
Jonas Kvarnström

Automated Planning Group

Department of Computer and Information Science

Linköping University

Partly adapted from slides by Dana Nau

Licence: Creative Commons Attribution-NonCommercial-ShareAlike, http://creativecommons.org/licenses/by-nc-sa/2.0/

 Simple planning problem:
 Two crates

▪ Both are at A

▪ Both should be at B

 One robot

▪ Can carry up to two crates

▪ Can move between locations, which requires one unit of fuel

▪ Has only two units of fuel

D
ea

d
 e

n
d

,
b

ac
k

tr
ac

k

C
yc

le
,
b

ac
k

tr
ac

k

D
ea

d
 e

n
d

,
b

ac
k

tr
ac

k

Why is this
not a cycle?

Keep
backtracking…

 Observations:
 Most actions we added before backtracking were useful and necessary!

 At first, we added them in the wrong order

▪ State-space planning commits immediately to action order
(in backwards search as well)

▪ Puts each action in its final place in the plan

 A great deal of backtracking

 Partial Order Causal Link (POCL) planning:
 As in backward search:

▪ Add relevant actions to achieve necessary conditions

▪ Keep track of what remains to be achieved

 But use a partial order for actions!

▪ Insert actions ”at any point” in a plan

▪ Least/late commitment to ordering

More sophisticated ”bookkeeping” required!

 Must keep track of propositions to be achieved
 May come from preconditions of actions in the plan

 May come from the problem goal as in backward search

▪ Let’s use a uniform representation

▪ Add a ”fake” goal action to every plan,
with the goals as preconditions!

Simplified (non-standard)
graphical representation:
Preconditions on the left/top side

 Must keep track of propositions that are achieved
 May come from effects of actions in the plan

 May come from the initial state

▪ Add a ”fake” initial action
to every plan,
with the initial state
as effects!

 Effects are sometimes omitted from
the slides, due to lack of space…

Effects on the
right/bottom side

 Must keep track of precedence constraints
 Stating that one action must end before another action can start

 We will represent this using solid arrows

 Must keep track of which action achieves which precondition
 Causal links

 Causal link (dashed):
 must

 remain true
between the end of put
and the beginning of

goalaction.
No one must delete it!

 To summarize, a ground partial-order plan consists of:
 A set of actions

 A set of precedence constraints: a must precede b

 A set of causal links: action a establishes the precond p needed by b

Causal link (dashed)

 Original motivation: performance
 Therefore, a partial-order plan is a solution

iff all sequential plans satisfying the ordering are solutions

▪ Similarly, executable iff corresponding sequential plans are executable

▪

▪

▪

▪

 Can be extended to allow concurrent execution

▪ Requires a new formal model:
Our state transition model says nothing about what happens
if and are picked up simultaneously!

Backward search: A search node is a "current goal"

Forward search: A search node is a "current state"

Node Modification Node Modification Node

Node Modification Modification Node Node

 With partial-order plans: No “current” state or goal!
 What is true after below?

▪ Depends on the order in which other actions are executed

▪ Changes if we insert new actions before !

A search node can’t correspond to a state or goal!

 A node has to contain more information: The entire plan!
 The initial search node contains the initial plan

▪ The special initial and goal actions

▪ A precedence constraint

Therefore, this is
one form of

”plan-space” planning!

 We need a branching rule as well!
 Forward planning: One successor per action applicable in s

 Backward planning: One successor per action relevant to g

 POCL planning: One successor for every way
 that a flaw in the plan (open goal or threat)
 can be repaired

 Open goal:
 An action a has a precondition p with no incoming causal link

We haven't decided how to
achieve any of these six goals
 they are flaws in the plan

clear(A) is already true in , but there is no causal link…

Adding one from means clear(A) must never be deleted!
We need other alternatives too: Delete clear(A), then re-achieve it for goalaction…

 To resolve an open goal :
 Find an action b that causes p

▪ Can be a new action

▪ Can be an action already in the plan,
if we can make it precede a

 Add a causal link

Partial order! This was not
possible in backward search…

Essential:
Even if there is already an action that causes p,

you can still add a new action that also causes p!

 In this initial Blocks World plan we have six open goals
 We could choose to find support for clear(A):

▪ From initaction

▪ From a new , , or

▪ From a new , , , or

 Or we could choose to find support for on(A,B):

▪ Only from a new instance of

 …

8 distinct
successors

 successor

 Suppose we add stack(A,B) to support (achieve) on(A,B)
 Must add a causal link for on(A,B)

▪ Dashed line

 Must also add precedence constraints

 The plan looks totally ordered

▪ Because it actually only has one “real” action…

Causal link says:
This instance of stack(A,B)

is responsible for
achieving on(A,B)
for the goalaction

 Now we have open goals (one more!)
 We can choose to find support for

▪ From the initaction

▪ From the instance of that we just added

▪ From a new instance of

▪ From a new instance of

 …

 Second flaw type: A threat
▪ supports for – there’s a causal link

▪ deletes , and may occur between initaction and

▪ So we can’t be certain that still holds when starts!

 Some possible execution orders:
 -- preconditions of OK

 -- preconditions of not satisfied

 How to make sure that holds when starts?
 Alternative : The action that disturbs the precondition

is placed after the action that has the precondition

▪ Only possible if the resulting partial order is consistent (acyclic)!

 Alternative 2:

▪ The action that disturbs the precondition
is placed before the action that supports the precondition

▪ Only possible if the resulting partial order is consistent – not in this case!

 Only causal links can be threatened!
 Below, pickup(B) does not threaten the precond clear(B) of stack(A,B)

▪ We haven’t decided yet how to achieve clear(B): No incoming causal link

▪ So we can’t claim that its achievement is threatened!

 Gives rise to a search space
 Use search strategies, backtracking, heuristics, ... to search this space!

 Plan-Space Planning:

 ∪
∅

φ ∈
 φ

∅

ρ ∈
 ρ

 Call PSP(the initial plan)

 PSP is both sound and complete

 It returns a partially ordered solution plan

▪ Any total ordering of this plan will achieve the goals

Not a backtracking point! Resolving one flaw
cannot prevent us from resolving other flaws.

This is a backtracking point. For example, a
resolver might add an action that solves this
local flaw, but that cannot be part of a solution.

The plan is complete exactly when
there are no remaining flaws (no open
goals, no threats)

Requires
heuristics!

 Suppose we want to achieve holding(B)
 Ground search generates many alternatives

▪ …

▪

 Let’s take the idea of least commitment one step further

 Lifted search generates two partially instantiated alternatives

▪

▪

So far, we see no reason
why we should unstack B
from any specific block!

 A lifted partial-order plan consists of:
 A set of possibly unground actions

 A set of precedence constraints: a must precede b

 A set of causal links: action a establishes the precond p needed by b

 A set of binding constraints:

▪ equality constraints e.g., v1 = v2 or v = c

▪ inequality constraints e.g., v1 ≠ v2 or v ≠ c

 Another way of resolving threats for lifted plans:
 For partly uninstantiated actions, we may find potential threats

▪ stack(B,y) may threaten the causal link, but only if x=y

▪ Can be resolved by adding a constraint: x != y

stack(B,y)
Precond: …
Effects: clear(y)

putdown(x)
Precond: …
Effects: clear(x)

pickup(x)
Precond: clear(x)
Effects: …

clear(x)

 Running Example: Similar to an example in AIMA
 Russell and Norvig’s Artificial Intelligence: A Modern Approach (1st ed.)

▪

▪

▪

▪

▪

▪

 PSP takes a plan π as its argument
 Initial plan: initaction, goalaction, and an ordering constraint

Have(Drill) Have(Milk) Have(Bananas) At(Home)

 At(Home) Sells(HWS, Drill) Sells(SM, Milk) Sells(SM, Bananas)

 Four flaws exist: Open goals
 Suppose our heuristics tell us to resolve first

Have(Drill) Have(Milk) Have(Bananas) At(Home)

 At(Home) Sells(HWS, Drill) Sells(SM, Milk) Sells(SM, Bananas)

Selected…

 ot achieved by any action in the current plan

 achieves

▪ Partially instantiate:
(right now we don’t care where we buy it)

Have(Drill) Have(Milk) Have(Bananas) At(Home)

 At(Home) Sells(HWS, Drill) Sells(SM, Milk) Sells(SM, Bananas)

At() Sells(,)

Have() achieves for goalaction –
keep track of this with a causal link

 Alternative Notation for simplicity
 Variable bindings are implicit in the diagram

Have(Drill) Have(Milk) Have(Bananas) At(Home)

 At(Home) Sells(HWS, Drill) Sells(SM, Milk) Sells(SM, Bananas)

At() Sells(, Drill)

Have(Drill)
 achieves for goalaction –

keep track of this with a causal link

Now we have five open goals:
The preconditions of Buy

must also be achieved!

 The first three refinement steps
 These are the only possible ways to establish the Have preconditions

 We don’t care in which order we buy things!

At(st1) At(st2) At(st3) Sells(st1, Drill) Sells(st2,Milk) Sells(st3,Bananas)

Have(Drill) Have(Milk) Have(Bananas) At(Home)

 Three more refinement steps
 No action causes Sells(…) to be true – except the “fake” initial action!

 Use it for support

At(HWS) At(SM) At(SM) Sells(HWS,Drill) Sells(SM,Milk) Sells(SM,Bananas)

Have(Drill) Have(Milk) Have(Bananas) At(Home)

New causal
links and
variable

bindings!

st1 must be
HWS: No

action causes
Sells() to be

true

 It’s getting messy!
 Let’s omit the precedence constraints that are implicit in causal links…

At(HWS) At(SM) At(SM) Sells(HWS,Drill) Sells(SM,Milk) Sells(SM,Bananas)

Have(Drill) Have(Milk) Have(Bananas) At(Home)

 To establish At(HWS): Must go there from somewhere

At(HWS) At(SM) At(SM) Sells(HWS,Drill) Sells(SM,Milk) Sells(SM,Bananas)

At(l1)

Have(Drill) Have(Milk) Have(Bananas) At(Home)

At(HWS) At(l1)

 Does at(l1) threaten At(SM)?
 No! Only a causal link to At(SM) can be threatened

At(HWS) At(SM) At(SM) Sells(HWS,Drill) Sells(SM,Milk) Sells(SM,Bananas)

At(l1)

Have(Drill) Have(Milk) Have(Bananas) At(Home)

At(HWS) At(l1)

At(l1)
At(l2)

 To establish At(SM): Must go there from somewhere
 Mutual threats…

At(HWS) At(SM) At(SM) Sells(HWS,Drill) Sells(SM,Milk) Sells(SM,Bananas)

Have(Drill) Have(Milk) Have(Bananas) At(Home)

At(HWS) At(l1)
At(SM) At(l2)

At(l1)
At(l2)

 Let’s use the same action for both At(SM) preconditions…
 More threats – could deal with them now or wait

At(HWS) At(SM) At(SM) Sells(HWS,Drill) Sells(SM,Milk) Sells(SM,Bananas)

Have(Drill) Have(Milk) Have(Bananas) At(Home)

At(HWS) At(l1)
At(SM) At(l2)

 Nondet. choice: how to resolve the threat to At(HWS)?
 Our choice: make the “requirer” precede the “threatener”

 Also happens to resolve the other two threats

▪ “Threatener” before “achiever”

At(SM) Sells(SM,Milk) Sells(SM,Bananas)

At(l2)

At(l1)

At(HWS) At(SM) Sells(HWS,Drill)

Have(Drill) Have(Milk) Have(Bananas) At(Home)

 Nondet. choice: how to establish ?
 We’ll do it from , with

At(Home)

At(SM) Sells(SM,Milk) Sells(SM,Bananas)

At(l2)

At(HWS) At(SM) Sells(HWS,Drill)

Have(Drill) Have(Milk) Have(Bananas) At(Home)

 Nondeterministic choice: how to establish ?
 We’ll do it from , with

At(Home)

At(SM)

Buy(Drill, s1)

Sells(SM,Milk) Sells(SM,Bananas)

At(HWS)

At(HWS) At(SM) Sells(HWS,Drill)

Have(Drill) Have(Milk) Have(Bananas) At(Home)

 The only possible way to establish for

 This creates a bunch of threats

At(Home)

At(SM)

Buy(Drill, s1)

Sells(SM,Milk) Sells(SM,Bananas)

At(HWS)

At(HWS) At(SM) Sells(HWS,Drill)

Have(Drill) Have(Milk) Have(Bananas)

At(Home)

At(l3)

 To remove the threats to and ,
make and precede

 This also removes the other threats

At(Home)

At(SM)

Buy(Drill, s1)

Sells(SM,Milk) Sells(SM,Bananas)

At(HWS)

At(HWS) At(SM) Sells(HWS,Drill)

Have(Drill) Have(Milk) Have(Bananas) At(Home)

At(l3)

 Establish with

Go(SM, Home)

At(Home)

At(SM)

Buy(Drill, s1)

goalaction

Sells(SM,Milk) Sells(SM,Bananas)

Go(HWS, SM)

At(HWS)

At(HWS) At(SM) Sells(HWS,Drill)

Have(Drill) Have(Milk) Have(Bananas) At(Home)

At(SM)

Straightened out…
(Note that this still
does not constrain
the order between
buying milk and
bananas)

At(Home)

At(SM)

Buy(Drill, s1)

Sells(SM,Milk) Sells(SM,Bananas)

At(HWS)

At(HWS)

At(SM)

Sells(HWS,Drill)

Have(Drill) Have(Milk) Have(Bananas) At(Home)

At(SM)

Many precedence
constraints are omitted –
but they must still be there
in the plan structure!

Straightened out…
(Note that this still
does not constrain
the order between
buying milk and
bananas)

At(Home)

At(SM)

Buy(Drill, s1)

initaction

goalaction

Sells(SM,Milk) Sells(SM,Bananas)

Go(HWS, SM)

Go(Home,HWS)

At(HWS)

At(HWS)

At(SM)

Sells(HWS,Drill)

Buy(Milk, SM) Buy(Bananas, SM)

Buy(Drill, HWS)

Have(Drill) Have(Milk) Have(Bananas) At(Home)

At(SM)

Go(SM, Home)

Many precedence
constraints are omitted –
but they must still be there
in the plan structure!

This sequence assumed optimal choices!

Heuristics do exist…
Simple example:

Preferring flaws with few resolvers keeps the branching factor down

Still, planners try many other alternatives, dead ends, etc…

 Partial-order planning delays commitment to action ordering
 Lower branching factor

 More efficient in some situations

 Many POP planners still assume sequential execution
 The intention was to find plans quickly,

not to find partially constrained plans

 Forward-chaining planners currently have the advantage
 Due to strong domain-dependent heuristics

