
Jonas Kvarnström 

Automated Planning and Diagnosis Group 

Department of Computer and Information Science 

Linköping University 



 The easiest form of path planning / motion planning: 
 (1) A robot should move in two dimensions between start and goal 

▪ Avoiding known obstacles – or it would be too easy… 

Start position 

Goal position 



 The easiest form of path planning / motion planning: 
 (2) The robot is holonomic 

▪ Informally: Can move in any direction 
(possibly by first rotating, then moving) 



 Problem: Generating an optimal continuous path is hard! 
 Common solution: Divide and conquer 

▪ Discretize: Choose a finite number of potential waypoints in the map 

▪ Assume there exists a robot-specific local planner 
to determine whether one can move between two such waypoints (and how) 

▪ Use search algorithms to decide which waypoints to use 

Start position 

Goal position 

Remaining task: choosing potential waypoints + finding a path using them 





 The simplest type of discretization: A regular grid 
 A robot moves only north, east, south or west 

▪ Details are left to the local planner 

Start position 

Goal position 



 Real obstacles do not correspond 
to square / rectangular cells… 
 But we can cover them with cells 

 

Partially covered – can’t be used 

Obstacle 

Start position 

Goal position 



 View the grid implicitly as a discrete graph 
 Assume the local path planner can take us between any neighboring cells 

▪ Between blue nodes 

▪ No obstacles in the way 

▪ Sufficient free space to deal with non-holonomic constraints 



 Connect start/goal configurations to the nodes in their cells 
 Within a cell  no obstacles  can plan a path using local planner 

 Here, the goal is unreachable… 



 Grid density matters! 
 Here: 4 times as many grid cells 

 Better approximation of the true obstacles, 
but many more nodes to search 



 Alternative: Use non-regular grids 
 For example, denser around obstacles 

 (Or even non-rectangular cells) 

 



 Space-efficient data structure: quadtree 
 Each node keeps track of: 

▪ Whether it is completely covered, partially covered or non-covered 

 Each non-leaf node has exactly four children 

 

 

 

 

 

 

 

 

 

 Can be generalized to 3D (octree), … 





 Grid-based methods can result in many nodes 
 Even with efficient representation, searching the graph takes time 

 Alternative idea: Place nodes depending on obstacles 

 

 Simple case: Known road map 
 Model all non-road areas as obstacles, 

then add a dense grid? 

 

 

 

 

 Or place a node in each intersection? 



 Visibility graphs 
 Applicable to simple polygons 

▪ Nodes at all polygon corners 

▪ Edges wherever a pair of nodes can be connected using the local planner 

 Mainly interesting in 2D 

▪ Optimal in 2D, not in 3D 

qinit 

qqoal 



 Voronoi diagrams 
 Find all points that have the same distance to two or more obstacles 

▪ Maximizes clearance (free distance to the nearest obstacle) 

 Creates unnecessary detours 

 Mainly interesting in 2D – 
does not scale well 

 

 





 A car moves in a 2-dimensional plane 
 The workspace of the car 

 

 

 

 Many robots have 
a 3-dimensional workspace 

 

 

 



 Even a car has 3 physical degrees of freedom (DOF)! 
 The configuration space of the car 

▪ Location in the plane (x/y), 

▪ Angle (θ) 

 Each DOF is essential! 

▪ As part of the goal – park at the correct angle 

▪ As part of the solution – must turn the car to get through narrow passages 

Motion planning takes place in configuration space: 
How do I get from (200, 200, 12°) to (800, 400, 90°)? 



 The ladder problem is similar 
 Move a ladder in a 2D workspace , with 3 physical DOF 

 Configuration: 

▪ Location in the plane (x/y), 

▪ Angle (θ)  

 

 Again, each DOF 
is essential: 
 As part of the goal 

▪ We want the ladder to end up 
at a specific angle 

 As part of the solution 

▪ We need to turn the ladder 
to get it past the obstacles 



 For ladders, each physical DOF is directly controllable! 
 You can: 

▪ Change x (translate sideways) 

▪ Change y (translate up/down) 

▪ Change angle (rotate in place) 

 Therefore: 

▪ If you want to get from (200, 200, 12°) to (800, 400, 90°), 
any path connecting these 3D points 
and going through free configuration space 
is sufficient 

 

 The ladder is holonomic! 

▪ Controllable DOF >= physical DOF 



 For cars, we can control two DOF: 
 Acceleration/breaking 

 Turning (limited) 

 In this parallel parking example: 
 There is free space between current and desired configurations 

▪ But we can't slide in sideways! 

 Fewer controllable DOF than physical DOF  non-holonomic 

▪ Limits possible curves in 3D configuration space! 



 Summary of important concepts: 
 Work space: The physical space in which you move 

▪ 3-dimensional for this robot arm 

 

 

 Configuration space: 
The set of possible configurations of the robot 

▪ Usually continuous 

▪ Often many-dimensional 
(one dimension per physical DOF) 

▪ Will often be visualized in 2D for clarity 



 We have to search  
in the configuration space! 
 Local path planner 

▪ Determines whether two configurations 
can be connected with a path, and how 

▪ Considers vehicle-specific constraints  

 

 

 

 

 

 High-level path planner 

▪ Uses plug-in local planner to generate 
connected waypoints 

▪ For each specific problem, uses search 
to determine which waypoints to use 



 For an aircraft, a configuration could consist of: 
 location in 3D space (x/y/z) 

 pitch angle 

 yaw angle 

 roll angle 

 

 A path is: 
 a continuous curve in 6-dimensional configuration space 

avoiding obstacles 
and obeying constraints on how the aircraft can turn 

▪ Can make tighter turns at low speed 

▪ Can’t fly at arbitrary pitch angles 

▪ … 

 



 For a robot arm, a configuration could consist of: 

▪ The position / angle of each joint 

 A path is a continuous curve in n-dimensional configuration space 
(all joints move continuously to new positions, without “jumping”), 
avoiding obstacles and obeying constraints on joint endpoints etc. 

 Typical goal: Reach inside the car you are painting / welding, 
without colliding with the car itself 



 Moving in tight spaces, again… 

 



 For a humanoid robot, a configuration could consist of: 

▪ Position in x/y space 

▪ The position of each joint 

 

 The Nao robot: 

▪ 14, 21 or 25 degrees of freedom 
depending on model 

▪ Up to 25-dimensional motion planning! 

 

 Grid methods generally do not scale 

▪ 25-dimensional configuration space, 
with 1000 cells in each direction: 
1075 cells… 

 



 





 Probabilistic roadmaps (PRM): 
 Construction phase 

▪ Randomly generates a large number of configurations in free space 

▪ Builds a graph 

 Query phase 

▪ Searches the graph 

 

 Properties: 
 Scales better to higher dimensions 

 Deterministically incomplete, probabilistically complete 

▪ The more configurations you create, 
the greater the probability that a path can be found if possible 
(approaching 1.0) 



 Visualization in 2D… 

Generate random 
configurations 

Make connections 

Many methods for node placement, emphasizing narrow passages, … 



 

start 

goal 

start 

goal 

Curve Replacement & 
Smoothing 

Add start and 
goal configurations 
to the roadmap 

start 

goal 

A* search 



Visualized i 2D 
Could be 25D 





 Given a discretization, how do we find a path? 
 One option: A* 

▪ Heuristics: Manhattan distance (moving in 4 directions), 
Chebyshev distance (moving in 8 directions), 
Euclidian distance (in general), … 

 



 Suppose new obstacles are detected during execution  
 A*: Update map and replan from scratch 

▪ Inefficient 

 

 D* (Dynamic A*): Informed incremental search 

▪ First, find a path using information about known obstacles 

▪ When new obstacles are detected: 

▪ Affected nodes are returned to the OPEN list, marked as RAISE: 
More expensive than before 

▪ Incrementally updates only those nodes whose cost change 
due to the new obstacles 

 

 Focused D*: 

▪ Focuses propagation towards the robot – additional speedup 

 

 … 

 



 Anytime algorithms: 
 Return some path quickly, then incrementally improve it 

 

 ”Repeated weighted A*” 

▪ Run A* with f(n) = g(n) + W * h(n), where W > 1: Faster but suboptimal 

▪ Decrease W and repeat 

▪ Has to redo search from scratch in each run! 

 

 Anytime Repairing A* 

▪ Like ”repeated weighted A*”, but reuses search results from earlier iterations 

 

 Anytime Dynamic A* (AD*) 

▪ Both replanning when problems change 
and anytime planning 

 

 … 

 





 Paths are often suboptimal in the continuous space 
 Only the chosen points in the cells are used 

 In this example: The midpoints 



 Paths can be improved through smoothing after generation 
 Still generally does not lead to optimal paths 

 This is just a simple example, where smoothing is easy 



 Want to experiment? 
 Open Motion Planning Library 

 http://ompl.kavrakilab.org/index.html 

 

 

http://ompl.kavrakilab.org/index.html
http://ompl.kavrakilab.org/index.html

