
Jonas Kvarnström

Automated Planning Group

Department of Computer and Information Science

Linköping University

 Propositional satisfiability (SAT):
 Let φ be a propositional formula

▪ For example, → →

 Is there a solution:
An assignment of truth values to all propositions that satisfies φ?

φ Solutions: 3 Assignments: 8

 SAT: The first problem ever proven NP-complete!
 A great deal of research in efficient algorithms

(exponential in the worst case,
but efficient for many “real” problems)

Let’s try to translate planning problems into SAT!
Make use of all these efficient algorithms…

 Very simple planning domain
 Types: – and are subtypes of

 –

 two predicates: –
–

 first operator:

▪ precond:

▪ effects:

 second operator:

▪ precond:

▪ effects:

 Corresponding problem instance:
 one robot:

one box:
two locations:

 Key idea: Each SAT assignment should correspond to…
 A specific action sequence

 A specific state sequence

Assignments

"Action propositions":
Which actions are

executed, and when?

”Fact propositions":
Which facts are true,

and when?

 Each SAT solution should correspond to a solution plan
 Requires a very complex formula φ

related to initial state, goal, actions, …

φ

"Action propositions":
Which actions are

executed, and when?

”Fact propositions":
Which facts are true,

and when?

Solutions

Seq. plan!

Seq. plan!

 SAT solvers require propositional input
 Not first-order: No variables, no parameters, no objects

 In planning, each type has a finite and known set of values
 Each predicate has a finite and known set of instances

 Can define a simple mapping

 All parameters and variables disappear!

 Convert all first-order atoms to propositions

▪ A first-order atom:

▪ Becomes a proposition:

 Instantiate all operators to -param actions

▪ A first-order operator:

▪ Becomes many actions:

Similar to the
set-theoretic

classical representation

Looks as if we
still have parameters…

To the solver,

 could as well
be called !

 But planning involves multiple states!
 Ordinary planners handle this implicitly

▪ We just say ” ”

▪ The planner keeps track of which state we mean

▪ Example: Forward-chaining

We specify the atoms…

The planner keeps track
of distinct states

 SAT solvers have no concept of separate states!

▪ Each assignment must correspond to an entire state sequence

▪ In the translation,
create one fact proposition for each fact and state
and one action proposition for each action and "plan step"

 Now we can view a sequence of states as a single assignment

SAT assignment

propositions for each timepoint
possible assignments for each timepoint

 possible assignments in total,
where n = number of actions

 Observation:
 Our example problem has 5 atoms

▪

▪

 Each SAT assignment should contain…

▪ The truth value of each atom in each state

▪ With n states, we need 5*n propositions

▪ What is the value of n?

 But we don't know in advance how long a solution will be!
 Planners must handle action sequences of varying length

▪ Forward-chaining example:

0 actions,
1 state

1 action,
2 states

2 actions,
3 states

1 action,
2 states

New states are "allocated"
by the planning algorithm

as needed

 Many "copies" of on(A,B),
one for each state

 Each SAT problem has a fixed number of propositions
 Can't expand "storage" indefinitely, as forward state space planners do

 Solution: Use the SAT solver for bounded planning!

A solution to the bounded planning problem (P,n)

is a solution of length n

to the classical planning problem P

 Use a form of iterative deepening search

Classical problem P

SAT instance
for plan length i

Translate (P,i)

Fast SAT solver

SAT solution

Reverse Translator

Plan

Loop for i = 0, 1, …

if is satisfiable,
we get an assignment of truth
values satisfying
 analyze it to see which
actions should be part of the
corresponding plan
 return the solution plan no solution

of length i exists

{ solutions to P } =
{ solutions to (P,i) | i ∈ ℕ }

 Remaining problem to solve:
 Using propositional satisfiability

to find a plan with exactly n actions and n+1 states

1. Finding executable action sequences with exactly n actions

2. Finding solutions among the executable action sequences

 At this point, we have no formulas!
 Every SAT assignment is a solution…

Time 0 Time 1 Time n

Fact
propo-
sitions

32 combinations of
possible values

32^(n+1) combinations of possible values,
each of which is a SAT solution

Let us view an assignment as "state-based",
even though the SAT solver only sees a single set of propositions…

32 combinations of
possible values

32 combinations of
possible values

 We begin by defining the initial state
 Notation:

▪ L = { all atoms in the problem instance }

▪ s0 = { atoms that are true in the initial state } (classical initial state)

 For the example:

▪ L = { }

▪ s0 = { }

▪ Formula:

 General formula:

▪⋀ { atom0 | atom s0}

⋀ {atom0 | atom L – s0 }

Propositions at time zero!

 If l is a literal,
then li is the corresponding
proposition for state si

 If l =
then l =

Negative facts must be included:
SAT solvers do not assume

what is ”missing” must be false

 Now only assignments satisfying the initial state formula
are solutions

Time 0 Time 1 Time n

Fact
propo-
sitions

Completely defined
by the formula

32^n combinations of possible values,
each of which is a SAT solution

32 combinations of
possible values

32 combinations of
possible values

 Satisfiability has no concept of “finding actions”!
 Solution: Use additional propositions to encode

whether a specific action is executed at a specific timepoint or not

▪ is true iff is executed at time 0

▪ is true iff is executed at time 1

▪

▪ …

▪

 The SAT solver will assign values to these propositions

▪ This determines which actions are executed, and when

No action proposition for n!

move-rob1-loc1-loc1-0

move-rob1-loc1-loc2-0

move-rob1-loc2-loc1-0

move-rob1-loc2-loc2-0

pickup-rob1-box1-l1-0

pickup-rob1-box1-l2-0

move-rob1-loc1-loc1-1

move-rob1-loc1-loc2-1

move-rob1-loc2-loc1-1

move-rob1-loc2-loc2-1

pickup-rob1-box1-l1-1

pickup-rob1-box1-l2-1

Action
propo-
sitions

Time 0 Time 1 Time n

Fact
propo-
sitions

Completely defined 32 combinations 32 combinations

64 combinations 64 combinations

 We are considering sequential planning
 Ensured through a complete exclusion axiom:

▪ No pair of actions can be executed at any timepoint

▪ For all actions a and b and for all timepoints i<n, we require ai bi

 For the example, with n=1:

▪

▪

move-rob1-loc1-loc1-0

move-rob1-loc1-loc2-0

move-rob1-loc2-loc1-0

move-rob1-loc2-loc2-0

pickup-rob1-box1-l1-0

pickup-rob1-box1-l2-0

move-rob1-loc1-loc1-1

move-rob1-loc1-loc2-1

move-rob1-loc2-loc1-1

move-rob1-loc2-loc2-1

pickup-rob1-box1-l1-1

pickup-rob1-box1-l2-1

Action
propo-
sitions

Time 0 Time 1 Time n

Fact
propo-
sitions

Completely defined 32 combinations 32 combinations

7 alternatives 7 alternatives

Now we need formulas to relate these propositions to each other!

 For every action a and every timepoint i < n:
 If the precondition of a is not true in state i,

then a cannot be executed at step i

▪ precond(a) false in state i a not executed in step i

▪ Logically equivalent:
a executed in step i precond(a) true in state i

 Formula:

▪ ai ⋀ { pi | p precond(a)}

 There are SAT assignments where:

▪ precond(a) is false in state i

▪ a is executed in step i

 But these assignments do not satisfy all formulas
 are not solutions

 For every action a and every timepoint i < n:
 If a is executed at step i,

then the effects of a must be true in state i+1

 Formula:

▪ ai ⋀ { ei+1 | e effects(a)}

 For the move action, with n=2 (plans of length 2):

 move-rob1-loc1-loc2-0 at-rob1-loc1-0 at-rob1-loc2-1 at-rob1-loc1-1

move-rob1-loc2-loc1-0 at-rob1-loc2-0 at-rob1-loc1-1 at-rob1-loc2-1

move-rob1-loc1-loc1-0 at-rob1-loc1-0 at-rob1-loc1-1 at-rob1-loc1-1

move-rob1-loc2-loc2-0 at-rob1-loc2-0 at-rob1-loc2-1 at-rob1-loc2-1

move-rob1-loc1-loc2-1 at-rob1-loc1-1 at-rob1-loc2-2 at-rob1-loc1-2

move-rob1-loc2-loc1-1 at-rob1-loc2-1 at-rob1-loc1-2 at-rob1-loc2-2

move-rob1-loc1-loc1-1 at-rob1-loc1-1 at-rob1-loc1-2 at-rob1-loc1-2

move-rob1-loc2-loc2-1 at-rob1-loc2-1 at-rob1-loc2-2 at-rob1-loc2-2

 Formulas marked with “***” have inconsistent consequences
 Formula 3 equivalent to , etc.

ai ⋀ {pi | p precond(a)} ⋀ {ei+1 | e effects(a)}

action precond effects

time
0—1

time
1—2

Specified by
initial state

move-rob1-loc1-loc1-0

move-rob1-loc1-loc2-0

move-rob1-loc2-loc1-0

move-rob1-loc2-loc2-0

pickup-rob1-box1-l1-0

pickup-rob1-box1-l2-0

Action
propo-
sitions

Time 0 Time 1

Fact
propo-
sitions

 Again: The SAT solver has no notion of states or "unchanged"
 We must explicitly say that unaffected propositions remain the same

 We need frame axioms

 For example, explanatory frame axioms

If there is a change… …there must be a cause.

 Explanatory frame axioms:
 One formula for every atom l and every timepoint i < n

 If l changes to true between si and si+1,
then the action at step i must be responsible:

In general there may
be more than one
possible cause

a disjunction
to the right of

Example:

Specified by
initial state

move-rob1-loc1-loc1-0

move-rob1-loc1-loc2-0

move-rob1-loc2-loc1-0

move-rob1-loc2-loc2-0

pickup-rob1-box1-l1-0

pickup-rob1-box1-l2-0

move-rob1-loc1-loc1-1

move-rob1-loc1-loc2-1

move-rob1-loc2-loc1-1

move-rob1-loc2-loc2-1

pickup-rob1-box1-l1-1

pickup-rob1-box1-l2-1

Action
propo-
sitions

Time 0 Time 1 Time n

Exclusion: At most
one true

Exclusion: At most
one true

Fact
propo-
sitions

 If we use the current encoding for the problem (P,n):
 We have one SAT solution

for every executable action sequence of length n

▪ Some of these may satisfy the goal

▪ Some of them may not

 We want one SAT solution
for every solution plan of length n

▪ Should keep only those SAT solutions
where the final state satisfies the goal

 Suppose you have SAT solutions for the current formulas

 Each one corresponds to an executable action sequence

move-rob1-loc1-loc1-0

move-rob1-loc1-loc2-0

move-rob1-loc2-loc1-0

move-rob1-loc2-loc2-0

pickup-rob1-box1-l1-0

pickup-rob1-box1-l2-0

move-rob1-loc1-loc1-1

move-rob1-loc1-loc2-1

move-rob1-loc2-loc1-1

move-rob1-loc2-loc2-1

pickup-rob1-box1-l1-1

pickup-rob1-box1-l2-1

move-rob1-loc1-loc1-0

move-rob1-loc1-loc2-0

move-rob1-loc2-loc1-0

move-rob1-loc2-loc2-0

pickup-rob1-box1-l1-0

pickup-rob1-box1-l2-0

move-rob1-loc1-loc1-1

move-rob1-loc1-loc2-1

move-rob1-loc2-loc1-1

move-rob1-loc2-loc2-1

pickup-rob1-box1-l1-1

pickup-rob1-box1-l2-1

move-rob1-loc1-loc1-0

move-rob1-loc1-loc2-0

move-rob1-loc2-loc1-0

move-rob1-loc2-loc2-0

pickup-rob1-box1-l1-0

pickup-rob1-box1-l2-0

move-rob1-loc1-loc1-1

move-rob1-loc1-loc2-1

move-rob1-loc2-loc1-1

move-rob1-loc2-loc2-1

pickup-rob1-box1-l1-1

pickup-rob1-box1-l2-1

move-rob1-loc1-loc1-0

move-rob1-loc1-loc2-0

move-rob1-loc2-loc1-0

move-rob1-loc2-loc2-0

pickup-rob1-box1-l1-0

pickup-rob1-box1-l2-0

move-rob1-loc1-loc1-1

move-rob1-loc1-loc2-1

move-rob1-loc2-loc1-1

move-rob1-loc2-loc2-1

pickup-rob1-box1-l1-1

pickup-rob1-box1-l2-1

 If we allowed nondeterministic actions, incomplete states
 One plan could lead to many different outcomes

▪ Many SAT solutions with the same plan

▪ Generate all solutions, group them – check if all outcomes satisfy the goal

move-rob1-loc1-loc1-0

move-rob1-loc1-loc2-0

move-rob1-loc2-loc1-0

move-rob1-loc2-loc2-0

pickup-rob1-box1-l1-0

pickup-rob1-box1-l2-0

move-rob1-loc1-loc1-1

move-rob1-loc1-loc2-1

move-rob1-loc2-loc1-1

move-rob1-loc2-loc2-1

pickup-rob1-box1-l1-1

pickup-rob1-box1-l2-1

move-rob1-loc1-loc1-0

move-rob1-loc1-loc2-0

move-rob1-loc2-loc1-0

move-rob1-loc2-loc2-0

pickup-rob1-box1-l1-0

pickup-rob1-box1-l2-0

move-rob1-loc1-loc1-1

move-rob1-loc1-loc2-1

move-rob1-loc2-loc1-1

move-rob1-loc2-loc2-1

pickup-rob1-box1-l1-1

pickup-rob1-box1-l2-1

move-rob1-loc1-loc1-0

move-rob1-loc1-loc2-0

move-rob1-loc2-loc1-0

move-rob1-loc2-loc2-0

pickup-rob1-box1-l1-0

pickup-rob1-box1-l2-0

move-rob1-loc1-loc1-1

move-rob1-loc1-loc2-1

move-rob1-loc2-loc1-1

move-rob1-loc2-loc2-1

pickup-rob1-box1-l1-1

pickup-rob1-box1-l2-1

move-rob1-loc1-loc1-0

move-rob1-loc1-loc2-0

move-rob1-loc2-loc1-0

move-rob1-loc2-loc2-0

pickup-rob1-box1-l1-0

pickup-rob1-box1-l2-0

move-rob1-loc1-loc1-1

move-rob1-loc1-loc2-1

move-rob1-loc2-loc1-1

move-rob1-loc2-loc2-1

pickup-rob1-box1-l1-1

pickup-rob1-box1-l2-1

Same
plan,
many
out-

comes

Same
plan,
many
out-

comes

 In deterministic planning:
 Given an initial state and an assignment to action propositions,

all other states are uniquely defined, including the goal state

move-rob1-loc1-loc1-0

move-rob1-loc1-loc2-0

move-rob1-loc2-loc1-0

move-rob1-loc2-loc2-0

pickup-rob1-box1-l1-0

pickup-rob1-box1-l2-0

move-rob1-loc1-loc1-1

move-rob1-loc1-loc2-1

move-rob1-loc2-loc1-1

move-rob1-loc2-loc2-1

pickup-rob1-box1-l1-1

pickup-rob1-box1-l2-1

 Given determinism:
 Each SAT solution

must correspond to a different executable action sequence

move-rob1-loc1-loc1-0

move-rob1-loc1-loc2-0

move-rob1-loc2-loc1-0

move-rob1-loc2-loc2-0

pickup-rob1-box1-l1-0

pickup-rob1-box1-l2-0

move-rob1-loc1-loc1-1

move-rob1-loc1-loc2-1

move-rob1-loc2-loc1-1

move-rob1-loc2-loc2-1

pickup-rob1-box1-l1-1

pickup-rob1-box1-l2-1

move-rob1-loc1-loc1-0

move-rob1-loc1-loc2-0

move-rob1-loc2-loc1-0

move-rob1-loc2-loc2-0

pickup-rob1-box1-l1-0

pickup-rob1-box1-l2-0

move-rob1-loc1-loc1-1

move-rob1-loc1-loc2-1

move-rob1-loc2-loc1-1

move-rob1-loc2-loc2-1

pickup-rob1-box1-l1-1

pickup-rob1-box1-l2-1

move-rob1-loc1-loc1-0

move-rob1-loc1-loc2-0

move-rob1-loc2-loc1-0

move-rob1-loc2-loc2-0

pickup-rob1-box1-l1-0

pickup-rob1-box1-l2-0

move-rob1-loc1-loc1-1

move-rob1-loc1-loc2-1

move-rob1-loc2-loc1-1

move-rob1-loc2-loc2-1

pickup-rob1-box1-l1-1

pickup-rob1-box1-l2-1

move-rob1-loc1-loc1-0

move-rob1-loc1-loc2-0

move-rob1-loc2-loc1-0

move-rob1-loc2-loc2-0

pickup-rob1-box1-l1-0

pickup-rob1-box1-l2-0

move-rob1-loc1-loc1-1

move-rob1-loc1-loc2-1

move-rob1-loc2-loc1-1

move-rob1-loc2-loc2-1

pickup-rob1-box1-l1-1

pickup-rob1-box1-l2-1

 Remove those where the last state does not satisfy the goal
 All of the remaining ones correspond to solution plans

move-rob1-loc1-loc1-0

move-rob1-loc1-loc2-0

move-rob1-loc2-loc1-0

move-rob1-loc2-loc2-0

pickup-rob1-box1-l1-0

pickup-rob1-box1-l2-0

move-rob1-loc1-loc1-1

move-rob1-loc1-loc2-1

move-rob1-loc2-loc1-1

move-rob1-loc2-loc2-1

pickup-rob1-box1-l1-1

pickup-rob1-box1-l2-1

move-rob1-loc1-loc1-0

move-rob1-loc1-loc2-0

move-rob1-loc2-loc1-0

move-rob1-loc2-loc2-0

pickup-rob1-box1-l1-0

pickup-rob1-box1-l2-0

move-rob1-loc1-loc1-1

move-rob1-loc1-loc2-1

move-rob1-loc2-loc1-1

move-rob1-loc2-loc2-1

pickup-rob1-box1-l1-1

pickup-rob1-box1-l2-1

move-rob1-loc1-loc1-0

move-rob1-loc1-loc2-0

move-rob1-loc2-loc1-0

move-rob1-loc2-loc2-0

pickup-rob1-box1-l1-0

pickup-rob1-box1-l2-0

move-rob1-loc1-loc1-1

move-rob1-loc1-loc2-1

move-rob1-loc2-loc1-1

move-rob1-loc2-loc2-1

pickup-rob1-box1-l1-1

pickup-rob1-box1-l2-1

move-rob1-loc1-loc1-0

move-rob1-loc1-loc2-0

move-rob1-loc2-loc1-0

move-rob1-loc2-loc2-0

pickup-rob1-box1-l1-0

pickup-rob1-box1-l2-0

move-rob1-loc1-loc1-1

move-rob1-loc1-loc2-1

move-rob1-loc2-loc1-1

move-rob1-loc2-loc2-1

pickup-rob1-box1-l1-1

pickup-rob1-box1-l2-1

 Therefore we can keep all solutions satisfying the goal:
 Simply by claiming that the goal formula is true

 ⋀{litn | lit g+}
⋀{litn | lit g–},
where n is intended length of the plan (must hold at the end!)

 For the example:
 If we are searching for plans of length 1:

Goal: { }

 Encoding:

 If we are searching for plans of length 5:
Goal: { }

 Encoding:

Specified by
initial state

Constrained (partly)
by goal

move-rob1-loc1-loc1-0

move-rob1-loc1-loc2-0

move-rob1-loc2-loc1-0

move-rob1-loc2-loc2-0

pickup-rob1-box1-l1-0

pickup-rob1-box1-l2-0

move-rob1-loc1-loc1-1

move-rob1-loc1-loc2-1

move-rob1-loc2-loc1-1

move-rob1-loc2-loc2-1

pickup-rob1-box1-l1-1

pickup-rob1-box1-l2-1

Action
propo-
sitions

Time 0 Time 1 Time n

Fact
propo-
sitions

at-rob1-loc1-0

at-rob1-loc2-0

at-box1-loc1-0

at-box1-loc2-0

carrying-rob1-box1-0

move-rob1-loc1-loc1-0

move-rob1-loc1-loc2-0

move-rob1-loc2-loc1-0

move-rob1-loc2-loc2-0

pickup-rob1-box1-l1-0

pickup-rob1-box1-l2-0

at-rob1-loc1-1

at-rob1-loc2-1

at-box1-loc1-1

at-box1-loc2-1

carrying-rob1-box1-1

true

false

true

false

false

false

true

true

Initial state

…

Action axioms

Try =true contradiction in effects

Try =true seems OK so far

Goal

at-rob1-loc1-0

at-rob1-loc2-0

at-box1-loc1-0

at-box1-loc2-0

carrying-rob1-box1-0

move-rob1-loc1-loc1-0

move-rob1-loc1-loc2-0

move-rob1-loc2-loc1-0

move-rob1-loc2-loc2-0

pickup-rob1-box1-l1-0

pickup-rob1-box1-l2-0

at-rob1-loc1-1

at-rob1-loc2-1

at-box1-loc1-1

at-box1-loc2-1

carrying-rob1-box1-1

true

false

true

false

false

false

true

false

false

false

false

false

true

true

false

true

Initial state

…

Action axioms

Complete exclusion

Frame Axioms
(

 …

Goal

Inconsistent!

at-rob1-loc1-0

at-rob1-loc2-0

at-box1-loc1-0

at-box1-loc2-0

carrying-rob1-box1-0

move-rob1-loc1-loc1-0

move-rob1-loc1-loc2-0

move-rob1-loc2-loc1-0

move-rob1-loc2-loc2-0

pickup-rob1-box1-l1-0

pickup-rob1-box1-l2-0

at-rob1-loc1-1

at-rob1-loc2-1

at-box1-loc1-1

at-box1-loc2-1

carrying-rob1-box1-1

true

false

true

false

false

false

false

false

false

true

true

Initial state

…

Action axioms

Additional backtracking…

Goal

at-rob1-loc1-0

at-rob1-loc2-0

at-box1-loc1-0

at-box1-loc2-0

carrying-rob1-box1-0

move-rob1-loc1-loc1-0

move-rob1-loc1-loc2-0

move-rob1-loc2-loc1-0

move-rob1-loc2-loc2-0

pickup-rob1-box1-l1-0

pickup-rob1-box1-l2-0

at-rob1-loc1-1

at-rob1-loc2-1

at-box1-loc1-1

at-box1-loc2-1

carrying-rob1-box1-1

true

false

true

false

false

false

false

false

false

true

false

true

false

false

false

true

Initial state

…

Action axioms

Complete exclusion

Frame Axioms
(

 …

Goal

Consistent!

 What’s the advantage?
 SAT solvers can have far more sophisticated search strategies

 SAT solvers can propagate constraints ”in any direction”

at-rob1-loc1-0

at-rob1-loc2-0

at-box1-loc1-0

at-box1-loc2-0

carrying-rob1-box1-0

move-rob1-loc1-loc1-0

move-rob1-loc1-loc2-0

move-rob1-loc2-loc1-0

move-rob1-loc2-loc2-0

pickup-rob1-box1-l1-0

pickup-rob1-box1-l2-0

at-rob1-loc1-1

at-rob1-loc2-1

at-box1-loc1-1

at-box1-loc2-1

carrying-rob1-box1-1

true

false

true

false

false

true

Frame Axioms
(

 …

 SAT planning can be used to generate concurrent plans
 The solver can make many action fluents true at the same time step,

without making the model inconsistent

move-rob1-loc1-loc1-0

move-rob1-loc1-loc2-0

move-rob1-loc2-loc1-0

move-rob1-loc2-loc2-0

pickup-rob1-box1-l1-0

pickup-rob1-box1-l2-0

move-rob1-loc1-loc1-1

move-rob1-loc1-loc2-1

move-rob1-loc2-loc1-1

move-rob1-loc2-loc2-1

pickup-rob1-box1-l1-1

pickup-rob1-box1-l2-1

Action
propo-
sitions

Several of these can be true!

Fact
propo-
sitions

 Be very careful about semantics + constraints on concurrency!
 If both and are true,

then both at-rob1-loc1-0 at-rob1-loc2-1 at-rob1-loc1-1
and at-rob1-loc1-0 at-rob1-loc3-1 at-rob1-loc1-1 must be true

 Equivalent to at-rob1-loc1-0 at-rob1-loc2-1 at-rob1-loc3-1 at-rob1-loc1-1

 This is logically consistent
but results in a plan where we are at two places at the same time

 We must tell the SAT solver that this is not intended!
 Not covered in this course

 Suppose we have 4 robots, 10 locations
 Current action representation: move(robot, from, to)

▪ 4*10*10 = 400 instances = 400 propositions for the SAT solver to handle
(per step in the plan!)

 One alternative representation (others in the book!):

▪ move(robot): 4 propositions

▪ movefrom(from): 10 propositions

▪ moveto(to): 10 propositions

▪ Total: 24 propositions

 Requires different axiom encodings!

 Many other improvements have been made
 But we’re focusing on the primary ideas behind SAT planning

 SAT planning has several similarities to GraphPlan
 Both frameworks use iterative deepening

 Both have two phases

▪ Creating a specific representation, and then searching it

▪ GraphPlan: Create a plan graph, then regression search

▪ SAT planning: Create a set of clauses, then apply a SAT solver’s search alg.

 Idea behind BlackBox planner

 Uses the GraphPlan version of parallel plans: Sequence of sets of actions

 Requires a different encoding, but the same basic ideas apply

Classical problem P

SAT instance
corresponding to

plan graph

Expand plan graph
to level i

Fast SAT solver

SAT solution

Reverse Translator

Plan

Loop for i = 0, 1, …

• Fewer actions to consider
at each step – only those
in the plan graph

• Stronger constraints,
such as mutexes

• Greater opportunities to
quickly find inapplicable
actions

 Performance of BlackBox / SATplan in planning competitions:
 1998-2002: Satisficing planning (find any plan)

▪ 1998: Competitive

▪ 2000: Other planners had improved

▪ 2002: Did not participate

 2004-2011: Optimizing planning (find the shortest plan)

▪ 2004: First place

▪ 2006: Tied for first place with MAXPLAN, a variant of SATplan

▪ 2008: Did not participate

▪ 2011: Did not participate

 Small change in modeling + huge improvements in SAT solvers!

