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 Propositional satisfiability (SAT): 
 Let φ be a propositional formula 

▪ For example, →  → 

 Is there a solution: 
An assignment of truth values to all propositions that satisfies φ? 

 

φ Solutions: 3 Assignments: 8 



 SAT: The first problem ever proven NP-complete! 
 A great deal of research in efficient algorithms 

(exponential in the worst case, 
but efficient for many “real” problems) 

 

Let’s try to translate planning problems into SAT! 
Make use of all these efficient algorithms… 



 Very simple planning domain 
 Types:  –  and  are subtypes of  

   – 

 two predicates: – 
– 

 first operator: 

▪ precond: 

▪ effects:   

 second operator: 

▪ precond: 

▪ effects:   

 Corresponding problem instance:
 one robot: 

one box:  
two locations: 





 Key idea: Each SAT assignment should correspond to… 
 A specific action sequence 

 A specific state sequence 

Assignments 

"Action propositions": 
Which actions are 

executed, and when? 

”Fact propositions": 
Which facts are true, 

and when? 



 Each SAT solution should correspond to a solution plan 
 Requires a very complex formula φ 

related to initial state, goal, actions, … 

φ

"Action propositions": 
Which actions are 

executed, and when? 

”Fact propositions": 
Which facts are true, 

and when? 

Solutions 

Seq. plan! 

Seq. plan! 





 SAT solvers require propositional input 
 Not first-order: No variables, no parameters, no objects 

 

 In planning, each type has a finite and known set of values 
  Each predicate has a finite and known set of instances 

  Can define a simple mapping 

  All parameters and variables disappear! 

 Convert all first-order atoms to propositions 

▪ A first-order atom: 

▪ Becomes a proposition: 

 Instantiate all operators to -param actions 

▪ A first-order operator:  

▪ Becomes many actions: 

Similar to the 
set-theoretic 

classical representation 
 

Looks as if we 
still have parameters… 

 
To the solver, 

 could as well 
be called ! 



 But planning involves multiple states! 
 Ordinary planners handle this implicitly 

▪ We just say ” ” 

▪ The planner keeps track of which state we mean 

▪ Example: Forward-chaining 

 

 

 

 

 

We specify the atoms… 
 
 
The planner keeps track 
of distinct states 



 SAT solvers have no concept of separate states! 

▪ Each assignment must correspond to an entire state sequence 

▪ In the translation, 
create one fact proposition for each fact and state 
and one action proposition for each action and "plan step" 
 



 Now we can view a sequence of states as a single assignment 

SAT assignment 

propositions for each timepoint 
possible assignments for each timepoint 

 possible assignments in total, 
where n = number of actions 





 Observation: 
 Our example problem has 5 atoms 

▪

▪

 Each SAT assignment should contain… 

▪ The truth value of each atom in each state 

▪ With n states, we need 5*n propositions 

▪ What is the value of n? 



 But we don't know in advance how long a solution will be! 
 Planners must handle action sequences of varying length 

▪ Forward-chaining example: 

0 actions, 
1 state 

1 action, 
2 states 

2 actions, 
3 states 

1 action, 
2 states 

New states are "allocated" 
by the planning algorithm 

as needed 
 

 Many "copies" of on(A,B), 
one for each state 



 Each SAT problem has a fixed number of propositions 
  Can't expand "storage" indefinitely, as forward state space planners do 

 

 Solution: Use the SAT solver for bounded planning! 

A solution to the bounded planning problem (P,n) 

is a solution of length n 

to the classical planning problem P 



 Use a form of iterative deepening search 

Classical problem P 

SAT instance  
for plan length i 

Translate (P,i) 

Fast SAT solver 

SAT solution 

Reverse Translator 

Plan 

Loop for i = 0, 1, … 

if  is satisfiable, 
we get an assignment of truth 
values satisfying   
 analyze it to see which 
actions should be part of the 
corresponding plan 
 return the solution plan no solution 

of length i exists 

{ solutions to P } = 
{ solutions to (P,i) | i ∈ ℕ } 



 Remaining problem to solve: 
 Using propositional satisfiability 

to find a plan with exactly n actions and n+1 states 

 

1. Finding executable action sequences with exactly n actions 

 

2. Finding solutions among the executable action sequences 

 

 

 





 At this point, we have no formulas! 
 Every SAT assignment is a solution… 

 

Time 0 Time 1 Time n 

Fact 
propo-
sitions 

32 combinations of 
possible values 

32^(n+1) combinations of possible values, 
each of which is a SAT solution 

Let us view an assignment as "state-based", 
even though the SAT solver only sees a single set of propositions… 

32 combinations of 
possible values 

32 combinations of 
possible values 





 We begin by defining the initial state 
 Notation: 

▪ L = { all atoms in the problem instance } 

▪ s0 = { atoms that are true in the initial state }   (classical initial state) 

 For the example: 

▪ L = { } 

▪ s0 = { } 

▪ Formula: 
 

   



 General formula: 

▪⋀ { atom0 | atom  s0}  

⋀ {atom0  | atom  L – s0 } 

 

Propositions at time zero! 

 If l is a literal, 
then li is the corresponding 
proposition for state si 

 If l = 
then l  =  

Negative facts must be included: 
SAT solvers do not assume 

what is ”missing” must be false 



 Now only assignments satisfying the initial state formula 
are solutions 

Time 0 Time 1 Time n 

Fact 
propo-
sitions 

Completely defined 
by the formula 

32^n combinations of possible values, 
each of which is a SAT solution 

32 combinations of 
possible values 

32 combinations of 
possible values 



 Satisfiability has no concept of “finding actions”! 
 Solution: Use additional propositions to encode 

whether a specific action is executed at a specific timepoint or not 

▪  is true iff is executed at time 0

▪  is true iff is executed at time 1

▪

▪ … 

▪

 

 The SAT solver will assign values to these propositions 

▪ This determines which actions are executed, and when 

No action proposition for n! 



move-rob1-loc1-loc1-0 

move-rob1-loc1-loc2-0 

move-rob1-loc2-loc1-0 

move-rob1-loc2-loc2-0 

pickup-rob1-box1-l1-0 

pickup-rob1-box1-l2-0 

move-rob1-loc1-loc1-1 

move-rob1-loc1-loc2-1 

move-rob1-loc2-loc1-1 

move-rob1-loc2-loc2-1 

pickup-rob1-box1-l1-1 

pickup-rob1-box1-l2-1 

Action 
propo-
sitions 

Time 0 Time 1 Time n 

Fact 
propo-
sitions 

Completely defined 32 combinations 32 combinations 

64 combinations 64 combinations 





 We are considering sequential planning 
 Ensured through a complete exclusion axiom: 

▪ No pair of actions can be executed at any timepoint 

▪  For all actions a and b and for all timepoints i<n, we require  ai    bi 

 

 For the example, with n=1: 

▪   

▪

 



move-rob1-loc1-loc1-0 

move-rob1-loc1-loc2-0 

move-rob1-loc2-loc1-0 

move-rob1-loc2-loc2-0 

pickup-rob1-box1-l1-0 

pickup-rob1-box1-l2-0 

move-rob1-loc1-loc1-1 

move-rob1-loc1-loc2-1 

move-rob1-loc2-loc1-1 

move-rob1-loc2-loc2-1 

pickup-rob1-box1-l1-1 

pickup-rob1-box1-l2-1 

Action 
propo-
sitions 

Time 0 Time 1 Time n 

Fact 
propo-
sitions 

Completely defined 32 combinations 32 combinations 

7 alternatives 7 alternatives 

Now we need formulas to relate these propositions to each other! 





 For every action a and every timepoint i < n: 
 If the precondition of a is not true in state i, 

then a cannot be executed at step i 

▪ precond(a) false in state i  a not executed in step i 

▪ Logically equivalent: 
a executed in step i  precond(a) true in state i 

 

 Formula: 

▪ ai     ⋀ { pi  | p  precond(a)} 

 

 There are SAT assignments where: 

▪ precond(a) is false in state i 

▪ a is executed in step i 

 But these assignments do not satisfy all formulas 
 are not solutions 





 For every action a and every timepoint i < n: 
 If a is executed at step i, 

then the effects of a must be true in state i+1 

 

 Formula: 

▪ ai     ⋀ { ei+1  | e  effects(a)} 

 





 For the move action, with n=2 (plans of length 2): 

 move-rob1-loc1-loc2-0  at-rob1-loc1-0  at-rob1-loc2-1  at-rob1-loc1-1 

move-rob1-loc2-loc1-0  at-rob1-loc2-0  at-rob1-loc1-1  at-rob1-loc2-1 

move-rob1-loc1-loc1-0  at-rob1-loc1-0  at-rob1-loc1-1  at-rob1-loc1-1 

move-rob1-loc2-loc2-0  at-rob1-loc2-0  at-rob1-loc2-1  at-rob1-loc2-1 

move-rob1-loc1-loc2-1  at-rob1-loc1-1  at-rob1-loc2-2  at-rob1-loc1-2 

move-rob1-loc2-loc1-1  at-rob1-loc2-1  at-rob1-loc1-2  at-rob1-loc2-2 

move-rob1-loc1-loc1-1  at-rob1-loc1-1  at-rob1-loc1-2  at-rob1-loc1-2 

move-rob1-loc2-loc2-1  at-rob1-loc2-1  at-rob1-loc2-2  at-rob1-loc2-2 

 

 Formulas marked with “***” have inconsistent consequences 
 Formula 3 equivalent to  , etc. 

 

 

ai     ⋀ {pi  | p  precond(a)}  ⋀ {ei+1  |  e  effects(a)} 

action precond effects 

time 
0—1 

time 
1—2 

*** 

*** 



Specified by 
initial state 

move-rob1-loc1-loc1-0 

move-rob1-loc1-loc2-0 

move-rob1-loc2-loc1-0 

move-rob1-loc2-loc2-0 

pickup-rob1-box1-l1-0 

pickup-rob1-box1-l2-0 

Action 
propo-
sitions 

Time 0 Time 1 

Fact 
propo-
sitions 





   

 

 



 Again: The SAT solver has no notion of states or "unchanged" 
 We must explicitly say that unaffected propositions remain the same 

 We need frame axioms 

 

 For example, explanatory frame axioms 
 

   

  

 

 



 

If there is a change… …there must be a cause. 



 Explanatory frame axioms: 
 One formula for every atom l and every timepoint i < n 

 If l changes to true between si and si+1,  
then the action at step i must be responsible: 
     

     

In general there may 
be more than one 
possible cause  

a disjunction 
to the right of  

 

Example:  
 

   



Specified by 
initial state 

move-rob1-loc1-loc1-0 

move-rob1-loc1-loc2-0 

move-rob1-loc2-loc1-0 

move-rob1-loc2-loc2-0 

pickup-rob1-box1-l1-0 

pickup-rob1-box1-l2-0 

move-rob1-loc1-loc1-1 

move-rob1-loc1-loc2-1 

move-rob1-loc2-loc1-1 

move-rob1-loc2-loc2-1 

pickup-rob1-box1-l1-1 

pickup-rob1-box1-l2-1 

Action 
propo-
sitions 

Time 0 Time 1 Time n 

Exclusion: At most 
one true 

Exclusion: At most 
one true 

Fact 
propo-
sitions 





 If we use the current encoding for the problem (P,n): 
 We have one SAT solution 

for every executable action sequence of length n 

▪ Some of these may satisfy the goal 

▪ Some of them may not 

 

 We want one SAT solution 
for every solution plan of length n 

▪ Should keep only those SAT solutions 
where the final state satisfies the goal 



 Suppose you have  SAT solutions for the current formulas 

 Each one corresponds to an executable action sequence 

 

move-rob1-loc1-loc1-0 

move-rob1-loc1-loc2-0 

move-rob1-loc2-loc1-0 

move-rob1-loc2-loc2-0 

pickup-rob1-box1-l1-0 

pickup-rob1-box1-l2-0 

move-rob1-loc1-loc1-1 

move-rob1-loc1-loc2-1 

move-rob1-loc2-loc1-1 

move-rob1-loc2-loc2-1 

pickup-rob1-box1-l1-1 

pickup-rob1-box1-l2-1 

move-rob1-loc1-loc1-0 

move-rob1-loc1-loc2-0 

move-rob1-loc2-loc1-0 

move-rob1-loc2-loc2-0 

pickup-rob1-box1-l1-0 

pickup-rob1-box1-l2-0 

move-rob1-loc1-loc1-1 

move-rob1-loc1-loc2-1 

move-rob1-loc2-loc1-1 

move-rob1-loc2-loc2-1 

pickup-rob1-box1-l1-1 

pickup-rob1-box1-l2-1 

move-rob1-loc1-loc1-0 

move-rob1-loc1-loc2-0 

move-rob1-loc2-loc1-0 

move-rob1-loc2-loc2-0 

pickup-rob1-box1-l1-0 

pickup-rob1-box1-l2-0 

move-rob1-loc1-loc1-1 

move-rob1-loc1-loc2-1 

move-rob1-loc2-loc1-1 

move-rob1-loc2-loc2-1 

pickup-rob1-box1-l1-1 

pickup-rob1-box1-l2-1 

move-rob1-loc1-loc1-0 

move-rob1-loc1-loc2-0 

move-rob1-loc2-loc1-0 

move-rob1-loc2-loc2-0 

pickup-rob1-box1-l1-0 

pickup-rob1-box1-l2-0 

move-rob1-loc1-loc1-1 

move-rob1-loc1-loc2-1 

move-rob1-loc2-loc1-1 

move-rob1-loc2-loc2-1 

pickup-rob1-box1-l1-1 

pickup-rob1-box1-l2-1 



 If we allowed nondeterministic actions, incomplete states 
 One plan could lead to many different outcomes 

▪ Many SAT solutions with the same plan 

▪ Generate all solutions, group them – check if all outcomes satisfy the goal 

 

move-rob1-loc1-loc1-0 

move-rob1-loc1-loc2-0 

move-rob1-loc2-loc1-0 

move-rob1-loc2-loc2-0 

pickup-rob1-box1-l1-0 

pickup-rob1-box1-l2-0 

move-rob1-loc1-loc1-1 

move-rob1-loc1-loc2-1 

move-rob1-loc2-loc1-1 

move-rob1-loc2-loc2-1 

pickup-rob1-box1-l1-1 

pickup-rob1-box1-l2-1 

move-rob1-loc1-loc1-0 

move-rob1-loc1-loc2-0 

move-rob1-loc2-loc1-0 

move-rob1-loc2-loc2-0 

pickup-rob1-box1-l1-0 

pickup-rob1-box1-l2-0 

move-rob1-loc1-loc1-1 

move-rob1-loc1-loc2-1 

move-rob1-loc2-loc1-1 

move-rob1-loc2-loc2-1 

pickup-rob1-box1-l1-1 

pickup-rob1-box1-l2-1 

move-rob1-loc1-loc1-0 

move-rob1-loc1-loc2-0 

move-rob1-loc2-loc1-0 

move-rob1-loc2-loc2-0 

pickup-rob1-box1-l1-0 

pickup-rob1-box1-l2-0 

move-rob1-loc1-loc1-1 

move-rob1-loc1-loc2-1 

move-rob1-loc2-loc1-1 

move-rob1-loc2-loc2-1 

pickup-rob1-box1-l1-1 

pickup-rob1-box1-l2-1 

move-rob1-loc1-loc1-0 

move-rob1-loc1-loc2-0 

move-rob1-loc2-loc1-0 

move-rob1-loc2-loc2-0 

pickup-rob1-box1-l1-0 

pickup-rob1-box1-l2-0 

move-rob1-loc1-loc1-1 

move-rob1-loc1-loc2-1 

move-rob1-loc2-loc1-1 

move-rob1-loc2-loc2-1 

pickup-rob1-box1-l1-1 

pickup-rob1-box1-l2-1 

Same 
plan, 
many 
out-

comes 

Same 
plan, 
many 
out-

comes 



 In deterministic planning: 
 Given an initial state and an assignment to action propositions, 

all other states are uniquely defined, including the goal state 

move-rob1-loc1-loc1-0 

move-rob1-loc1-loc2-0 

move-rob1-loc2-loc1-0 

move-rob1-loc2-loc2-0 

pickup-rob1-box1-l1-0 

pickup-rob1-box1-l2-0 

move-rob1-loc1-loc1-1 

move-rob1-loc1-loc2-1 

move-rob1-loc2-loc1-1 

move-rob1-loc2-loc2-1 

pickup-rob1-box1-l1-1 

pickup-rob1-box1-l2-1 



 Given determinism: 
 Each SAT solution  

must correspond to a different executable action sequence 

 

move-rob1-loc1-loc1-0 

move-rob1-loc1-loc2-0 

move-rob1-loc2-loc1-0 

move-rob1-loc2-loc2-0 

pickup-rob1-box1-l1-0 

pickup-rob1-box1-l2-0 

move-rob1-loc1-loc1-1 

move-rob1-loc1-loc2-1 

move-rob1-loc2-loc1-1 

move-rob1-loc2-loc2-1 

pickup-rob1-box1-l1-1 

pickup-rob1-box1-l2-1 

move-rob1-loc1-loc1-0 

move-rob1-loc1-loc2-0 

move-rob1-loc2-loc1-0 

move-rob1-loc2-loc2-0 

pickup-rob1-box1-l1-0 

pickup-rob1-box1-l2-0 

move-rob1-loc1-loc1-1 

move-rob1-loc1-loc2-1 

move-rob1-loc2-loc1-1 

move-rob1-loc2-loc2-1 

pickup-rob1-box1-l1-1 

pickup-rob1-box1-l2-1 

move-rob1-loc1-loc1-0 

move-rob1-loc1-loc2-0 

move-rob1-loc2-loc1-0 

move-rob1-loc2-loc2-0 

pickup-rob1-box1-l1-0 

pickup-rob1-box1-l2-0 

move-rob1-loc1-loc1-1 

move-rob1-loc1-loc2-1 

move-rob1-loc2-loc1-1 

move-rob1-loc2-loc2-1 

pickup-rob1-box1-l1-1 

pickup-rob1-box1-l2-1 

move-rob1-loc1-loc1-0 

move-rob1-loc1-loc2-0 

move-rob1-loc2-loc1-0 

move-rob1-loc2-loc2-0 

pickup-rob1-box1-l1-0 

pickup-rob1-box1-l2-0 

move-rob1-loc1-loc1-1 

move-rob1-loc1-loc2-1 

move-rob1-loc2-loc1-1 

move-rob1-loc2-loc2-1 

pickup-rob1-box1-l1-1 

pickup-rob1-box1-l2-1 



 Remove those where the last state does not satisfy the goal 
  All of the remaining ones correspond to solution plans 

move-rob1-loc1-loc1-0 

move-rob1-loc1-loc2-0 

move-rob1-loc2-loc1-0 

move-rob1-loc2-loc2-0 

pickup-rob1-box1-l1-0 

pickup-rob1-box1-l2-0 

move-rob1-loc1-loc1-1 

move-rob1-loc1-loc2-1 

move-rob1-loc2-loc1-1 

move-rob1-loc2-loc2-1 

pickup-rob1-box1-l1-1 

pickup-rob1-box1-l2-1 

move-rob1-loc1-loc1-0 

move-rob1-loc1-loc2-0 

move-rob1-loc2-loc1-0 

move-rob1-loc2-loc2-0 

pickup-rob1-box1-l1-0 

pickup-rob1-box1-l2-0 

move-rob1-loc1-loc1-1 

move-rob1-loc1-loc2-1 

move-rob1-loc2-loc1-1 

move-rob1-loc2-loc2-1 

pickup-rob1-box1-l1-1 

pickup-rob1-box1-l2-1 

move-rob1-loc1-loc1-0 

move-rob1-loc1-loc2-0 

move-rob1-loc2-loc1-0 

move-rob1-loc2-loc2-0 

pickup-rob1-box1-l1-0 

pickup-rob1-box1-l2-0 

move-rob1-loc1-loc1-1 

move-rob1-loc1-loc2-1 

move-rob1-loc2-loc1-1 

move-rob1-loc2-loc2-1 

pickup-rob1-box1-l1-1 

pickup-rob1-box1-l2-1 

move-rob1-loc1-loc1-0 

move-rob1-loc1-loc2-0 

move-rob1-loc2-loc1-0 

move-rob1-loc2-loc2-0 

pickup-rob1-box1-l1-0 

pickup-rob1-box1-l2-0 

move-rob1-loc1-loc1-1 

move-rob1-loc1-loc2-1 

move-rob1-loc2-loc1-1 

move-rob1-loc2-loc2-1 

pickup-rob1-box1-l1-1 

pickup-rob1-box1-l2-1 





 Therefore we can keep all solutions satisfying the goal: 
 Simply by claiming that the goal formula is true 

 ⋀{litn  | lit  g+}   
⋀{litn  |  lit  g–}, 
where n is intended length of the plan (must hold at the end!) 

 

 For the example: 
 If we are searching for plans of length 1: 

Goal:  { } 

 Encoding: 

 If we are searching for plans of length 5: 
Goal:  { } 

 Encoding:  

 



Specified by 
initial state 

Constrained (partly) 
by goal 

move-rob1-loc1-loc1-0 

move-rob1-loc1-loc2-0 

move-rob1-loc2-loc1-0 

move-rob1-loc2-loc2-0 

pickup-rob1-box1-l1-0 

pickup-rob1-box1-l2-0 

move-rob1-loc1-loc1-1 

move-rob1-loc1-loc2-1 

move-rob1-loc2-loc1-1 

move-rob1-loc2-loc2-1 

pickup-rob1-box1-l1-1 

pickup-rob1-box1-l2-1 

Action 
propo-
sitions 

Time 0 Time 1 Time n 

Fact 
propo-
sitions 





at-rob1-loc1-0 

at-rob1-loc2-0 

at-box1-loc1-0 

at-box1-loc2-0 

carrying-rob1-box1-0 

 

move-rob1-loc1-loc1-0 

move-rob1-loc1-loc2-0 

move-rob1-loc2-loc1-0 

move-rob1-loc2-loc2-0 

pickup-rob1-box1-l1-0 

pickup-rob1-box1-l2-0 

 

at-rob1-loc1-1 

at-rob1-loc2-1 

at-box1-loc1-1 

at-box1-loc2-1 

carrying-rob1-box1-1 

true 

false 

true 

false 

false 

 

false 

true 

 

 

 

 

true 

Initial state 


 

  
…

Action axioms 
 







 

Try =true  contradiction in effects 

Try =true  seems OK so far 

Goal 



at-rob1-loc1-0 

at-rob1-loc2-0 

at-box1-loc1-0 

at-box1-loc2-0 

carrying-rob1-box1-0 

 

move-rob1-loc1-loc1-0 

move-rob1-loc1-loc2-0 

move-rob1-loc2-loc1-0 

move-rob1-loc2-loc2-0 

pickup-rob1-box1-l1-0 

pickup-rob1-box1-l2-0 

 

at-rob1-loc1-1 
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 What’s the advantage? 
 SAT solvers can have far more sophisticated search strategies 

 SAT solvers can propagate constraints ”in any direction” 
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

 SAT planning can be used to generate concurrent plans 
 The solver can make many action fluents true at the same time step, 

without making the model inconsistent 
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Action 
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Several of these can be true! 

Fact 
propo-
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

 Be very careful about semantics + constraints on concurrency! 
 If both and are true, 

then both at-rob1-loc1-0  at-rob1-loc2-1  at-rob1-loc1-1 
and at-rob1-loc1-0  at-rob1-loc3-1  at-rob1-loc1-1 must be true 

 Equivalent to at-rob1-loc1-0  at-rob1-loc2-1  at-rob1-loc3-1  at-rob1-loc1-1 

 This is logically consistent 
but results in a plan where we are at two places at the same time 

 

 We must tell the SAT solver that this is not intended! 
 Not covered in this course 

 





 Suppose we have 4 robots, 10 locations 
 Current action representation: move(robot, from, to) 

▪ 4*10*10 = 400 instances = 400 propositions for the SAT solver to handle 
(per step in the plan!) 

 One alternative representation (others in the book!): 

▪ move(robot): 4 propositions 

▪ movefrom(from): 10 propositions 

▪ moveto(to): 10 propositions 

▪ Total: 24 propositions 

 Requires different axiom encodings! 

 

 Many other improvements have been made 
 But we’re focusing on the primary ideas behind SAT planning 

 



 SAT planning has several similarities to GraphPlan 
 Both frameworks use iterative deepening 

 Both have two phases 

▪ Creating a specific representation, and then searching it 

▪ GraphPlan: Create a plan graph, then regression search 

▪ SAT planning: Create a set of clauses, then apply a SAT solver’s search alg. 



 Idea behind BlackBox planner 

 Uses the GraphPlan version of parallel plans: Sequence of sets of actions 

 Requires a different encoding, but the same basic ideas apply 

 
 

Classical problem P 

SAT instance  
corresponding to 

plan graph 

Expand plan graph 
to level i 

Fast SAT solver 

SAT solution 

Reverse Translator 

Plan 

Loop for i = 0, 1, … 

• Fewer actions to consider 
at each step – only those 
in the plan graph 

• Stronger constraints, 
such as mutexes 

• Greater opportunities to 
quickly find inapplicable 
actions 



 Performance of BlackBox / SATplan in planning competitions: 
 1998-2002: Satisficing planning (find any plan) 

▪ 1998: Competitive 

▪ 2000: Other planners had improved 

▪ 2002: Did not participate 

 2004-2011: Optimizing planning (find the shortest plan) 

▪ 2004: First place 

▪ 2006: Tied for first place with MAXPLAN, a variant of SATplan 

▪ 2008: Did not participate 

▪ 2011: Did not participate 

 Small change in modeling + huge improvements in SAT solvers! 

 


