Path/Motion Planning

Path/Motion Planning (1)

The easiest form of path planning / motion planning:

(1) A robot should move in two dimensions between start and goal

Avoiding known obstacles - or it would be too easy...

- -
Start position

- . .
Goal position

Path/Motion Planning (2)

The easiest form of path planning / motion planning:

(2) The robot is holonomic

Informally: Can move in any direction
(possibly by first rotating, then moving)

44444

Path/Motion Planning (3)

Problem: Generating an optimal continuous path is hard!

Common solution: Divide and conquer
Discretize: Choose a finite number of potential waypoints in the map

Assume there exists a robot-specific local planner
to determine whether one can move between two such waypoints (and how)

Use search algorithms to decide which waypoints to use

- -
Start position

- . .
Goal position

Remaining task: choosing potential waypoints + finding a path using them

Choosing Potential Waypoints:
Grid-Based Methods

Reqular 2D Grid

The simplest type of discretization: A regular grid

A robot moves only north, east, south or west
Details are left to the local planner

Start position -

- . .
Goal position

Regular 2D Grid: Real Obstacles

Real obstacles do not correspond Partially covered - can’t be used

to square / rectangular cells...

But we can cover them with cells

- -
Start position

- . .
Goal position

Reqular 2D Grid: Discrete Graph

View the grid implicitly as a discrete graph

Assume the local path planner can take us between any neighboring cells

Between blue nodes
No obstacles in the way
Sufficient free space to deal with non-holonomic constraints

Reqular 2D Grid: Discrete Graph (2)

Connect start/goal configurations to the nodes in their cells

Within a cell = no obstacles = can plan a path using local planner
Here, the goal is unreachable...

- _

Regular 2D Grid: Grid Density

Grid density matters!

Here: 4 times as many grid cells

Better approximation of the true obstacles,
but many more nodes to search

Non-Regular Grids

Alternative: Use non-regular grids

For example, denser around obstacles

(Or even non-rectangular cells)

Grid Representations

Space-efficient data structure: quadtree

Each node keeps track of:

Whether it is completely covered, partially covered or non-covered

Each non-leaf node has exactly four children

Can be generalized to 3D (octree), ...

Choosing Potential Waypoints:
Geometry-Based Methods

Regular 2D Grid: Grid Density

Grid-based methods can result in many nodes

Even with efficient representation, searching the graph takes time
Alternative idea: Place nodes depending on obstacles

Simple case: Known road map

s sgen
5 g

We\é\tetﬁ\laﬂen
Model all non-road areas as obstacles, 5,
then add a dense grid? SO
i‘g‘ é 9ud|m'a§§
TTTTTTT]
Road Fysikhuset
. 1
£
§ #ster Ma g
. . . E g
Or place a node in each intersection?
?“W%%
é‘ﬁ‘g
q}é‘

Visibility Graphs

Visibility graphs

Applicable to simple polygons

Nodes at all polygon corners

Edges wherever a pair of nodes can be connected using the local planner
Mainly interesting in 2D

Optimal in 2D, not in 3D

{qoal

(init

Voronoi Diagrams

Voronoi diagrams

Find all points that have the same distance to two or more obstacles

Maximizes clearance (free distance to the nearest obstacle)
Creates unnecessary detours
Mainly interesting in 2D -
does not scale well

Complex Motion Planning Problems

Work Space

A car moves in a 2-dimensional plane

- m L ".:|| Y
The workspace of the car - =
e S By Ma\fﬂsl&'l'tg o Lﬁ
ol l&
g Valla 2
®
[%sy,
E
g 3 3 & L &I
o 'E.*Udl&\-‘a!‘gm Strgtomiavag

¥

Many robots have
a 3-dimensional workspace

Miister Mattias vag

£

Ges snubely snejo
cC CTLC
53 3
T E =
e

Fa
Bea snuBiey

Configuration Space

Even a car has 3 physical degrees of freedom (DOF)!

The configuration space of the car

Location in the plane (x/y),
Angle (6)
Each DOF is essential!
As part of the goal - park at the correct angle

As part of the solution - must turn the car to get through narrow passages

Motion planning takes place in configuration space:
How do I get from (200, 200, 12°) to (800, 400, 90°)?

The Ladder Problem

The ladder problem is similar
Move a ladder in a 2D workspace , with 3 physical DOF

Configuration:

Location in the plane (x/y),
Angle (0)

Again, each DOF
is essential:

As part of the goal

We want the ladder to end up
at a specific angle

As part of the solution

We need to turn the ladder
to get it past the obstacles

The Ladder Problem: Controllable DOF |

For ladders, each physical DOF is directly controllable!

You can:
Change x (translate sideways)

Changey (translate up/down)
Change angle (rotate in place)

Therefore:

If you want to get from (200, 200, 12°) to (800, 400, 90°),
any path connecting these 3D points

and going through free configuration space
is sufficient

The ladder is holonomic!
Controllable DOF >= physical DOF

Controllable Degrees of Freedom

For cars, we can control two DOF:
Acceleration/breaking
Turning (limited)

In this parallel parking example:

There is free space between current and desired configurations

But we can't slide in sideways!

Fewer controllable DOF than physical DOF =» non-holonomic

Limits possible curves in 3D configuration space!

Work Space, Configuration Space

Summary of important concepts:

Work space: The physical space in which you move
3-dimensional for this robot arm

Configuration space:

The set of possible configurations of the robot /

conf-2

conf-3

conf-1

Usually continuous

Often many-dimensional
(one dimension per physical DOF)

Will often be visualized in 2D for clarity

obstacle

Work Space, Configuration Space (2)

We have to search
in the configuration space!

conf-3

Local path planner
conf-1

Determines whether two configurations conf-2
can be connected with a path, and how =

Considers vehicle-specific constraints

High-level path planner

Uses plug-in local planner to generate
connected waypoints

obstacle

For each specific problem, uses search
to determine which waypoints to use

Eshou

For an aircraft, a configuration could consist of:
location in 3D space (x/y/z)

pitch angle

yaw angle
roll angle

A path is:
a continuous curve in 6-dimensional configuration space

avoiding obstacles
and obeying constraints on how the aircraft can turn

Can make tighter turns at low speed
Can't fly at arbitrary pitch angles

High-Dimensional Problems (2)

For a robot arm, a configuration could consist of:
The position / angle of each joint

A path is a continuous curve in n-dimensional configuration space
(all joints move continuously to new positions, without “jumping”),
avoiding obstacles and obeying constraints on joint endpoints etc.

Typical goal: Reach inside the car you are painting / welding,
without colliding with the car itself

Yt =ax) 7,

Vo) = ap(®) 7

u,(t)

)

yi(t) = a,()

High-Dimensional Problems (3)

Moving in tight spaces, again...

High-Dimensional Problems (4)

For a humanoid robot, a configuration could consist of:

Position in x/y space ‘
)

The position of each joint ?

The Nao robot:

14, 21 or 25 degrees of freedom
depending on model

Up to 25-dimensional motion planning!

Grid methods generally do not scale

25-dimensional configuration space,
with 1000 cells in each direction:
1075 cells...

(c).2001.James.Kuffner

Choosing Potential Waypoints:
Probabilistic Methods

Probabilistic Roadmaps

Probabilistic roadmaps (PRM):

Construction phase

Randomly generates a large number of configurations in free space

Builds a graph
Query phase
Searches the graph

Properties:

Scales better to higher dimensions

Deterministically incomplete, probabilistically complete

The more configurations you create,
the greater the probability that a path can be found if possible
(approaching 1.0)

Visualization in 2D...

Generate random Make connections
configurations

Many methods for node placement, emphasizing narrow passages, ...

PRM: Query Phase

A* search

start

Add start and
goal configurations Curve Replacement &

to the roadmap Smoothing

Result
vert.
obstacle

€ shou

PRM

Graph Search (1)

Given a discretization, how do we find a path?
One option: A*

Heuristics: Manhattan distance (moving in 4 directions),
Chebyshev distance (moving in 8 directions),
Euclidian distance (in general), ...

-

Graph Search (2)

Suppose new obstacles are detected during execution

A*: Update map and replan from scratch
Inefficient

D* (Dynamic A*): Informed incremental search
First, find a path using information about known obstacles

When new obstacles are detected:

Affected nodes are returned to the OPEN list, marked as RAISE:
More expensive than before

Incrementally updates only those nodes whose cost change
due to the new obstacles

Focused D*:

Focuses propagation towards the robot - additional speedup

Graph Search (3)

Anytime algorithms:

Return some path quickly, then incrementally improve it

"Repeated weighted A*”
Run A* with f(n) = g(n) + W * h(n), where W > 1: Faster but suboptimal
Decrease W and repeat

Has to redo search from scratch in each run!

Anytime Repairing A*

Like "repeated weighted A*”, but reuses search results from earlier iterations

Anytime Dynamic A* (AD*)
Both replanning when problems change
and anytime planning

Suboptimal Paths

Paths are often suboptimal in the continuous space

Only the chosen points in the cells are used

In this example: The midpoints

M

Paths can be improved through smoothing after generation
Still generally does not lead to optimal paths

This is just a simple example, where smoothing is easy

Open Motion Planning Library

Want to experiment?
Open Motion Planning Library
http://ompl.kavrakilab.org/index.html

Start Pose
Position
X -4.96
Y 70.57
Z 40.62
Goal Pose
Position

X 200.00
Y 70.57

Z 4062

P Solve K " Clear | | Animate Speed: —

{ Problem « Planner

Bounding box

Rotation

=l 0.00
% 000

2 0.00

Rotation

%) 0.00
] 0.00

2] 0.00

http://ompl.kavrakilab.org/index.html
http://ompl.kavrakilab.org/index.html

