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 What is the complexity of plan generation? 
 How much time and space (memory) do we need? 

 

 Vague question – let’s try to be more specific… 
 Assume an infinite set of problem instances 

▪ For example, “all classical planning problems” 

 Analyze all possible algorithms in terms of  
asymptotic worst case complexity 

 What is the lowest worst case complexity we can achieve? 

 



 What is asymptotic complexity? 

▪ An algorithm is in O(f(n)) if there is an algorithm 
for which there exists a fixed constant c 
such that for all n, 
the time to solve an instance of size n 
is at most c * f(n) 

 Example: Sorting is in O(n log n),  

▪ We can find an algorithm  
for which there is a fixed constant c 
such that for all n, 
the time to sort n elements 
is at most c * n log n 

 

 

So sorting is also in O( ), 
in O( ), and so on. 

 
If we can do it in “at most ”, 

we can do it in “at most ”. 

Some problem instances might be solved faster! 
If the list happens to be sorted already, we might finish in linear time: O(n) 

 
But for the entire set of problems, our guarantee is O(n log n) 



 
 

 

 

 

 

Real World 
+ current 
problem 

Planning 
Problem 

P = (, s0, Sg) 

Abstraction 

Approximation 

So what is “a planning problem of size n”? 

Language L 

Problem 
Statement 
P=(O,s0,g) 

Planner 

Plan 
a1, a2, …, an 

Equivalence 

The input to a planner  
is a problem statement 

The size of the problem statement 
depends on the representation! 

PDDL: How many characters are there 
in the domain and problem files? 



 Now: The complexity of PLAN-EXISTENCE 
 The problem of finding out whether there exists a solution 

 

 We will be satisfied with a “rough” classification 
 Polynomial, exponential, … 

 Some common complexity classes: 

▪ NLOGSPACE  
  P  = the algorithms that can be executed in polynomial time 
  NP   
  PSPACE  
  EXPTIME = can be executed in exponential time 
  NEXPTIME  
  EXPSPACE = the algorithms that can be executed in exponential space 

 Example: P = PTIME = polynomial time 

▪ May require  time, or , or 

▪ For large enough problems,  

▪ Sorting is in P, and therefore also in NP, PSPACE, … 

 

 

 

 



 Most representations use: 
 Operators that have parameters and many instances (called actions) 

 Predicates that have parameters and many instances 

 

 Consider an untyped problem of size , with  constants (objects) 

▪ One action:  DoIt(?a,?b) – instances 

▪ One predicate:  pred(?a,?b) –  instances 

 

 Now add more parameters to the operator / predicate:  

▪ DoIt(?a,?b,?c) –  instances, problem size 

▪ DoIt(?a,?b,?c,?d) –  instances, problem size 

 

 Adding  characters multiplies the number of instances by 

In the worst case, the number of actions / predicate instances 
is exponential in the size of the domain definition! 



 

 How can we analyze this case? 
 |A| is at most exponential (number of actions) 

 But a plan might have to use the same action many times 

 Difficult to find a bound on plan length… 

 Let’s try another approach 

First Problem Set: 
All planning problem statements in the classical representation 

NLOGSPACE 
  P 
  NP 
  PSPACE 
  EXPTIME 
  NEXPTIME 
  EXPSPACE 



 

 How can we analyze this case? 
 Visiting all reachable states would be sufficient 

 We have at most an exponential number of states 

▪ Even if our enemies try as much as possible 
to use every increase in problem size 
to make the problem harder 

  Keeping track of which states we have visited 
cannot take more than exponential space 

  Plan existence cannot be harder than EXPSPACE 

▪ In fact, EXPSPACE-complete  (Won’t prove it here…) 

First Problem Set: 
All planning problem statements in the classical representation 

NLOGSPACE 
  P 
  NP 
  PSPACE 
  EXPTIME 
  NEXPTIME 
  EXPSPACE 



 Only positive effects 

▪  The set of true facts increases monotonically as new actions are added 

▪  There can be no point in applying the same action twice! 

▪ (But action order matters, due to negative preconditions) 

 

 Checking every sequence of unique actions would be sufficient 

▪ We have at most an exponential number of actions 

▪  A plan can be at most exponentially long 

 

 Non-deterministic algorithms can (conceptually) 
“test all alternatives at once”, 

▪  in NEXPTIME 

▪ (Actually, NEXPTIME-complete) 

 

Second Problem Set: 
All planning problem statements in the classical representation 

that only have positive effects (but pos+neg preconditions allowed) 

NLOGSPACE 
  P 
  NP 
  PSPACE 
  EXPTIME 
  NEXPTIME 
  EXPSPACE 



 Only positive effects 

▪  The set of true facts increases monotonically as new actions are added 

 Only positive effects and only positive preconditions 

▪  The set of applicable actions increases monotonically 

 

  Action order does not matter! 

▪ If you can apply A1 now, you can apply A1 after any other actions as well 

▪ Could just apply all actions until we reach a fixpoint 

▪ If the goal is satisfied in the final state, there exists a plan 

▪ Exponential number of actions  in EXPTIME 

▪ (Actually, it is EXPTIME-complete! ) 

Third Problem Set: 
All planning problem statements in the classical representation 

that only have positive effects and positive preconditions 

NLOGSPACE 
  P 
  NP 
  PSPACE 
  EXPTIME 
  NEXPTIME 
  EXPSPACE 



 One reason for high complexity: 
Operators can be modified as n increases 
 Suppose operators are fixed / given in advance! 

▪ They are not part of the problem statement, cannot be changed 

▪ We can only increase n by changing the problem instance: 
objects, initial state and goal 

 For the classical representation: 
 Arbitrary classical problem: 

▪ EXPSPACE-complete  PSPACE 

 Only positive effects: 

▪ NEXPTIME-complete  NP or NP-complete, depending on the operators 

 Only positive effects, only positive preconditions: 

▪ EXPTIME-complete  P 

 

NLOGSPACE 
  P 
  NP 
  PSPACE 
  EXPTIME 
  NEXPTIME 
  EXPSPACE 

These results are generally more relevant! 
We are usually interested in what happens with more objects, 

not if we change operators in the “worst” way possible 



 Note: This complexity applies to the worst case 
 We saw that restricting the set of problems 

gives us tighter time bounds 

Handle all planning problem statements for 
the standard blocks world 

 P (polynomial time given an optimal algorithm) 

Handle all planning problem statements in the classical representation 
that only have positive effects and positive preconditions 

 EXPTIME-complete 

Handle all planning problem statements in the classical representation 
(with pos+neg effects and pos+neg preconditions) 

 EXPSPACE-complete 


