Automated Planning

Planning by Translation to Propositional Satisfiability

Jonas Kvarnström
Automated Planning Group
Department of Computer and Information Science
Linköping University

Background

- Propositional satisfiability (SAT):
- Let ϕ be a propositional formula
- For example, (walking \rightarrow alive) \wedge (alive \rightarrow breathing) \wedge (breathing)
- Is there a solution:

An assignment of truth values to all propositions that satisfies $\boldsymbol{\phi}$?

Assignments: 8

walling	alive	breathing	\mathbb{P}
-	-	-	-
-	-	true	true
-	true	-	-
-	true	true	true
true	-	-	-
true	-	true	-
true	true	-	-
true	true	true	true

Background (2)

- SAT: The first problem ever proven NP-complete!
- A great deal of research in efficient algorithms
(exponential in the worst case, but efficient for many "real" problems)

Let's try to translate planning problems into SAT!
Make use of all these efficient algorithms...

Running Example

- Very simple planning domain
- Types:
- robot and box are subtypes of object
- location
- two predicates: - at(object o, location l)
- carrying(robot r, box b)
- first operator:
" precond:
" effects: at $(\mathrm{r}, \mathrm{to})^{\wedge} \neg$ at $(\mathrm{r}$, from $)$
- second operator: pickup(robot r, box b, location l)
" precond: at (r, l) ^at (b, l)
- effects: carrying $(r, 1)^{\wedge} \neg a t(b, l)$
- Corresponding problem instance:
- one robot: one box: two locations: loc1, loc2
rob1
box1

Key Ideas

Key Ideas (1)

- Key idea: Each SAT assignment should correspond to...
- A specific action sequence
- A specific state sequence

Key Ideas (2)

7

- Each SAT solution should correspond to a solution plan
- Requires a very complex formula ϕ related to initial state, goal, actions, ...

	"Action propositions": Which actions are executed, and when?			"Fact propositions": Which facts are true, and when?				
	-••	φ	Solutions
	-	-	-	-	-	-	-	
	-	-	true	true	-	-	-	
	-	true	-	true	-	true	-	
Seq. plan!	-	true	true	-	-	true	true	
	true	-	-	true	true	-	-	
	true	-	true	true	true	-	-	
Seq. plan!	true	true	-	-	true	true	true	
	true	true	true	true	true	true	-	

Encoding State Sequences using State Propositions

Propositionalization

- SAT solvers require propositional input
- Not first-order: No variables, no parameters, no objects
- In planning, each type has a finite and known set of values
- \rightarrow Each predicate has a finite and known set of instances
- \rightarrow Can define a simple mapping
- \rightarrow All parameters and variables disappear!
- Convert all first-order atoms to propositions
- A first-order atom: at(rob1,loc1)
- Becomes a proposition: at-rob1-loc1
- Instantiate all operators to 0-param actions
" A first-order operator: move(robot r, loc 1, loc 1 ')
- Becomes many actions: move-rob1-loc1-loc1, move-rob1-loc1-loc2,

Similar to the set-theoretic classical representation

Looks as if we still have parameters...

To the solver, at-rob1-loc1 could as well be called prop53280!

Multiple States

- But planning involves multiple states!
- Ordinary planners handle this implicitly
- We just say "at-rob1-loc1"
- The planner keeps track of which state we mean
- Example: Forward-chaining

We specify the atoms...
at-rob1-loc1 at-rob1-loc2

The planner keeps track of distinct states

at-rob1-loc1: true at-rob1-loc2: false	pickup -rob1-	at-rob1-loc1: true at-rob1-loc2: false	move-rob1-	at-rob1-loc1: false at-rob1-loc2: true
c-rob1-box1: false	$\begin{aligned} & \text { box1- } \\ & \text { loc1 } \end{aligned}$	c-rob1-box1: true	$\begin{aligned} & \text { loc1- } \\ & \text { loc2 } \end{aligned}$	c-rob1-box1: true

Multiple States (2)

- SAT solvers have no concept of separate states!
- Each assignment must correspond to an entire state sequence
- In the translation, create one fact proposition for each fact and state and one action proposition for each action and "plan step"

Multiple States (3)

- Now we can view a sequence of states as a single assignment

SAT assignment

at-rob1-loc1

at-rob1-loc2
at-rob1-loc1-0: true at-rob1-loc2-0: false c-rob1-box1-0: false at-rob1-loc1-1: true at-rob1-loc2-1: false c-rob1-box1-1: true at-rob1-loc1-2: false at-rob1-loc2-2: true c-rob1-box1-2: true
pickup-rob1-box1-loc1-0 move-rob1-loc1-loc2-1

5 propositions for each timepoint $2^{5}=32$ possible assignments for each timepoint $32^{(n+1)}$ possible assignments in total, where $\mathrm{n}=$ number of actions

Bounded Planning

Observation

- Observation:
- Our example problem has 5 atoms
- at(rob1,loc1)
at(rob1,loc2)
at(box1,loc1)
at(box1,loc2)
" carrying(rob1,box1)
- Each SAT assignment should contain...
- The truth value of each atom in each state
" With n states, we need $5^{*} n$ propositions
- What is the value of n ?

Solution Length

- But we don't know in advance how long a solution will be!
- Planners must handle action sequences of varying length
- Forward-chaining example:

Bounded Planning

- Each SAT problem has a fixed number of propositions
- \rightarrow Can't expand "storage" indefinitely, as forward state space planners do
- Solution: Use the SAT solver for bounded planning!

A solution to the bounded planning problem (P, n) is a solution of length n to the classical planning problem P

Iterative Search

- Use a form of iterative deepening search

Classical problem P
Loop for $\mathrm{i}=0,1, \ldots$
Translate (P,i)

SAT instance Φ for plan length i

Fast SAT solver
$\{$ solutions to P$\}=$ $\{$ solutions to $(\mathrm{P}, i) \mid i \in \mathbb{N}\}$
if Φ is satisfiable, we get an assignment of truth values satisfying Φ
\Rightarrow analyze it to see which actions should be part of the corresponding plan
\rightarrow return the solution plan

Remaining Problem

- Remaining problem to solve:
- Using propositional satisfiability to find a plan with exactly n actions and $n+1$ states

1. Finding executable action sequences with exactly n actions
2. Finding solutions among the executable action sequences

Finding Executable Action Sequences with Exactly \boldsymbol{n} Actions

Representation Overview

- At this point, we have no formulas!
- Every SAT assignment is a solution...

Let us view an assignment as "state-based", even though the SAT solver only sees a single set of propositions...

Time o	Time 1		Time n
at-rob1-loc1-0 at-rob1-loc2-0 at-box1-loc1-0 at-box1-loc2-0 carrying-rob1-box1-0	at-rob1-loc1-1 at-rob1-loc2-1 at-box1-loc1-1 at-box1-loc2-1 carrying-rob1-box1-1	----	at-rob1-loc1-n at-rob1-loc2-n at-box1-loc1-n at-box1-loc2-n carrying-rob1-box1-n
32 combinations of possible values	32 combinations of possible values		32 combinations of possible values

$32^{\wedge}(\mathrm{n}+1)$ combinations of possible values, each of which is a SAT solution

Formulas in Ф: Initial State

- We begin by defining the initial state
- Notation:
- $\mathrm{L}=\{$ all atoms in the problem instance $\}$
- $s_{0}=\{$ atoms that are true in the initial state $\} \quad$ (classical initial state)
- For the example:
- $\mathrm{L}=\{$ at-rob1-loc1, at-rob1-loc2, at-box1-loc1, at-box1-loc2, carrying-rob1-box1 \}
- $s_{\mathrm{o}}=\{$ at-rob1-loc1, at-box1-loc2 $\}$

Propositions at time zero!

- Formula:
 ᄀat-rob1-loc2-0 ^ ᄀat-box1-loc1-0 ^ \neg carrying-rob1-box1-0
- General formula:
- $\mathbf{N a t o m}_{\mathrm{o}} \mid$ atom $\left.\in s_{\mathrm{o}}\right\} \wedge$

人 $\left\{\neg\right.$ atom ${ }_{\mathrm{o}} \mid$ atom $\left.\in L-s_{0}\right\}$

Negative facts must be included: SAT solvers do not assume what is "missing" must be false

Representation Overview

- Now only assignments satisfying the initial state formula are solutions

Action Fluents

- Satisfiability has no concept of "finding actions"!
- Solution: Use additional propositions to encode whether a specific action is executed at a specific timepoint or not
- move-rob1-loc2-loc1-0 is true iff move-rob1-loc2-loc1 is executed at time o
- move-rob1-loc2-loc1-1 is true iff move-rob1-loc2-loc1 is executed at time 1
- move-rob1-loc2-loc1-2 ...
" ...
- move-rob1-loc2-loc1-(n-1) No action proposition for $n!$
- The SAT solver will assign values to these propositions
- This determines which actions are executed, and when

Representation Overview

Fact propositions

Action propositions
at-rob1-loc1-0 at-rob1-loc2-0 at-box1-loc1-0 at-box1-loc2-0
carrying-rob1-box1-0

Completely defined
move-rob1-loc1-loc1-0 move-rob1-loc1-loc2-0 move-rob1-loc2-loc1-0 move-rob1-loc2-loc2-0 pickup-rob1-box1-11-0 pickup-rob1-box1-I2-0

64 combinations

Time o

Time 1

at-rob1-loc1-1
at-rob1-loc2-1
at-box1-loc1-1
at-box1-loc2-1
carrying-rob1-box1-1
32 combinations
move-rob1-loc1-loc1-1 move-rob1-loc1-loc2-1 move-rob1-loc2-loc1-1 move-rob1-loc2-loc2-1 pickup-rob1-box1-I1-1
pickup-rob1-box1-I2-1 pickup-rob1-box1-I1-1
pickup-rob1-box1-I2-1

64 combinations

Formulas in Φ : Sequential Plans

- We are considering sequential planning
- Ensured through a complete exclusion axiom:
- No pair of actions can be executed at any timepoint
- \rightarrow For all actions a and b and for all timepoints $i<n$, we require $\neg a_{i} \vee \neg b_{i}$
- For the example, with $\mathrm{n}=1$:
- \neg move-rob1-loc1-loc2-0 $\vee \neg$ move-rob1-loc2-loc1-0
- ...

Representation Overview

Fact propositions

Time o

at-rob1-loc1-0 at-rob1-loc2-0 at-box1-loc1-0 at-box1-loc2-0 carrying-rob1-box1-0

Completely defined
move-rob1-loc1-loc1-0 move-rob1-loc1-loc2-0 move-rob1-loc2-loc1-0 move-rob1-loc2-loc2-0 pickup-rob1-box1-11-0 pickup-rob1-box1-l2-0

7 alternatives

Time 1

at-rob1-loc1-1
at-rob1-loc2-1
at-box1-loc1-1
at-box1-loc2-1
carrying-rob1-box1-1
32 combinations
move-rob1-loc1-loc1-1 move-rob1-loc1-loc2-1 move-rob1-loc2-loc1-1 move-rob1-loc2-loc2-1 pickup-rob1-box1-11-1 pickup-rob1-box1-I2-1

7 alternatives

Time n

at-rob1-loc1-n at-rob1-loc2-n at-box1-loc1-n at-box1-loc2-n carrying-rob1-box1-n

32 combinations

Now we need formulas to relate these propositions to each other!

Formulas in Ф: Action Preconditions

- For every action a and every timepoint $i<n$:
- If the precondition of a is not true in state i, then a cannot be executed at step i
- precond(a) false in state $i \rightarrow a$ not executed in step i
- Logically equivalent: a executed in step $i \rightarrow \operatorname{precond}(\mathrm{a})$ true in state i
- Formula:
- $a_{i} \Rightarrow \boldsymbol{\Lambda}\left\{p_{i} \mid p \in \operatorname{precond}(a)\right\}$
- There are SAT assignments where:
- precond(a) is false in state i
- a is executed in step i
- But these assignments do not satisfy all formulas
\rightarrow are not solutions

Formulas in $\Phi:$ Action Effects

- For every action a and every timepoint $i<n$:
- If a is executed at step i, then the effects of a must be true in state $i+1$
- Formula:

$$
a_{i} \Rightarrow \boldsymbol{\Lambda}\left\{e_{i+1} \mid e \in \operatorname{effects}(a)\right\}
$$

Formulas in $\Phi:$ Actions (2)

$$
a_{i} \Rightarrow \wedge\left\{p_{i} \mid p \in \operatorname{precond}(a)\right\} \wedge \wedge\left\{e_{i+1} \mid e \in \operatorname{effects}(a)\right\}
$$

- For the move action, with $\mathrm{n}=2$ (plans of length 2): action precond effects
- move-rob1-loc1-loc2-0 \Rightarrow at-rob1-loc1-0 \wedge at-rob1-loc2-1 $\wedge \neg$ at-rob1-loc1-1 move-rob1-loc2-loc1-0 \Rightarrow at-rob1-loc2-0 \wedge at-rob1-loc1-1 $\wedge \neg$ at-rob1-loc2-1 move-rob1-loc1-loc1-0 \Rightarrow at-rob1-loc1-0 \wedge at-rob1-loc1-1 $\wedge \neg$ at-rob1-loc1-1 move-rob1-loc2-loc2-0 \Rightarrow at-rob1-loc2-0 \wedge at-rob1-loc2-1 $\wedge \neg$ at-rob1-loc2-1 move-rob1-loc1-loc2-1 \Rightarrow at-rob1-loc1-1 \wedge at-rob1-loc2-2 $\wedge \neg$ at-rob1-loc1-2 move-rob1-loc2-loc1-1 \Rightarrow at-rob1-loc2-1 \wedge at-rob1-loc1-2 $\wedge \neg a t-r o b 1-l o c 2-2$
*** move-rob1-loc1-loc1-1 \Rightarrow at-rob1-loc1-1 \wedge at-rob1-loc1-2 $\wedge \neg$ at-rob1-loc1-2
time
o—1
time
1-2
- Formulas marked with "***" have inconsistent consequences
- Formula 3 equivalent to \neg move-rob1-loc1-loc1-0, etc.

Representation Overview: Closer Look

Time o

Specified by initial state

Fact propo- sitions

Action propositions

Enough?

- Again: The SAT solver has no notion of states or "unchanged"
- We must explicitly say that unaffected propositions remain the same
- We need frame axioms
- For example, explanatory frame axioms

$\begin{aligned} & \neg \text { at-rob1-loc1-0 } \wedge \text { at-rob1-loc1-1 } \Rightarrow \text { move-rob1-loc2-loc1-0 } \\ & \neg \text { ᄀat-rob1-loc2-0 } \wedge \text { at-rob1-loc2-1 } \Rightarrow \text { move-rob1-loc1-loc2-0 } \\ & \text { at-rob1-loc1-0 } \wedge \text { 年-rob1-loc1-1 } \Rightarrow \text { move-rob1-loc1-loc2-0 } \\ & \text { at-rob1-loc2-0 } \wedge \neg \text { at-rob1-loc2-1 } \Rightarrow \text { move-rob1-loc2-loc1-0 } \end{aligned}$	

- If rob1 isn't at loc1 at time 0, but it is at loc1 at time 1, then there must be an explanation:
We executed move-rob1-loc2-loc1 at time 0!

Frame Axioms

- Explanatory frame axioms:
- One formula for every atom l and every timepoint $i<n$
- If l changes to true between s_{i} and s_{i+1}, then the action at step i must be responsible:

$$
\begin{aligned}
& \left(\neg l_{i} \wedge l_{i+1} \Rightarrow \vee_{a \text { in } A}\left\{a_{i} \mid l \in \operatorname{effects}^{+}(a)\right\}\right) \\
\wedge & \left(l_{i} \wedge \neg l_{i+1} \Rightarrow \vee_{a \text { in } A}\left\{a_{i} \mid l \in \operatorname{effects}^{-}(a)\right\}\right)
\end{aligned}
$$

In general there may be more than one possible cause \rightarrow a disjunction to the right of \Rightarrow

Example:
ᄀat-me-loc1-0 \wedge
at-me-loc1-1 => walk \vee run \vee drive

Representation Overview

Time o

Specified by initial state

Fact propo- sitions

Action

 propositions
Time 1
 Time 1

Time n

at-rob1-loc1-1 at-rob1-loc2-1 at-box1-loc1-1 at-box1-loc2-1 carrying-rob1-box1-1	at-rob1-loc1-n at-rob1-loc2-n at-box1-loc1-n at-box1-loc2-n
carrying-rob1-box1-n	

Finding Solutions of Fixed Length

- If we use the current encoding for the problem (P,n):
- We have one SAT solution for every executable action sequence of length n
- Some of these may satisfy the goal
- Some of them may not
- We want one SAT solution for every solution plan of length n
- Should keep only those SAT solutions where the final state satisfies the goal

Executable Action Sequences

- Suppose you have 4 SAT solutions for the current formulas
- Each one corresponds to an executable action sequence

Different Executable Sequences

- If we allowed nondeterministic actions, incomplete states
- One plan could lead to many different outcomes
- Many SAT solutions with the same plan
- Generate all solutions, group them - check if all outcomes satisfy the goal

Completely Defined States

- In deterministic planning:
- Given an initial state and an assignment to action propositions, all other states are uniquely defined, including the goal state
at-rob1-loc1-0
at-rob1-loc2-0
at-box1-loc1-0
at-box1-loc2-0
carrying-rob1-box1-0
at-rob1-loc1-1
at-rob1-loc2-1
at-box1-loc1-1
at-box1-loc2-1 carrying-rob1-box1-1
at-rob1-loc1-n at-rob1-loc2-n at-box1-loc1-n at-box1-loc2-n carrving-rob1-box1-n
move-rob1-loc1-loc1-0
move-rob1-loc1-loc2-0
move-rob1-loc2-loc1-0
move-rob1-loc2-loc2-0
pickup-rob1-box1-11-0 pickup-rob1-box1-|2-0
move-rob1-loc1-loc1-1
move-rob1-loc1-loc2-1
move-rob1-loc2-loc1-1
move-rob1-loc2-loc2-1
pickup-rob1-box1-l1-1 pickup-rob1-box1-|2-1

Different Executable Sequences

- Given determinism:
- Each SAT solution must correspond to a different executable action sequence

Solution Plans

- Remove those where the last state does not satisfy the goal
- \rightarrow All of the remaining ones correspond to solution plans

Formulas in Ф: Goal

- Therefore we can keep all solutions satisfying the goal:
- Simply by claiming that the goal formula is true
- $\wedge\left\{\right.$ lit $t_{n} \mid$ lit $\left.\in g^{+}\right\} \wedge$
$\wedge\left\{\neg\right.$ lit $_{n} \mid$ lit $\left.\in g^{-}\right\}$,
where n is intended length of the plan (must hold at the end!)
- For the example:
- If we are searching for plans of length 1 :

Goal
\{carrying-rob1-box1\}
Encoding: carrying-rob1-box1-1

- If we are searching for plans of length 5: Goal:
\{carrying-rob1-box1\}
Encoding: carrying-rob1-box1-5

Representation Overview

Time o

Specified by initial state

Fact propositions
at-rob1-loc1-0 at-rob1-loc2-0
at-box1-loc1-0
at-box1-loc2-0 carrying-rob1-box1-0

Time 1

at-rob1-loc1-1
at-rob1-loc2-1
at-box1-loc1-1
at-box1-loc2-1
carrying-rob1-box1-1

Time n

Constrained (partly)

by goal
at-rob1-loc1-n
at-rob1-loc2-n
at-box1-loc1-n
at-box1-loc2-n carrying-rob1-box1-n

Action propositions
move-rob1-loc1-loc1-0 move-rob1-loc1-loc2-0 move-rob1-loc2-loc1-0 move-rob1-loc2-loc2-0 pickup-rob1-box1-11-0 pickup-rob1-box1-I2-0
move-rob1-loc1-loc1-1 move-rob1-loc1-loc2-1 move-rob1-loc2-loc1-1 move-rob1-loc2-loc2-1 pickup-rob1-box1-11-1 pickup-rob1-box1-I2-1

Example

Creating a Single-Step Plan

Initial state
at-rob1-loc1-0 \wedge
ᄀat-rob1-loc2-0 ^ \neg carrying-rob1-box1-0 ^

Action axioms

move-rob1-loc1-loc2-0 \Rightarrow at-rob1-loc1-0 \wedge at-rob1-loc2-1 ^ ᄀat-rob1-loc1-1,
move-rob1-loc1-loc1-0 move-rob1-loc1-loc2-0 move-rob1-loc2-loc1-0 move-rob1-loc2-loc2-0 pickup-rob1-box1-11-0 pickup-rob1-box1-l2-0

Goal
carrying-rob1-box1-1

Try move-rob1-loc1-loc1-0=true \rightarrow contradiction in effects
Try move-rob1-loc1-loc2-0=true \Rightarrow seems OK so far

Creating a Single-Step Plan (2)

Initial state

 at-rob1-loc1-0 \wedge ᄀat-rob1-loc2-0 ^ \neg carrying-rob1-box1-0 ^

Action axioms

 move-rob1-loc1-loc2-0 \Rightarrow at-rob1-loc1-0 ^ at-rob1-loc2-1 \wedge ᄀat-rob1-loc1-1,move-rob1-loc1-loc1-0 move-rob1-loc1-loc2-0 move-rob1-loc2-loc1-0 move-rob1-loc2-loc2-0 pickup-rob1-box1-11-0 pickup-rob1-box1-l2-0
false true false false false false

Complete exclusion

 \neg move-rob1-loc1-loc2-0 \vee \neg move-rob1-loc2-loc1-0,
Frame Axioms

(\neg carrying-rob1-box1-0 \wedge carrying-rob1-box1-1 \Rightarrow pickup-rob1-box1-l1-0 \vee pickup-rob1-box1-12-0) ^ ...

Creating a Single-Step Plan (3)

$$
\begin{aligned}
& \text { move-rob1-loc1-loc1-0 } \\
& \text { move-rob1-loc1-loc2-0 } \\
& \text { move-rob1-loc2-loc1-0 } \\
& \text { move-rob1-loc2-loc2-0 } \\
& \text { pickup-rob1-box1-I1-0 } \\
& \text { pickup-rob1-box1-l2-0 }
\end{aligned}
$$

false false false false true

Action axioms

pickup-rob1-box1-loc1-0 \Rightarrow
at-rob1-loc1-0 ^
at-box-loc1-0 ^
\neg at-box-loc1-1 ^ carrying-rob1-box1-1, ...
$\underset{\text { carrying-rob1-box1-1 }}{\text { Goal }}$
$\underset{\text { carrying-rob1-box1-1 }}{\text { Goal }}$

Initial state at-rob1-loc1-0 ^
ᄀat-rob1-loc2-0 ^ \neg carrying-rob1-box1-0 ^

Creating a Single-Step Plan (4)

Initial state at-rob1-loc1-0 \wedge
ᄀat-rob1-loc2-0 ^ \neg carrying-rob1-box1-0 ^
at-rob1-loc1-0
at-rob1-loc2-0
at-box1-loc1-0
at-box1-loc2-0
carrying-rob1-box1-0

Complete exclusion

\rightarrow move-rob1-loc1-loc2-0 V \neg move-rob1-loc2-loc1-0,
true false true false false

Frame Axioms

(\neg carrying-rob1-box1-0 \wedge carrying-rob1-box1-1 \Rightarrow pickup-rob1-box1-l1-0 \vee pickup-rob1-box1-12-0) ^ ...

Advantages?

- What's the advantage?
- SAT solvers can have far more sophisticated search strategies
- SAT solvers can propagate constraints "in any direction"

Concurrent Planning?

Formulas in Φ

- SAT planning can be used to generate concurrent plans
- The solver can make many action fluents true at the same time step, without making the model inconsistent

Several of these can be true!

Formulas in Φ

- Be very careful about semantics + constraints on concurrency!
- If both then both and
- Equivalent to at-rob1-loc1-0 \wedge at-rob1-loc2-1 \wedge at-rob1-loc3-1 $\wedge \neg a t-r o b 1-l o c 1-1$
- This is logically consistent but results in a plan where we are at two places at the same time
- We must tell the SAT solver that this is not intended!
- Not covered in this course

Discussion

Improvements and Extensions

- Suppose we have 4 robots, 10 locations
- Current action representation: move(robot, from, to)
- $4 * 10 * 10=400$ instances $=400$ propositions for the SAT solver to handle (per step in the plan!)
- One alternative representation (others in the book!):
" move(robot): 4 propositions
- movefrom(from): 10 propositions
" moveto(to): 10 propositions
- Total: 24 propositions
- Requires different axiom encodings!
- Many other improvements have been made
- But we're focusing on the primary ideas behind SAT planning
- SAT planning has several similarities to GraphPlan
- Both frameworks use iterative deepening
- Both have two phases
- Creating a specific representation, and then searching it
- GraphPlan: Create a plan graph, then regression search
- SAT planning: Create a set of clauses, then apply a SAT solver's search alg.

The BlackBox Planner (2)

- Idea behind BlackBox planner
- Uses the GraphPlan version of parallel plans: Sequence of sets of actions
- Requires a different encoding, but the same basic ideas apply

- Fewer actions to consider at each step - only those in the plan graph
- Stronger constraints, such as mutexes
- Greater opportunities to quickly find inapplicable actions

Performance

56

- Performance of BlackBox / SATplan in planning competitions:
- 1998-2002: Satisficing planning (find any plan)
- 1998: Competitive
- 2000: Other planners had improved
- 2002: Did not participate
- 2004-2011: Optimizing planning (find the shortest plan)
- 2004: First place
- 2006: Tied for first place with MAXPLAN, a variant of SATplan
- 2008: Did not participate
- 2011: Did not participate
- Small change in modeling + huge improvements in SAT solvers!

wff	vars	clauses	sato 1997	satz 1997	zChaff 2001	jerusat 2003	siege 2003	MiniSat 2005
p05	3,656	31,089	13.23	0.61	0.01	0.01	0.01	0.02
p15	10,671	143,838	x	4.85	0.05	0.13	0.03	0.09
p18	34,325	750,269	x	x	13.92	6.59	4.85	2.55
p20	40,304	894,643	x	x	14.75	10.35	8.68	10.03
p28	249,738	$13,849,105$	x	x	846.72	79.59	12.74	27.80

