

Automated Planning

Complexity

Jonas Kvarnström Automated Planning Group Department of Computer and Information Science Linköping University

Complexity of Classical Planning

Complexity 1

3

- What is the complexity of plan generation?
 - How much time and space (memory) do we need?
- Vague question let's try to be more specific...
 - Assume an <u>infinite set</u> of problem instances
 - For example, "all classical planning problems"
 - Analyze all possible algorithms in terms of <u>asymptotic worst case complexity</u>
 - What is the <u>lowest</u> worst case complexity we can achieve?

Complexity 2: Repetition

- What is asymptotic complexity?
 - An algorithm is in O(f(n)) if there is an algorithm for which there exists a fixed constant c such that for all n, the time to solve an instance of size n is at most c * f(n)
- Example: Sorting is in O(n log n),
 - We can find an algorithm for which there is a <u>fixed constant c</u> such that for <u>all n</u>, the time to <u>sort n elements</u> is <u>at most c * n log n</u>

If we can do it in "at most n log n", we can do it in "at most n²".

<u>Some</u> problem instances might be solved faster! If the list happens to be sorted already, we might finish in *linear* time: O(n)

But for the entire <u>set</u> of problems, our guarantee is $O(n \log n)$

Size of a Planning Problem

So what is "a planning problem of <u>size</u> n"?

Complexity of Planning

- Now: The complexity of PLAN-EXISTENCE
 - The problem of finding out whether there <u>exists</u> a <u>solution</u>
- We will be satisfied with a "rough" classification
 - Polynomial, exponential, ...
 - Some common complexity <u>classes</u>:
 - NLOGSPACE
 - = the algorithms that can be executed in polynomial time
 - \subseteq NP

 $\subseteq \mathbf{P}$

- \subseteq PSPACE
- \subseteq EXPTIME = can be executed in exponential time
- \subseteq NEXPTIME
- \subseteq EXPSPACE = the algorithms that can be executed in exponential space
- Example: P = PTIME = polynomial time
 - May require n^2 time, or n^{10} , or $n^{1000000}$
 - For large enough problems, n¹⁰⁰⁰⁰⁰⁰ < 1.001ⁿ
 - Sorting is in P, and therefore also in NP, PSPACE, ...

Complexity Analysis: Observations

- Most representations use:
 - **<u>Operators</u>** that have **<u>parameters</u>** and many **<u>instances</u>** (called actions)
 - <u>Predicates</u> that have parameters and many instances
 - Consider an untyped problem of size 1000, with 100 constants (objects)
 - One action: Dolt(?a,?b) 10,000 instances
 - One predicate: pred(?a,?b) 10,000 instances
 - Now add more parameters to the operator / predicate:
 - Dolt(?a,?b,?c) 1,000,000 instances, problem size 1001
 - Dolt(?a,?b,?c,?d) 100,000,000 instances, problem size 1002
 - <u>Adding</u> 3 characters <u>multiplies</u> the number of instances by 100

In the worst case, the number of actions / predicate instances is <u>exponential</u> in the size of the domain definition!

First Problem Set: All **planning problem statements** in the **classical representation**

- How can we analyze this case?
 - |A| is at most exponential (number of actions)
 - But a plan might have to use the same action many times
 - Difficult to find a bound on plan length...
 - Let's try another approach

NLOGSPACE \subseteq P \subseteq NP \subseteq PSPACE \subseteq EXPTIME \subseteq NEXPTIME \subseteq EXPSPACE

First Problem Set: All **planning problem statements** in the **classical representation**

- How can we analyze this case?
 - Visiting all reachable states would be sufficient
 - We have <u>at most</u> an exponential number of states
 - Even if our enemies try as much as possible to use every increase in problem size to make the problem harder
 - Keeping track of which states we have visited cannot take more than exponential space
 - → Plan existence cannot be harder than EXPSPACE
 - In fact, EXPSPACE-complete (Won't prove it here...)

```
NLOGSPACE

\subseteq P

\subseteq NP

\subseteq PSPACE

\subseteq EXPTIME

\subseteq NEXPTIME

\subseteq EXPSPACE
```


Second Problem Set:

All planning problem statements in the <u>classical representation</u> that only have <u>positive effects</u> (but pos+neg preconditions allowed)

- Only positive effects
 - → The set of <u>true facts</u> increases monotonically as new actions are added
 - → There can be no point in applying the same action twice!
 - (But action order matters, due to negative preconditions)
- Checking every sequence of unique actions would be sufficient
 - We have at most an exponential number of actions
 - → A plan can be at most exponentially long
- Non-deterministic algorithms can (conceptually) "test all alternatives at once",
 - \rightarrow in NEXPTIME
 - (Actually, NEXPTIME-complete)

NLOGSPACE \subseteq P \subseteq NP \subseteq PSPACE \subseteq EXPTIME \subseteq NEXPTIME \subseteq EXPSPACE

Third Problem Set:

All planning problem statements in the <u>classical representation</u> that only have <u>positive effects</u> and <u>positive preconditions</u>

- Only positive effects
 - → The set of <u>true facts</u> increases monotonically as new actions are added
- Only positive effects <u>and</u> only positive preconditions
 - → The set of <u>applicable actions</u> increases monotonically
- Action order does not matter!
 - If you can apply A1 now, you can apply A1 after any other actions as well
 - Could just apply all actions until we reach a fixpoint
 - If the goal is satisfied in the final state, there exists a plan
 - Exponential number of actions → in EXPTIME
 - (Actually, it is EXPTIME-complete!)

NLOGSPACE \subseteq P \subseteq NP \subseteq PSPACE \subseteq EXPTIME \subseteq NEXPTIME \subseteq EXPSPACE

- One reason for high complexity:
 Operators can be modified as n increases
 - Suppose <u>operators</u> are <u>fixed / given in advance</u>!
 - They are not part of the problem statement, cannot be changed
 - We can only increase *n* by changing the problem instance:
 <u>objects</u>, <u>initial state</u> and <u>goal</u>
- For the <u>classical</u> representation:
 - Arbitrary classical problem:
 - EXPSPACE-complete → PSPACE
 - Only <u>positive effects</u>:
 - NEXPTIME-complete → NP or NP-complete, depending on the operators
 - Only <u>positive effects</u>, only <u>positive preconditions</u>:
 - EXPTIME-complete \rightarrow P

These results are generally more relevant! We are usually interested in what happens with more objects, not if we change operators in the "worst" way possible $\subseteq P$ $\subseteq NP$ $\subseteq PSPACE$ $\subseteq EXPTIME$ $\subseteq NEXPTIME$ $\subseteq EXPSPACE$

NLOGSPACE

Complexity Analysis: Domains

- Note: This complexity applies to the <u>worst case</u>
 - We saw that restricting the set of problems gives us tighter time bounds

Handle <u>all</u> planning problem statements in the <u>classical representation</u> (with pos+neg effects and pos+neg preconditions)
→ EXPSPACE-complete

Handle <u>all</u> planning problem statements in the <u>classical representation</u> that only have <u>positive effects</u> and <u>positive preconditions</u> → EXPTIME-complete

> Handle <u>all</u> planning problem statements for the <u>standard blocks world</u>

→ P (polynomial time *given an optimal algorithm*)