrm{s} 5)$
- $E_{\pi}(\mathrm{s} 3)$ defined in terms of $E_{\pi}(s 4)$
- $E_{\pi}(\mathrm{s} 5)$ defined in terms of $E_{\pi}(\mathrm{s} 2)$...

Bellman's Theorem: Equation System

- If π is a policy, then for all states s :
- $E_{\pi}(s)=C(s, \pi(s))+\gamma \sum_{s^{\prime} \in S} P\left(s, \pi(s), s^{\prime}\right) E_{\pi}\left(s^{\prime}\right)$
- The expected cost of executing π starting in s
- Is the cost of executing the action chosen by the policy, $\pi(\mathrm{s})$, in s
- Plus the discount factor γ times...
...the sum, for all possible states $s^{\prime} \in S$ that you might end up in,
of the probability $P\left(s, \pi(s), s^{\prime}\right)$ of actually ending up in that state given the action $\pi(\mathrm{s})$ chosen by the policy
times the expected cost $E_{\pi}\left(s^{\prime}\right)$ of executing π starting in that new state s'

Principle of Optimality

- Bellman's Principle of Optimality:
- An optimal policy has the property that whatever the initial state and initial decision are, the remaining decisions must constitute an optimal policy with regard to the state resulting from the first decision

Problem: Find a policy that minimizes cost given that we start in s1.

Suppose that an optimal policy π^{*} begins with move(11,12), so that the next state is $s 2$.

Then π^{*}
must also minimize cost given that we start in $s 2$!

Principle of Optimality (2)

- Sounds trivial? Depends on the Markov Property!
- Suppose costs depended on which states you had visited before
- Suppose you want to go s5 \rightarrow s1
- First action should be move $(15,14)$
- Now you need to go s4 \rightarrow s1
- Because you have visited s5 before, move(14,11) is very expensive
- Best solution: $s 5 \rightarrow_{s} 4 \rightarrow_{s} 3 \rightarrow_{s} 2 \rightarrow_{s} 1$, cost of $100+201$
- But if you only wanted to go s4 \rightarrow s1:
- move(l4,l1), with a cost of 1
- This can't happen here!
- Markovian!

Solution Methods (1)

- Let's hypothesize:

What if I made this local change, but kept everything else?

- Let $Q_{\pi}(s, a)$ be the expected cost of π in a state s if we start by executing the given action a,

```
Local change!
``` but we use the policy \(\pi\) from then onward
\[
\begin{array}{lll}
=E_{\pi}(s) & =C(s, \pi(s)) & +\gamma \sum_{s^{\prime} \in S} P\left(s, \pi(s), s^{\prime}\right) E_{\pi}\left(s^{\prime}\right) \\
=Q_{\pi}(s, a) & =C(s, a) & +\gamma \sum_{s^{\prime} \in S} P\left(s, a, s^{\prime}\right) E_{\pi}\left(s^{\prime}\right)
\end{array}
\]

\section*{Example}
- Example: \(E_{\pi}(s i)\)
- The expected cost of following the current policy
- Starting in s1, beginning with move(l1,l2)
- \(Q_{\pi}(s 1, \operatorname{move}(1,14))\)
- The expected cost of first trying to move from li to \(l_{4}\), then following the current policy

\section*{Solution Methods (2)}
- Suppose you have an everywhere optimal policy \(\pi^{*}\)
- That is, no other policy gives a better result for any starting state
- Then, because of the principle of optimality:
- For all states s, \(E_{\pi^{*}}(s)=\min _{a} Q_{\pi^{*}}(s, a)\)
- For all states \(s, E_{\pi^{*}}(s)=\min _{a}\left(C(s, a) \quad+\gamma \sum_{s^{\prime} \in S} P\left(s, a, \quad s^{\prime}\right) E_{\pi^{*}}\left(s^{\prime}\right)\right)\) Choice "The now rest"
- In every state, the local choice made by the policy is locally optimal

\section*{Solution Methods (3)}
- Suggests a specific type of solution method:
- Try to separate the decision in this state from the decisions in the remainder of the policy
" Use iterative refinement
- Start with some initial values (for example, a random policy)
- Find local improvements

\section*{Example, Revisited}
- Example: \(E_{\pi}(s 1)\)
- The expected cost of following the current policy
- Starting in s1, beginning with move(11,12)
- \(Q_{\pi}(s 1, \operatorname{move}(11,14))\)
- The expected cost of first trying to move from 11 to 14 , then following the current policy

\section*{Action Representations}

\section*{Action Representations}
- Action representations:
- The book only deals with the underlying semantics: Explicit enumeration of each \(P\left(\mathrm{~s}, \mathrm{a}, s^{\prime}\right)\)
- Several "convenient" representations possible, such as Bayes networks, probabilistic operators

\section*{Representation Example: PPDDL}
- Probabilistic PDDL: new constructs for effects, initial state
- (probabilistic \(p_{1} e_{1} \ldots p_{\mathrm{k}} e_{\mathrm{k}}\))
- Effect \(e_{1}\) takes place with probability \(p_{1}\), etc.
- Sum of probabilities <= 1 (can be strictly less \(\rightarrow\) implicit empty effect)
- (define (domain bomb-and-toilet)
(:requirements :conditional-effects :probabilistic-effects)
(:predicates (bomb-in-package ?pkg) (toilet-clogged) (bomb-defused))
(:action dunk-package
:parameters (?pkg)
:effect (and

\section*{First, a "standard" effect}
(when (bomb-in-package ?pkg) (bomb-defused))
(probabilistic 0.05 (toilet-clogged)))))
- (define (problem bomb-and-toilet)
(:domain bomb-and-toilet)
(:requirements :negative-preconditions)
(:objects package1 package2)
(:init (probabilistic 0.5 (bomb-in-package package1)
Probabilistic initial state 0.5 (bomb-in-package package2)))
(:goal (and (bomb-defused) (not (toilet-clogged)))))

\section*{Ladder 1}
" ;; Authors: Sylvie Thiébaux and Iain Little
" ;; Story: You are stuck on a roof because the ladder you climbed up on
" ;; fell down. There are plenty of people around; if you call out for
- ;; help someone will certaintly lift the ladder up again. Or you can
" ;; try the climb down without it. You aren't a very good climber
- ;; though, so there is a 50-50 chance that you will fall and break
" ;; your neck if you go it alone. What do you do?
- (define (domain climber)
" (:requirements :typing :strips :probabilistic-effects)
- (:predicates (on-roof) (on-ground)
(ladder-raised) (ladder-on-ground) (alive))
- (:action climb-without-ladder :parameters ()
- :precondition (and (on-roof) (alive))
- :effect (and (not (on-roof))
" (on-ground)
- (probabilistic 0.4 (not (alive)))))

\section*{Ladder 2}
```

(:action climb-with-ladder :parameters ()
:precondition (and (on-roof) (alive) (ladder-raised))
:effect (and (not (on-roof)) (on-ground)))

- (:action call-for-help :parameters ()
" :precondition (and (on-roof) (alive) (ladder-on-ground))
- :effect (and (not (ladder-on-ground))
(ladder-raised))))

```
- (define (problem climber-problem)
- (:domain climber)
- (:init (on-roof) (alive) (ladder-on-ground))
- (:goal (and (on-ground) (alive))))

\section*{Representation Example: RDDL}
" domain prop_dbn \{
requirements \(=\{\) reward - deterministic \(\} ;\)
// Define the state and action variables (not parameterized here) pvariables \{
\(\mathrm{p}:\{\) state - fluent , bool, default = false \(\} ;\)
\(\mathrm{q}:\{\) state - fluent , bool, default = false \(\}\);
r: \{ state - fluent, bool , default = false \};
a : \{ action - fluent , bool , default = false \};
\};
// Define the conditional probability function for each next
// state variable in terms of previous state and action cpfs \{
\(\mathrm{p}^{\prime}=\) if (\(\mathrm{p}^{\wedge} \mathrm{r}\)) then Bernoulli (.9) else Bernoulli (.3);
\(\mathrm{q}^{\prime}=\) if (\(\mathrm{q}^{\wedge} \mathrm{r}\)) then Bernoulli (.9)
else if (a) then Bernoulli (.3) else Bernoulli (.8);
\(r^{\prime}=\) if (\(\sim q\)) then KronDelta (\(r\)) else KronDelta (\(r<=>q\));
\};
// Define the reward function; note that boolean functions are
// treated as 0/1 integers in arithmetic expressions
reward \(=p+q-r\);

\section*{Automated Planning Planning Based on Markov Decision Processes, part 2}

\section*{Example Problem}
- Example Problem with Rewards and Costs

\section*{Example Problem, Simplified}
- In the model we used, rewards and costs are always "taken together"
- Can't get a reward without a cost or vice versa
- \(R(s)-C(s, a)\) : You are in a state, and then you execute an action in that state
- To simplify, we include the reward in the cost!
- Decrease each C(\(\mathrm{s}, \mathrm{a}\)) by R(s)
- Transitions from s5 are more expensive
- Transitions from s4 are less expensive
- Sometimes negative costs not a problem!
- Objective is to minimize cost
- Automatically takes rewards into account

Finding a Solution (Optimal Policy): Algorithm 1, Policy Iteration

\section*{Policy Iteration}
- First algorithm: Policy iteration
- General idea:
- Start out with an initial policy, maybe randomly chosen
- Calculate the expected cost of executing that policy from each state
- Update the policy by making a local decision for each state: "Which action should my improved policy choose in this state, given the expected costs of the current policy?"
- Iterate until convergence (the policy no longer changes)

\section*{Policy Iteration 2: Initial Policy \(\pi_{1}\)}
- Policy iteration requires an initial policy
\[
\begin{aligned}
\pi_{1}=\{ & (s 1, \text { wait }) \\
& (s 2, \text { wait }) \\
& (s 3, \text { wait }) \\
& (s 4, \text { wait }) \\
& (s 5, \text { wait })\}
\end{aligned}
\]
- Let's start by choosing "wait" in every state
- Let's set a discount factor: \(\gamma=0.9\)
- Easy to use in calculations on these slides, but in reality we might use a larger factor (we're not that short-sighted!)

\section*{Policy Iteration 3: Expected Costs for \(\pi, 76\)}
- Calculate expected costs for the current policy \(\pi_{1}\)
- Simple: Chosen transitions are deterministic + return to the same state!
\[
\begin{aligned}
& \text { - } E_{\pi}(s)=C(s, \pi(s))+\gamma \sum_{s^{\prime} \in S} P\left(s, \pi(s), s^{\prime}\right) E_{\pi}\left(s^{\prime}\right) \\
& \text { - } \mathrm{E}_{\pi 1}(\mathrm{~s} 1)=\mathrm{C}(\mathrm{~s} 1 \text {, wait })+\gamma \mathrm{E}_{\pi 1}(\mathrm{~s} 1) \quad=1+0.9 \mathrm{E}_{\pi 1}(\mathrm{~s} 1) \\
& \text { - } \mathrm{E}_{\pi 1}(\mathrm{~s} 2)=\mathrm{C}(\mathrm{~s} 2, \text { wait })+\gamma \mathrm{E}_{\pi 1}(\mathrm{~s} 2)=1+0.9 \mathrm{E}_{\pi 1}(\mathrm{~s} 2) \\
& \text { - } \mathrm{E}_{\pi 1}(\mathrm{~s} 3)=\mathrm{C}(\mathrm{~s} 3, \text { wait })+\gamma \mathrm{E}_{\pi 1}(\mathrm{~s} 3)=1+0.9 \mathrm{E}_{\pi 1}(\mathrm{~s} 3) \\
& \text { - } \mathrm{E}_{\pi 1}(\mathrm{~s} 4)=C(\mathrm{~s} 4, \text { wait })+\gamma \mathrm{E}_{\pi 1}(\mathrm{~s} 4)=-100+0.9 \mathrm{E}_{\pi 1}(\mathrm{~s} 4) \\
& \text { - } \mathrm{E}_{\pi 1}(\mathrm{~s} 5)=\mathrm{C}(\mathrm{~s} 5, \text { wait })+\gamma \mathrm{E}_{\pi 1}(\mathrm{~s} 5)=100+0.9 \mathrm{E}_{\pi 1}(\mathrm{~s} 5)
\end{aligned}
\]
- Simple equations to solve:
\[
\begin{array}{ll}
-0.1 \mathrm{E}_{\pi 1}(\mathrm{~s} 1)=1 & \rightarrow \\
=0.1 \mathrm{E}_{\pi 1}(\mathrm{~s} 1)=10 \\
=0.1 \mathrm{E}_{\pi 1}(\mathrm{~s} 3)=1 & \rightarrow \\
\mathrm{E}_{\pi 1}(\mathrm{~s} 2)=10 \\
-0.1 \mathrm{E}_{\pi 1}(\mathrm{~s} 4)=-100 & \rightarrow \\
\mathrm{E}_{\pi 1}(\mathrm{~s} 3)=10 \\
-0.1 \mathrm{E}_{\pi 1}(\mathrm{~s} 5)=100 & \rightarrow \mathrm{E}_{\pi 1}(\mathrm{~s} 4)=-1000 \\
& \rightarrow \mathrm{E}_{\pi 1}(\mathrm{~s} 5)=1000
\end{array}
\]

Given this policy \(\pi_{i}\) : High costs if we start in s5, high rewards if we start in s 4

\section*{Policy Iteration 4: Update 1a}

What is the best \(\quad \mathrm{E}_{\pi 1}(\mathrm{~s} 1)=10\)
local modification
according to the
expected cost of the current policy?
\[
\begin{aligned}
& \mathrm{E}_{\pi 1}(\mathrm{~s} 2)=10 \\
& \mathrm{E}_{\pi 1}(\mathrm{~s} 3)=10 \\
& \mathrm{E}_{\pi 1}(\mathrm{~s} 4)=-1000 \\
& \mathrm{E}_{\pi 1}(\mathrm{~s} 5)=1000
\end{aligned}
\]
- For every state \(s\) :
- Let \(\pi_{2}(s)=\operatorname{argmin}_{a \in A} Q_{\pi 1}(s, a)\)

- That is, find the action \(a\) that minimizes \(C(s, a)+\gamma \sum_{s^{\prime} \in S} P\left(s, a, s^{\prime}\right) E_{\pi 1}\left(s^{\prime}\right)\)
- s1: wait
move(11,12)
move(11,14)
Seems best - chosen!

- These are not the true expected costs for starting in state sı!
- They are only correct if we locally change the first action to execute and then \(g o\) on to use the previous policy (in this case, always waiting)!
- But they can be proven to yield good guidance, as long as you apply the improvements repeatedly (as policy iteration does)

\section*{Policy Iteration 5: Update 1b}

What is the best
local modification according to the expected cost of the current policy?
\[
\begin{aligned}
& \mathrm{E}_{\pi 1}(\mathrm{~s} 1)=10 \\
& \mathrm{E}_{\pi 1}(\mathrm{~s} 2)=10 \\
& \mathrm{E}_{\pi 1}(\mathrm{~s} 3)=10 \\
& \mathrm{E}_{\pi 1}(\mathrm{~s} 4)=-1000 \\
& \mathrm{E}_{\pi 1}(\mathrm{~s} 5)=1000
\end{aligned}
\]

- Let \(\pi_{2}(s)=\operatorname{argmin}_{a \in A} Q_{\pi 1}(s, a)\)
- That is, find the action \(a\) that minimizes \(C(s, a)+\gamma \sum_{s^{\prime} \in S} P\left(s, a, s^{\prime}\right) E_{\pi 1}\left(s^{\prime}\right)\)
```

" s2: wait
move(12,11)
move(12,13)

```
\[
\begin{array}{rll}
1+0.9 * 10 & =10 \\
100+0.9 * 10 & =109 \\
1+0.9 *\left(0.8^{*} 10+0.2^{*} 1000\right) & =188,2
\end{array}
\]

\section*{Policy Iteration 6: Update 1c}

What is the best
local modification according to the
expected cost of the current policy?
\[
\begin{aligned}
& \mathrm{E}_{\pi 1}(\mathrm{~s} 1)=10 \\
& \mathrm{E}_{\pi 1}(\mathrm{~s} 2)=10 \\
& \mathrm{E}_{\pi 1}(\mathrm{~s} 3)=10 \\
& \mathrm{E}_{\pi 1}(\mathrm{~s} 4)=-1000 \\
& \mathrm{E}_{\pi 1}(\mathrm{~s} 5)=1000
\end{aligned}
\]

- Let \(\pi_{2}(s)=\operatorname{argmin}_{a \in A} Q_{\pi 1}(s, a)\)
- That is, find the action \(a\) that minimizes \(C(s, a)+\gamma \sum_{s^{\prime} \in S} P\left(s, a, s^{\prime}\right) E_{\pi 1}\left(s^{\prime}\right)\)
\begin{tabular}{|c|c|c|}
\hline - s3: wait & \(1+0.9 * 10\) & \(=10\) \\
\hline move(13,12) & \(1+0.9\) * 10 & \(=10\) \\
\hline move \((13,14)\) & \(100+0.9\) *-1000 & \(=-800\) \\
\hline s4: wait & \(-100+0.9 *-1000\) & \(=-1000\) \\
\hline move(14,11) & \(-99+0.9 * 10\) & \(=-90\) \\
\hline ... & & \\
\hline - s5: wait & \(100+0.9 * 1000\) & \(=1000\) \\
\hline move(15,12) & \(101+0.9\) * 10 & \(=110\) \\
\hline move(15,14) & \(200+0.9\) *-1000 & \(=-700\) \\
\hline
\end{tabular}

\section*{Policy Iteration 7: Second Policy}
- This results in a new policy
\begin{tabular}{ll}
\(\pi_{1}=\{(s 1\), wait \()\), & \(E_{\pi 1}(s 1)=10\) \\
\((s 2\), wait \()\), & \(E_{\pi 1}(s 2)=10\) \\
\((s 3\), wait \()\), & \(E_{\pi 1}(s 3)=10\) \\
\((s 4\), wait), & \(E_{\pi 1}(s 4)=-1000\) \\
\((s 5\), wait \()\}\) & \(E_{\pi 1}(s 5)=1000\)
\end{tabular}
\begin{tabular}{rlrl}
\(\pi_{2}=\{\) & \((s 1\), move \((11,14)\), & \(<=-4,4,4,5\) \\
& \((s 2\), wait \()\), & \(<=10\) \\
& \((s 3\), move \((13,14))\), & \(<=-800\) \\
& \((s 4\), wait \()\), & \(<=-1000\) \\
& \((s 5\), move \((15,14))\}\) & \(<=-700\)
\end{tabular}

Costs based on one modified action + following \(\pi_{1}\) (no increase!)

Now we have made use of earlier indications that s4 seems to be a good place
\(\rightarrow\) Try to go there from s1 / s3 / s5!

No change in s2 yet...

\section*{Policy Iteration 8: Expected Costs for \(\pi_{2}\) 81}
- Calculate true expected costs for the new policy \(\pi_{2}\)
\[
\begin{aligned}
& \text { - } \mathrm{E}_{\pi 2}(\mathrm{~s} 1)=\mathrm{C}(\mathrm{~s} 1, \operatorname{move}(11,14))+\gamma \ldots \quad=1+0.9\left(0.5 \mathrm{E}_{\pi 2}(\mathrm{~s} 1)+0.5 \mathrm{E}_{\pi 2}(\mathrm{~s} 4)\right) \\
& \text { - } \mathrm{E}_{\pi 2}(\mathrm{~s} 2)=\mathrm{C}(\mathrm{~s} 2, \text { wait }) \quad+\gamma \mathrm{E}_{\pi 2}(\mathrm{~s} 2)=1+0.9 \mathrm{E}_{\pi 2}(\mathrm{~s} 2) \\
& \text { - } \mathrm{E}_{\text {п2 }}(\mathrm{s} 3)=\mathrm{C}(\mathrm{~s} 3, \operatorname{move}(13,14))+\gamma \mathrm{E}_{\pi 2}(\mathrm{~s} 4)=100+0.9 \mathrm{E}_{\text {п2 }}(\mathrm{s} 4) \\
& \text { - } \mathrm{E}_{\text {п2 }}(\mathrm{s} 4)=\mathrm{C}(\mathrm{~s} 4, \text { wait }) \quad+\gamma \mathrm{E}_{\pi 2}(\mathrm{~s} 4)=-100+0.9 \mathrm{E}_{\text {п2 }}(\mathrm{s} 4) \\
& \text { - } \mathrm{E}_{\pi 2}(\mathrm{~s} 5)=\mathrm{C}(\mathrm{~s} 5, \operatorname{move}(15,14))+\gamma \mathrm{E}_{\pi 2}(\mathrm{~s} 4)=200+0.9 \mathrm{E}_{\pi 2}(\mathrm{~s} 4)
\end{aligned}
\]
- Equations to solve:
\[
\begin{aligned}
= & 0.1 \mathrm{E}_{\pi 2}(\mathrm{~s} 2)=1 \\
= & 0.1 \mathrm{E}_{\pi 2}(\mathrm{~s} 4)=-100 \\
= & \mathrm{E}_{\pi 2}(\mathrm{~s} 3)=100+0.9 \mathrm{E}_{\pi 2}(\mathrm{~s} 4)=100+0.9^{*}-1000=-800 \\
= & \mathrm{E}_{\pi 2}(\mathrm{~s} 5)=200+0.9 \mathrm{E}_{\pi 2}(\mathrm{~s} 4)=200+0.9^{*}-1000=-700 \\
= & \mathrm{E}_{\pi 2}(\mathrm{~s} 1)=1+0.45^{*} \mathrm{E}_{\pi 2}(\mathrm{~s} 1)+0.45^{*} \mathrm{E}_{\pi 2}(\mathrm{~s} 4) \rightarrow \\
& 0.55 \mathrm{E}_{\pi 2}(\mathrm{~s} 1)=1+0.45^{*} \mathrm{E}_{\pi 2}(\mathrm{~s} 4) \rightarrow \\
& 0.55 \mathrm{E}_{\pi 2}(\mathrm{~s} 1)=1+(-450) \rightarrow \\
& 0.55 \mathrm{E}_{\pi 2}(\mathrm{~s} 1)=-449 \rightarrow \\
& \mathrm{E}_{\pi 2}(\mathrm{~s} 1)=-816,3636 \ldots
\end{aligned}
\]
\[
\begin{aligned}
& \rightarrow E_{\pi 2}(s 2)=10 \\
& \rightarrow E_{\pi 2}(s 4)=-1000 \\
& \rightarrow E_{\pi 2}(\mathrm{~s} 3)=-800 \\
& \rightarrow \mathrm{E}_{\pi 2}(\mathrm{~s} 5)=-700 \\
& \rightarrow \mathrm{E}_{\pi 2}(\mathrm{~s} 1)=-816,36
\end{aligned}
\]
\(\pi_{2}=\{(s 1\), move \((11,14)\),
(s2, wait),
(s3, move(13,14)), (s4, wait),
(s5, move(15,14))\}

\section*{Policy Iteration 9: Second Policy}
- Now we have the true expected costs of the second policy...
\begin{tabular}{ll}
\(\pi_{1}=\{(s 1\), wait \()\), & \(E_{\pi 1}(s 1)=10\) \\
\((s 2\), wait \()\), & \(E_{\pi 1}(s 2)=10\) \\
(s3, wait), & \(E_{\pi 1}(s 3)=10\) \\
(s4, wait), & \(E_{\pi 1}(s 4)=-1000\) \\
(s5, wait) \(\}\) & \(E_{\pi 1}(s 5)=1000\)
\end{tabular}

S5 wasn't so bad after all, since you can reach s 4 in a single step!

Si / s3 are even better.
S2 seems much worse in comparison,
since the benefits of s4 haven't "propagated" that far.

\section*{Policy Iteration 10: Update 2a}
\begin{tabular}{cl}
What is the best & \(\mathrm{E}_{\mathrm{\pi 2}}(\mathrm{~s} 1)=-816,36\) \\
local modification & \(\mathrm{E}_{\pi 2}(\mathrm{~s} 2)=10\) \\
according to the & \(\mathrm{E}_{\pi 2}(\mathrm{~s} 3)=-800\) \\
expected cost & \(\mathrm{E}_{\pi 2}(\mathrm{~s} 4)=-1000\) \\
of the current policy? & \(\mathrm{E}_{\pi 2}(\mathrm{~s})=-700\)
\end{tabular}
- For every state \(s\) :
- Let \(\pi_{3}(s)=\operatorname{argmin}_{a \in A} Q_{\pi 2}(s, a)\)

- That is, find the action \(a\) that minimizes \(C(s, a)+\gamma \sum_{s^{\prime} \in S} P\left(s, a, s^{\prime}\right) E_{\pi 2}\left(s^{\prime}\right)\)
- s1: wait
move \((11,12)\)
move(11,14)
Seems best - chosen!
- s2: wait
move(12,11)
move \((12,13)\)
\[
\begin{array}{rl}
1+0.9 & *-816,36 \\
100+0.9 & * 10 \\
1+0.9 & *\left(.5^{*}-1000+.5^{*}-816.36\right)
\end{array}
\]
\[
\begin{aligned}
& =-733,72 \\
& =109 \\
& =-816,36
\end{aligned}
\]
\[
1+0.9 * 10
\]
\[
=10
\]
\[
100+0.9 *-816,36
\]
\[
=-634,72
\]
\[
1+0.9^{*}\left(0.8^{*}-800+0.2^{*}-700\right)
\]
\[
=-701
\]

Now we will change the action taken at s2, since we have better expected costs for s1, s3, s5 ...

\section*{Policy Iteration 11: Update 2b}
\begin{tabular}{cl}
What is the best & \(\mathrm{E}_{\pi 2}(\mathrm{~s} 1)=-816,36\) \\
local modification & \(\mathrm{E}_{\pi 2}(\mathrm{~s} 2)=10\) \\
according to the & \(\mathrm{E}_{\pi 2}(\mathrm{~s} 3)=-800\) \\
expected cost & \(\mathrm{E}_{\pi 2}(\mathrm{~s} 4)=-1000\) \\
of the current policy? & \(\mathrm{E}_{\pi 2}(\mathrm{~s} 5)=-700\)
\end{tabular}
- For every state \(s\) :
- Let \(\pi_{3}(s)=\operatorname{argmin}_{a \in A} Q_{\pi 2}(s, a)\)

- That is, find the action \(a\) that minimizes \(C(s, a)+\gamma \sum_{s^{\prime} \in S} P\left(s, a, s^{\prime}\right) E_{\pi 1}\left(s^{\prime}\right)\)
\begin{tabular}{rl}
- s3: \begin{tabular}{l}
wait \\
\\
move \((13,12)\)
\end{tabular} \\
& move(13,14) \\
- s4: \begin{tabular}{l}
wait \\
move \((14,11)\)
\end{tabular}
\end{tabular}
\begin{tabular}{|l|l}
\hline \(1+0.9 *-800\) & \\
\(1+0.9 * 10\) & \\
\(100+0.9 *-1000\) & \\
\hline\(-100+0.9 *-1000\) & \\
\hline\(-99+0.9 *-816,36\) & \\
& \(=-800\) \\
\hline \(100+0.9 *-700\) & \\
\(101+0.9 * 10\) & \\
\hline \(200+0.9 *-1000\) & \\
\hline
\end{tabular}

\section*{Policy Iteration 12: Third Policy}

85
- This results in a new policy \(\pi_{3}\)
- True expected costs are updated by solving an equation system
- The algorithm will iterate once more
- No changes will be made to the policy
\[
\begin{aligned}
\pi_{3}=\{ & (s 1, \operatorname{move}(11,14), \\
& (s 2, \operatorname{move}(12,13)) \\
& (s 3, \operatorname{move}(13,14)), \\
& (s 4, \text { wait }) \\
& (s 5, \text { move }(15,14))\}
\end{aligned}
\]
- \(\quad \rightarrow\) Termination with optimal policy!

\section*{Policy Iteration 13: Algorithm}
- Policy iteration is a way to find an optimal policy \(\pi^{*}\)
- Start with an arbitrary initial policy \(\pi_{1}\). Then, for \(i=1,2, \ldots\)
- Compute expected costs \(E \pi_{i}(s)\) for every \(s\) by solving a system of equations

Find costs
according to
current policy
- System: For all s, \(E \pi_{i}(s)=C\left(s, \pi_{i}(s)\right)+\gamma \sum_{s^{\prime} \in S} P\left(s, \pi_{i}(s), s^{\prime}\right) E \pi_{i}\left(s^{\prime}\right)\)
- Result: The expected cost of the "current" policy in any given state \(s\)
- Not a simple recursive calculation - the state graph is generally cyclic!
" Compute an improved policy \(\pi_{i+1}\) "locally" for every \(s\)

Find best policy according to current costs
- \(\pi_{i+1}(s):=\operatorname{argmin}_{a \in A} C(s, a)+\gamma \sum_{s^{\prime} \in S} P\left(s, a, s^{\prime}\right) E \pi_{i}\left(s^{\prime}\right)\)
- Tells us the best action in any given state \(s\) given current expected costs
- But this is a new policy - with new expected costs!
- Loop back and calculate those costs
- If \(\pi_{i+1}=\pi_{i}\) then exit
- We have found an optimal solution - cannot be improved anywhere
- Otherwise, loop and calculate the expected cost for \(\pi_{i+1}\), etc.

\section*{Convergence}
- Converges in a finite number of iterations!
- We change which action to execute if this improves expected cost for this state
- This can sometimes decrease, and never increase, the cost of other states!
- So costs are monotonically improving and we only have to consider a finite number of policies
- In general:
- May take many iterations
- Each iteration involves can be slow
- Partly because of the need to solve a large equation system!

Finding a Solution: Value Iteration

\section*{Value Iteration}
- Second algorithm: Value iteration
- An intuitive explanation:
- Start by considering the minimum cost of proceeding zero steps
- \(E_{0}(s)=0\) for every state
- Then consider the reward we can get in one step
- For each state \(s\), create \(E_{1}(s)\) using values of \(E_{0}\) as a basis
" ...
- Then consider the reward we can get in \(\underline{\mathbf{n}}\) steps
- For each state \(s\), create \(E_{\mathrm{n}}(s)\) using values of \(E_{\mathrm{n}-1}\) as a basis
- No need to solve an expensive equation system
- Only local calculations using the previous estimate
- The policy is implicit in the calculations
- Will always converge towards an optimal value function
" Will converge faster if \(E_{0}(s)\) is close to the true value function
- Will actually converge regardless of the initial value of \(E_{0}(s)\)
" Intuition: As \(n\) goes to infinity, the importance of \(E_{0}(s)\) goes to zero

\section*{Value Iteration 2: Initial Guess E0}
- Value iteration requires an initial approximation
- Let's start with \(E_{0}(s)=0\) for each \(s\)
- Does not correspond to any actual policy!
- Does correspond to the optimal expected cost of executing zero steps...
\(\mathrm{E} 0(\mathrm{~s} 1)=0\)
\(\mathrm{E} 0(\mathrm{~s} 2)=0\)
\(\mathrm{E} 0(\mathrm{~s} 3)=0\)
\(E 0(s 4)=0\)
E0(s5) \(=0\)

\section*{Value Iteration 3: Update 1a}

91
\begin{tabular}{ll}
What is the best & \(\mathrm{E} 0(\mathrm{~s} 1)=0\) \\
local modification & \(\mathrm{E} 0(\mathrm{~s} 2)=0\) \\
according to the & \(\mathrm{E} 0(\mathrm{~s} 3)=0\) \\
current & \(\mathrm{E} 0(\mathrm{~s} 4)=0\) \\
approximation? & \(\mathrm{E} 0(\mathrm{~s} 5)=0\)
\end{tabular}
- For every state \(s\) :

- PI: find the action \(a\) that minimizes \(C(s, a)+\gamma \sum_{s^{\prime} \in S} P\left(s, a, s^{\prime}\right) E_{\pi 1}\left(s^{\prime}\right)\)
- FI: find the action \(a\) that minimizes \(C(s, a)+\gamma \sum_{s^{\prime} \in S} P\left(s, a, s^{\prime}\right) E_{0}\left(s^{\prime}\right)\)

- s2: wait
move(12,11)
move \((12,13)\)
\begin{tabular}{|r|l|}
\(1+0.9 * 0\) & \(=1\) \\
\(100+0.9 * 0\) & \(=100\) \\
\(1+0.9^{*}\left(0.5^{*} 0+0.5^{*} 0\right)\) & \(=1\) \\
\(1+0.9 * 0\) & \(=1\) \\
\(100+0.9{ }^{*} 0\) & \(=100\) \\
\(1+0.9 *\left(0.8^{*} 0+0.2^{*} 0\right)\) & \(=1\)
\end{tabular}

\section*{Value Iteration 4: Update 1b}

What is the best \(\quad \mathrm{E} 0(\mathrm{~s} 1)=0\)
local modification according to the current approximation?
- For every state \(s\) :

- FI: find the action \(a\) that minimizes \(C(s, a)+\gamma \sum_{s^{\prime} \in S} P\left(s, a, s^{\prime}\right) E_{o}\left(s^{\prime}\right)\)
\begin{tabular}{|c|c|c|}
\hline \begin{tabular}{l}
s3: wait move(13,12) \\
move(13,14)
\end{tabular} & \[
\begin{array}{r}
1+0.9 * 0 \\
1+0.9 * 0 \\
100+0.9 * 0
\end{array}
\] & \(=1\)
\(=1\)
\(=100\) \\
\hline s4: wait & \(-100+0.9 * 0\) & \(=-100\) \\
\hline move(14,11) & \(-99+0.9 * 0\) & \(=-99\) \\
\hline s5: wait & \(100+0.9 * 0\) & \(=100\) \\
\hline move(15,12) & \(101+0.9\) * 0 & \(=101\) \\
\hline move(15,14) & \(200+0.9\) * 0 & \(=200\) \\
\hline
\end{tabular}

\section*{Value Iteration 5: Second Policy}
- This results in a new approximation of the lowest expected cost
\[
\begin{aligned}
& \mathrm{EO}(\mathrm{~s} 1)=0 \\
& \mathrm{EO}(\mathrm{~s} 2)=0 \\
& \mathrm{EO}(\mathrm{~s} 3)=0 \\
& \mathrm{EO}(\mathrm{~s} 4)=0 \\
& \mathrm{EO}(\mathrm{~s} 5)=0
\end{aligned}
\]
\[
\begin{aligned}
\pi_{1}=\{ & (s 1, \text { wait }) \\
& (s 2, \text { wait }) \\
& (s 3, \text { move(l3,12)) } \\
& (s 4, \text { wait }) \\
& (s 5, \text { wait })\}
\end{aligned}
\]
\(\mathrm{E} 1(\mathrm{~s} 1)=1\)
\(E 1(s 2)=1\)
\(\mathrm{E} 1(\mathrm{~s} 3)=1\)
\(E 1(s 4)=-100\)
\(E 1(s 5)=100\)

E1 corresponds to one step of many polices, including the one shown here

Policy iteration would now calculate the true expected cost for a chosen policy

Value iteration instead continues using E1, which is only a calculation guideline, not the true cost of any policy

\section*{Value Iteration 6: Update 2a}

What is the best local modification according to the current approximation?
\(\mathrm{E} 1(\mathrm{~s} 1)=1\)
\(\mathrm{E} 1(\mathrm{~s} 2)=1\)
\(\mathrm{E} 1(\mathrm{~s} 3)=1\)
\(\mathrm{E} 1(\mathrm{~s} 4)=-100\)
\(\mathrm{E} 1(\mathrm{~s} 5)=100\)

- PI: find the action \(a\) that minimizes \(C(s, a)+\gamma \sum_{s^{\prime} \in S} P\left(s, a, s^{\prime}\right) E_{\pi \mathrm{k}}\left(s^{\prime}\right)\)
- FI: find the action \(a\) that minimizes \(C(s, a)+\gamma \sum_{s^{\prime} \in S} P\left(s, a, s^{\prime}\right) E_{k-1}\left(s^{\prime}\right)\)
- s1: wait

\[
\begin{array}{|rl|}
\hline 1+0.9^{*} 1 & =1.9 \\
100+0.9^{*} 1 & =100.9 \\
1+0.9^{*}\left(0.5^{*} 1+0.5^{*}-100\right) & =-43,55 \\
\cline { 1 - 1 } & =1.9 \\
100+0.9^{*} 1 & =100.9 \\
1+0.9^{*}\left(0.8^{*} 1+0.2^{*} 1\right) & \\
\hline
\end{array}
\]

\section*{Value Iteration 7: Update 2b}

What is the best \(\quad \mathrm{E} 1(\mathrm{~s} 1)=1\)
local modification according to the current
approximation?
- For every state \(s\) :

- FI: find the action \(a\) that minimizes \(C(s, a)+\gamma \sum_{s^{\prime} \in S} P\left(s, a, s^{\prime}\right) E_{k-1}\left(s^{\prime}\right)\)
- s3: \begin{tabular}{l}
wait \\
move(13,12) \\
\hline move(13,14)
\end{tabular}
- \(s 4: \frac{\text { wait }}{\text { move }(14,11)}\)
" s5: wait
move(15,12) move \((15,14)\)
\begin{tabular}{|c|c|}
\hline \(1+0.9\) * 1 & \(=1.9\) \\
\hline \(1+0.9 * 1\) & = 1.9 \\
\hline \(100+0.9\) *-100 & \(=10\) \\
\hline \(-100+0.9\) *-100 & = -190 \\
\hline \(-99+0.9\) * 1 & \(=-98.1\) \\
\hline \(100+0.9 * 1\) & \(=100.9\) \\
\hline \(101+0.9\) * 1 & = 101.9 \\
\hline \(200+0.9 *-100\) & \(=110\) \\
\hline
\end{tabular}

\section*{Value Iteration 8: Second Policy}
- This results in another new approximation
\begin{tabular}{|c|c|c|c|c|}
\hline E0(s1) = 0 & \(\pi_{1}=\{(s 1\), wait \()\), & E1(s1) = 1 & \(\pi_{2}=\{(s 1, \operatorname{move}(11,14))\), & \(\mathrm{E} 2(\mathrm{~s} 1)=-43.55\) \\
\hline \(\mathrm{E} 0(\mathrm{~s} 2)=0\) & (s2, wait), & \(E 1(s 2)=1\) & (s2, wait), & \(\mathrm{E} 2(\mathrm{~s} 2)=1.9\) \\
\hline \(\mathrm{E} 0(\mathrm{~s} 3)=0\) & (s3, move(13,12)), & \(E 1(s 3)=1\) & (s3, wait), & E2(s3) \(=1.9\) \\
\hline E0(s4) \(=0\) & (s4, wait), & E1(s4) \(=-100\) & (s4, wait), & E2(s4) \(=-190\) \\
\hline E0(s5) = 0 & (s5, wait)\} & E1(s5) = 100 & (s5, wait)\} & E2(s5) = 100.9 \\
\hline
\end{tabular}

Again, E2 doesn't represent the true expected cost of \(\pi_{2}\)

Nor is it the true expected cost of executing two steps of E2

It is the true expected cost of one step of E2, then one of E1!
(But it will converge towards true costs...)

- Significant differences from policy iteration
- Less accurate basis for action selection
- Based on approximate costs, not true expected costs
- Policy does not necessarily change in each iteration
- May first have to iterate \(n\) times, incrementally improving cost approximations
- Then another action suddenly seems better in some state
- \(\rightarrow\) Requires a larger number of iterations
- But each iteration is cheaper
- \(\boldsymbol{\rightarrow}\) Can't terminate just because the policy does not change
- Need another termination condition...

\section*{Illustration}
- Illustration below, showing rewards
- Notice that we already calculated rows 1 and 2
- s1: wait
\[
\begin{aligned}
& \text { move }(11,12) \\
& \hline \text { move(11,14) }
\end{aligned}
\]
\[
\begin{array}{rll}
1+0.9 * 1 & & =1.9 \\
100+0.9 * 1 & & =100.9 \\
1+0.9 *\left(0.5 * 1+0.5^{*}-100\right) & & =-43,55
\end{array}
\]
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & \multicolumn{3}{|c|}{s1} & \multicolumn{3}{|c|}{s2} & \multicolumn{3}{|c|}{s3} & s4 & \multicolumn{3}{|c|}{s5} \\
\hline & wait & move-s2 & move-s4 & wait & move-s1 & move-s3 & wait & move-s2 & move-s4 & wait & wait & move-s2 & move-s4 \\
\hline & & & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline & -1 & 100 & -1 & -1 & -100 & -1 & -1 & -1 & -100 & 100 & -100 & -101 & -200 \\
\hline & -1,9 & -100,9 & 43,55 & -1,9 & -100,9 & -1,9 & -1,9 & -1,9 & -10 & 190 & -190 & -101,9 & -110 \\
\hline 3 & 38,195 & -101,71 & 104,098 & -2,71 & -60,805 & -2,71 & -2,71 & -2,71 & 71 & 271 & -191,71 & -102,71 & -29 \\
\hline 4 & 92,6878 & -102,439 & 167,794 & -3,439 & -6,31225 & 62,9 & 62,9 & -3,439 & 143,9 & 343,9 & -126,1 & -103,439 & 43,9 \\
\hline 5 & 150,014 & -43,39 & 229,262 & 55,61 & 51,0145 & 128,51 & 128,51 & 55,61 & 209,51 & 409,51 & -60,49 & -44,39 & 109,51 \\
\hline 5 & 205,336 & 15,659 & 286,448 & 114,659 & 106,336 & 187,559 & 187,559 & 114,659 & 268,559 & 468,559 & -1,441 & 14,659 & 168,559 \\
\hline 6 & 256,803 & 68,8031 & 338,753 & 167,803 & 157,803 & 240,703 & 240,703 & 167,803 & 321,703 & 521,703 & 51,7031 & 67,8031 & 221,703 \\
\hline 7 & 303,878 & 116,633 & 386,205 & 215,633 & 204,878 & 288,533 & 288,533 & 215,633 & 369,533 & 569,533 & 99,5328 & 115,633 & 269,533 \\
\hline 8 & 346,585 & 159,68 & 429,082 & 258,68 & 247,585 & 331,58 & 331,58 & 258,68 & 412,58 & 612,58 & 142,58 & 158,68 & 312,58 \\
\hline 9 & 385,174 & 198,422 & 467,748 & 297,422 & 286,174 & 370,322 & 370,322 & 297,422 & 451,322 & 651,322 & 181,322 & 197,422 & 351,322 \\
\hline & 419,973 & 233,289 & 502,581 & 332,289 & 320,973 & 405,189 & 405,189 & 332,289 & 486,189 & 686,189 & 216,189 & 232,289 & 386,189 \\
\hline & 451,323 & 264,67 & 533,947 & 363,67 & 352,323 & 436,57 & 436,57 & 363,67 & 517,57 & 717,57 & 247,57 & 263,67 & 417,57 \\
\hline & 479,552 & 292,913 & 562,183 & 391,913 & 380,552 & 464,813 & 464,813 & 391,913 & 545,813 & 745,813 & 275,813 & 291,913 & 445,813 \\
\hline & 504,964 & 318,332 & 587,598 & 417,332 & 405,964 & 490,232 & 490,232 & 417,332 & 571,232 & 771,232 & 301,232 & 317,332 & 471,232 \\
\hline & 527,838 & 341,209 & 610,474 & 440,209 & 428,838 & 513,109 & 513,109 & 440,209 & 594,109 & 794,109 & 324,109 & 340,209 & 494,109 \\
\hline
\end{tabular}

\section*{Illustration}

99
- Remember, these are "pseudo-rewards"!
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & \multicolumn{3}{|c|}{s1} & \multicolumn{3}{|c|}{s2} & \multicolumn{3}{|c|}{s3} & s4 & \multicolumn{3}{|c|}{s5} \\
\hline Action & wait & move-s2 & move-s4 & wait & move-s1 & move-s3 & wait & move-s2 & move-s4 & wait & wait & move-s2 & move-s4 \\
\hline & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\hline 1 & -1 & -100 & -1 & -1 & -100 & -1 & -1 & -1 & -100 & 100 & -100 & -101 & -200 \\
\hline 2 & -1,9 & -100,9 & 43,55 & -1,9 & -100,9 & -1,9 & -1,9 & -1,9 & -10 & 190 & -190 & -101,9 & -110 \\
\hline 3 & 38,195 & -101,71 & 104,098 & -2,71 & -60,805 & -2,71 & -2,71 & -2,71 & 71 & 271 & -191,71 & -102,71 & -29 \\
\hline 4 & 92,6878 & -102,439 & 167,794 & -3,439 & \(-6,31225\) & 62,9 & 62,9 & -3,439 & 143,9 & 343,9 & -126,1 & -103,439 & 43,9 \\
\hline 5 & 150,014 & -43,39 & 229,262 & 55,61 & 51,0145 & 128,51 & 128,51 & 55,61 & 209,51 & 409,51 & -60,49 & -44,39 & 109,51 \\
\hline 5 & 205,336 & 15,659 & 286,448 & 114,659 & 106,336 & 187,559 & 187,559 & 114,659 & 268,559 & 468,559 & -1,441 & 14,659 & 168,559 \\
\hline 6 & 256,803 & 68,8031 & 338,753 & 167,803 & 157,803 & 240,703 & 240,703 & 167,803 & 321,703 & 521,703 & 51,7031 & 67,8031 & 221,703 \\
\hline 7 & 303,878 & 116,633 & 386,205 & 215,633 & 204,878 & 288,533 & 288,533 & 215,633 & 369,533 & 569,533 & 99,5328 & 115,633 & 269,533 \\
\hline 8 & 346,585 & 159,68 & 429,082 & 258,68 & 247,585 & 331,58 & 331,58 & 258,68 & 412,58 & 612,58 & 142,58 & 158,68 & 312,58 \\
\hline 9 & 385,174 & 198,422 & 467,748 & 297,422 & 286,174 & 370,322 & 370,322 & 297,422 & 451,322 & 651,322 & 181,322 & 197,422 & 351,322 \\
\hline 10 & 419,973 & 233,289 & 502,581 & 332,289 & 320,973 & 405,189 & 405,189 & 332,289 & 486,189 & 686,189 & 216,189 & 232,289 & 386,189 \\
\hline 11 & 451,323 & 264,67 & 533,947 & 363,67 & 352,323 & 436,57 & 436,57 & 363,67 & 517,57 & 717,57 & 247,57 & 263,67 & 417,57 \\
\hline 12 & 479,552 & 292,913 & 562,183 & 391,913 & 380,552 & 464,813 & 464,813 & 391,913 & 545,813 & 745,813 & 275,813 & 291,913 & 445,813 \\
\hline 13 & 504,964 & 318,332 & 587,598 & 417,332 & 405,964 & 490,232 & 490,232 & 417,332 & 571,232 & 771,232 & 301,232 & 317,332 & 471,232 \\
\hline 14 & 527,838 & 341,209 & 610,474 & 440,209 & 428,838 & 513,109 & 513,109 & 440,209 & 594,109 & 794,109 & 324,109 & 340,209 & 494,109 \\
\hline
\end{tabular}
\(324,109=\) cost of waiting once in s5, then continuing according to the previous 14 policies for 14 steps, then doing nothing (which is impossible according to the model)

\section*{How Many Iterations?}
- Illustration, only showing best reward at each step
- We actually have the optimal policy after iteration 4
- But we can't know this unless we calculate true expected costs as in policy iteration
- Here we only see that the pseudo-expected costs continue changing...
- Maybe at some point in the future, they will change enough to yield another policy?
\begin{tabular}{|r|r|r|r|r|r|}
\hline Iteration & \(\mathrm{E}(\mathrm{s} 1)\) & \(\mathrm{E}(\mathrm{s} 2)\) & \(\mathrm{E}(\mathrm{s} 3)\) & \(\mathrm{E}(\mathrm{s} 4)\) & \(\mathrm{E}(\mathrm{s} 5)\) \\
\hline \(0^{\prime}\) & \(0^{\prime}\) & \(0^{\prime}\) & 0 & 0 & 0 \\
\hline 1 & -1 & -1 & -1 & 100 & -100 \\
\hline 2 & 43,55 & \(-1,9\) & \(-1,9\) & 190 & -110 \\
\hline 3 & 104,098 & \(-2,71\) & 71 & 271 & -29 \\
\hline 4 & 167,794 & 62,9 & 143,9 & 343,9 & 43,9 \\
\hline 5 & 229,262 & 128,51 & 209,51 & 409,51 & 109,51 \\
\hline 6 & 286,448 & 187,559 & 268,559 & 468,559 & 168,559 \\
\hline 7 & 338,753 & 240,703 & 321,703 & 521,703 & 221,703 \\
\hline 8 & 386,205 & 288,533 & 369,533 & 569,533 & 269,533 \\
\hline 9 & 429,082 & 331,58 & 412,58 & 612,58 & 312,58 \\
\hline 10 & 467,748 & 370,322 & 451,322 & 651,322 & 351,322 \\
\hline 11 & 502,581 & 405,189 & 486,189 & 686,189 & 386,189 \\
\hline 12 & 533,947 & 436,57 & 517,57 & 717,57 & 417,57 \\
\hline 13 & 562,183 & 464,813 & 545,813 & 745,813 & 445,813 \\
\hline 14 & 587,598 & 490,232 & 571,232 & 771,232 & 471,232 \\
\hline 15 & 610,474 & 513,109 & 594,109 & 794,109 & 494,109 \\
\hline 16 & 631,062 & 533,698 & 614,698 & 814,698 & 514,698 \\
\hline 17 & 649,592 & 552,228 & 633,228 & 833,228 & 533,228 \\
\hline 18 & 666,269 & 568,905 & 649,905 & 849,905 & 549,905 \\
\hline 19 & 681,279 & 583,915 & 664,915 & 864,915 & 564,915 \\
\hline 20 & 694,787 & 597,423 & 678,423 & 878,423 & 578,423 \\
\hline
\end{tabular}

\section*{Different Discount Factors}
- Suppose discount factor is 0.99 instead
- Much slower convergence
- Change at step 20: \(2 \% \rightarrow 5 \%\)
- Change at step 50: \(0.07 \% \rightarrow 1.63 \%\)
- Care more about the future \(\rightarrow\) need to consider many more steps!
\begin{tabular}{|r|r|r|r|r|r|}
\hline Iteration & \(s 1\) & \(s 2\) & \(s 3\) & \(s 4\) & \(s 5\) \\
\hline 0 & 0 & 0 & 0 & 0 & 0 \\
\hline 1 & -1 & -1 & -1 & 100 & -100 \\
\hline 2 & 48,005 & \(-1,99\) & -1 & 199 & -101 \\
\hline 3 & 121,267 & \(-1,99\) & 97,01 & 297,01 & \(-2,99\) \\
\hline 4 & 206,047 & 95,0399 & 194,04 & 394,04 & 94,0399 \\
\hline 5 & 296,043 & 191,1 & 290,1 & 490,1 & 190,1 \\
\hline 6 & 388,141 & 286,199 & 385,199 & 585,199 & 285,199 \\
\hline 7 & 480,803 & 380,347 & 479,347 & 679,347 & 379,347 \\
\hline 8 & 573,274 & 473,553 & 572,553 & 772,553 & 472,553 \\
\hline 9 & 665,184 & 565,828 & 664,828 & 864,828 & 564,828 \\
\hline 10 & 756,356 & 657,179 & 756,179 & 956,179 & 656,179 \\
\hline 11 & 846,705 & 747,617 & 846,617 & 1046,62 & 746,617 \\
\hline 12 & 936,195 & 837,151 & 936,151 & 1136,15 & 836,151 \\
\hline 13 & 1024,81 & 925,79 & 1024,79 & 1224,79 & 924,79 \\
\hline 14 & 1112,55 & 1013,54 & 1112,54 & 1312,54 & 1012,54 \\
\hline 15 & 1199,42 & 1100,42 & 1199,42 & 1399,42 & 1099,42 \\
\hline 16 & 1285,42 & 1186,42 & 1285,42 & 1485,42 & 1185,42 \\
\hline 17 & 1370,57 & 1271,57 & 1370,57 & 1570,57 & 1270,57 \\
\hline 18 & 1454,86 & 1355,86 & 1454,86 & 1654,86 & 1354,86 \\
\hline 19 & 1538,31 & 1439,31 & 1538,31 & 1738,31 & 1438,31 \\
\hline 20 & 1620,93 & 1521,93 & 1620,93 & 1820,93 & 1520,93 \\
\hline
\end{tabular}

\section*{How Many Iterations?}
- We can find bounds!
- Let M be the maximum change in pseudo-cost between two iterations
- Then we can find a bound on how far from the optimal cost the current policy may be
- Cost of current policy - cost of optimal policy <= M * (2*discount) / (1-discount)

Discount factor
\begin{tabular}{|crrrrrr}
\hline & & 0,5 & 0,9 & 0,95 & 0,99 & 0,999 \\
\cline { 2 - 7 } & 0,001 & \(\mathbf{0 , 0 0 2}\) & \(\mathbf{0 , 0 1 8}\) & \(\mathbf{0 , 0 3 8}\) & \(\mathbf{0 , 1 9 8}\) & \(\mathbf{1 , 9 9 8}\) \\
Absolute cost & 0,01 & \(\mathbf{0 , 0 2}\) & \(\mathbf{0 , 1 8}\) & \(\mathbf{0 , 3 8}\) & \(\mathbf{1 , 9 8}\) & \(\mathbf{1 9 , 9 8}\) \\
difference M & 0,1 & \(\mathbf{0 , 2}\) & \(\mathbf{1 , 8}\) & \(\mathbf{3 , 8}\) & \(\mathbf{1 9 , 8}\) & \(\mathbf{1 9 9 , 8}\) \\
between two & 1 & \(\mathbf{2}\) & \(\mathbf{1 8}\) & 38 & \(\mathbf{1 9 8}\) & \(\mathbf{1 9 9 8}\) \\
iterations & 5 & \(\mathbf{1 0}\) & \(\mathbf{9 0}\) & \(\mathbf{1 9 0}\) & \(\mathbf{9 9 0}\) & \(\mathbf{9 9 9 0}\) \\
& 10 & 20 & \(\mathbf{1 8 0}\) & \(\mathbf{3 8 0}\) & \(\mathbf{1 9 8 0}\) & \(\mathbf{1 9 9 8 0}\) \\
& 100 & \(\mathbf{2 0 0}\) & \(\mathbf{1 8 0 0}\) & \(\mathbf{3 8 0 0}\) & \(\mathbf{1 9 8 0 0}\) & \(\mathbf{1 9 9 8 0 0}\) \\
\hline
\end{tabular}

\title{
How Many Iterations? Discount 0.90
}

Possible diff from Greatest optimal
\begin{tabular}{|r|r|r|r|r|r|r|r|r|}
\hline Iteration & \(s 1\) & \(s 2\) & \(s 3\) & \(s 4\) & \(s 5\) & change & policy \\
\hline 0 & 0 & 0 & 0 & 0 & 0 & & \\
\hline 1 & -1 & -1 & -1 & 100 & -100 & & 100 & 1800 \\
\hline 2 & 43,55 & \(-1,9\) & \(-1,9\) & 190 & -110 & 90 & 1620 \\
\hline 3 & 104,0975 & \(-2,71\) & 71 & 271 & -29 & 81 & 1458 \\
\hline 4 & 167,7939 & 62,9 & 143,9 & 343,9 & 43,9 & & 72,9 & 1312,2 \\
\hline 5 & 229,2622 & 128,51 & 209,51 & 409,51 & 109,51 & 65,61 & 1180,98 \\
\hline 6 & 286,4475 & 187,559 & 268,559 & 468,559 & 168,559 & 59,049 & 1062,882 \\
\hline 7 & 338,7529 & 240,7031 & 321,7031 & 521,7031 & 221,7031 & & 53,1441 & 956,5938 \\
\hline 8 & 386,2052 & 288,5328 & 369,5328 & 569,5328 & 269,5328 & & 47,82969 & 860,9344 \\
\hline 9 & 429,0821 & 331,5795 & 412,5795 & 612,5795 & 312,5795 & & 43,04672 & 774,841 \\
\hline 10 & 467,7477 & 370,3216 & 451,3216 & 651,3216 & 351,3216 & & 38,7420 & 697,3569 \\
\hline 20 & 694,787 & 597,4233 & 678,4233 & 878,4233 & 578,4233 & & 13,50852 & 243,1533 \\
\hline 30 & 773,9725 & 676,6088 & 757,6088 & 957,6088 & 657,6088 & & 4,710129 & 84,78232 \\
\hline 40 & 801,5828 & 704,2191 & 785,2191 & 985,2191 & 685,2191 & & 1,64232 & 29,56177 \\
\hline 50 & 811,2099 & 73,8462 & 794,8462 & 994,8462 & 694,8462 & & 0,572642 & 10,30755 \\
\hline 60 & 814,5666 & 717,203 & 798,203 & 998,203 & 698,203 & & 0,199668 & 3,594021 \\
\hline 70 & 815,7371 & 718,3734 & 799,3734 & 999,3734 & 699,3734 & & 0,06962 & 1,253157 \\
\hline 80 & 816,1452 & 718,7815 & 799,7815 & 999,7815 & 699,7815 & & 0,024275 & 0,436949 \\
\hline 90 & 816,2875 & 718,9238 & 799,9238 & 999,9238 & 699,9238 & & 0,008464 & 0,152355 \\
\hline 100 & 816,3371 & 718,9734 & 799,9734 & 999,9734 & 699,9734 & & 0,002951 & 0,053123 \\
\hline
\end{tabular}

\title{
How Many Iterations? Discount 0.99
}

Possible diff from Greatest optimal change policy
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline Iteration & s1 & s2 & s3 & s4 & s5 & change & policy \\
\hline 0 & 0 & 0 & 0 & 0 & 0 & & \\
\hline 1 & -1 & -1 & -1 & 100 & -100 & 100 & 19800 \\
\hline 10 & 756,356 & 657,179 & 756,179 & 956,179 & 656,179 & 91,3517 & 18087,6 \\
\hline 20 & 1620,93 & 1521,93 & 1620,93 & 1820,93 & 1520,93 & 82,6169 & 16358,1 \\
\hline 30 & 2403 & 2304 & 2403 & 2603 & 2303 & 74,7172 & 14794 \\
\hline 50 & 3749,94 & 3650,94 & 3749,94 & 3949,94 & 3649,94 & 61,1117 & 12100,1 \\
\hline 100 & 6139,68 & 6040,68 & 6139,68 & 6339,68 & 6039,68 & 36,973 & 7320,65 \\
\hline 150 & 7585,48 & 7486,48 & 7585,48 & 7785,48 & 7485,48 & 22,3689 & 4429,04 \\
\hline 200 & 8460,2 & 8361,2 & 8460,2 & 8660,2 & 8360,2 & 13,5333 & 2679,59 \\
\hline 250 & 8989,41 & 8890,41 & 8989,41 & 9189,41 & 8889,41 & 8,18773 & 1621,17 \\
\hline 300 & 9309,59 & 9210,59 & 9309,59 & 9509,59 & 9209,59 & 4,95363 & 980,818 \\
\hline 400 & 9620,49 & 9521,49 & 9620,49 & 9820,49 & 9520,49 & 1,81319 & 359,011 \\
\hline 500 & 9734,3 & 9635,3 & 9734,3 & 9934,3 & 9634,3 & 0,66369 & 131,41 \\
\hline 600 & 9775,95 & 0676,95 & 9775,95 & 9975,95 & 9675,95 & 0,24293 & 48,1002 \\
\hline 700 & 9791,2 & 9692,2 & 9791,2 & 9991,2 & 9691,2 & 0,08892 & 17,6062 \\
\hline 800 & 9796,78 & 9697,78 & 9796,78 & 9996,78 & 9696,78 & 0,03255 & 6,44445 \\
\hline 900 & 9798,82 & 9699,82 & 9798,82 & 9998,82 & 9698,82 & 0,01191 & 2,35888 \\
\hline 1000 & 9799,57 & 9700,57 & 9799,57 & 9999,57 & 9699,57 & 0,00436 & 0,86342 \\
\hline
\end{tabular}

\section*{Bounds are} incrementally tightened!

> Quit after 250 iterations \(\rightarrow\) policy appears to cost 8989. Guarantee: \(<=8989+1621\).

Quit after 600 iterations \(\rightarrow\) policy appears to cost 9775 .
Guarantee:
<= 9775 48 .

\section*{Value Iteration}
- Value iteration to find \(\pi^{*}\) :
- Start with an arbitrary cost \(E_{0}(s)\) for each \(s\) and an arbitrary \(\varepsilon>0\)
- For \(k=1,2, \ldots\)
- for each \(s\) in \(S\) do

\section*{Almost as in the definition of \(\mathrm{Q}(\mathrm{s}, \mathrm{a})\), but we use the previous expected cost}
- for each \(a\) in \(A\) do \(Q(s, a):=C(s, a)+\gamma \sum_{s^{\prime} \in S} P_{a}\left(s^{\prime} \mid s\right) E_{k-1}\left(s^{\prime}\right)\)
- \(E_{k}(s)=\min _{a \in A} Q(s, a)\)
- \(\pi(s)=\operatorname{argmin}_{a \in A} Q(s, a)\)
- If \(\max _{s \in S}\left|E_{k}(s)-E_{k-1}(s)\right|<\varepsilon\) for every \(s\) then exit // Almost no change!
- On an acyclic graph, the values converge in finitely many iterations
- On a cyclic graph, value convergence can take infinitely many iterations
- That's why \(\varepsilon>o\) is needed
- Both algorithms converge in a polynomial number of iterations
- But the variable in the polynomial is the number of states
- The number of states is usually huge
- Need to examine the entire state space in each iteration
- Thus, these algorithms take huge amounts of time and space
- Probabilistic set-theoretic planning is EXPTIME-complete
- Much harder than ordinary set-theoretic planning, which was only PSPACEcomplete
- Methods exist for reducing the search space, and for approximating optimal solutions
- Beyond the scope of this course```

