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 Classical Planning: Find a path in a finite graph 
 

initial 

goal 
goal 

goal 

We’ve seen this 
direction: 

Forward search, 
initial  goal 



Forward State Space 

Given a state : 
 

For every action a applicable in s, 
generate the state 
that results from applying a to s 

Corresponds directly to the initial state 
Initial search node 

 

Child node Child node 

Goal criterion: The state of the node 
satisfies the goal formula 

 

Plan extraction: Generate the sequence of 
all actions on the path to the goal node 

Edges correspond to applicable actions 

Forward planning, forward-chaining, 
progression: Begin in the initial state 

How to interpret a node: 
If I can find a way 

from this state to a goal state, 
then I have a complete plan 



 
 
 

A complication in backward search: 
We have multiple goal states 

 Classical Planning: Find a path in a finite graph 
 

initial 

goal 
goal 

goal 

What about 
this direction: 

Backward, 
goal  initial? 



”Simple” Backward State Space 

Given a goal state : 
 

For every action a relevant to , 
generate the state 
in which executing a would result in 

Corresponds to the single goal state 
Initial search node 

 

Child node Child node 

Stop criterion: The initial state 
satisfies the current goal state 

 

Plan extraction: Generate the sequence of 
all actions on the constructed path 

Edges correspond to 
”relevant actions, executed backwards” 

Backward planning, backward-chaining, 
regression: Begin in the goal state 

How to interpret a node: 
If I can find a way 

from the initial state to this goal state, 
then I have a complete plan 

First, the simple case: A single goal state! 



”Simple” case: A single goal state! 

The goal 
is not 

already 
achieved

… 
This must have 

been true before 

was executed 

This must have 
been true before 

was executed 



 

 
 Relevant actions: 

▪

▪

▪

▪ Cycle! 

”Simple” case: A single goal state! 

Now these 
states are 

goals… 



Second, allow sets of goal states… 

 Backward State Space 

Given a set G of goal states: 
 

For every action a relevant to G, 
generate the set of states 
from which a would result in a state in G 

Corresponds to the set of goal states 
Initial search node 

 

Child node Child node 

Stop criterion: 
The initial state satisfies 

at least one of the node’s goal states 

Plan extraction: Generate the sequence of 
all actions on the constructed path 

Edges correspond to 
”relevant actions, executed backwards” 

Backward planning, backward-chaining, 
regression: Begin in the set of goal states 

How to interpret a node: 
If I can find a way from the initial state 

to one of these states, 
then I have a complete plan 



How do we represent a set of goal states? 

Too expensive to calculate 
regression, relevant actions 

Arbitrary set of ground goal literals: 

 

Arbitrary set of states? Use classical representation! 

γ
Γ γ ∈

γ γ
∪

Γ γ ∈

∩ ∅
∩ ∅
∩ ∅

precond(a) was true, 
so a was applicable 

Everything except 
effects(a) must 

already be true before a 

Contribute to the goal, 
and do not destroy it 

Forward / progression: 
Which state do I end up in? 

Backward / regression: 
Which states could I start from? 

All successor subgoals 



Regression Example 

The goal 
is not 

already 
achieved

… 

Represents 
many 

possible 
goal states! 

 

 Relevant: 
Achieves 
on(B,C), 
does not 

delete any 
goal fact  

Relevant: 
Achieves 
on(A,B), 
does not 

delete any 
goal fact  



Symmetric problems! 

Forward search Backward search 

I can reach this node 
from the initial state… 
But what comes next? 
Can I reach the goal? 

Efficiently? 

I can reach the goal 
from this node… 

But what comes before? 
Can I reach it from ? 

Efficiently? 



FORWARD SEARCH 

 Problematic when: 

 There are many applicable actions 
 high branching factor 
 need guidance 

 

 Blind search knows 
if an action is applicable, 
but not if it will contribute 
to the goal 

BACKWARD SEARCH 

 Problematic when: 

 There are many relevant actions 
 high branching factor 
 need guidance 

 

 Blind search knows 
if an action contributes to the goal, 
but not if you can achieve its 
preconditions 

 
Blind backward search 

is generally better than blind forward search: 
Relevance tends to provide better guidance than applicability 

But this in itself is not enough to generate plans quickly! 



 Let’s take a look at expressivity: 
 Suppose we have disjunctive preconditions 

▪

 

 How do we apply such actions backwards? 

▪ More complicated 
disjunctive 
goals to achieve? 

 

 

▪ Additional 
branching? 

 

Some extensions are less straight-forward in backward search (but possible!) 





 Consider  heuristics using forward search: 

New search node  
new starting state  

recalculate from scratch! 



 What about backward search? 

 

New search node  
same starting state  
use the old ∆m values 
for those goal subsets 

that were already 
calculated! 



 Results: 
 Faster calculation of heuristics 

 Applied in HSPr (non-optimal) and HSPr* (optimal) 

 Difficult to compare directly due to different search spaces 

▪ Requires different search algorithms 

▪ Permits different tweaks and optimizations 

 

 In limited tests: 

▪ HSPr often faster, typically by a factor of 

▪ HSP sometimes faster… 

 

 

 Not true for all heuristics! 
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BACKWARD SEARCH 

 We know if the effects of an action 
can contribute to the goal 

 Don't know if we can reach a state 
where its preconditions are true 
so we can execute it 

at(LiU) 
… 

at(home) 
have-heli 

at(home) 
have-shoes 



 Suppose we could quickly calculate all reachable states 
at time 

Initial 
state 

10 
reachable 

states 

200 
reachable 

states 

4000 
reachable 

states 

Time 0 

Time 1 

Time 2 

Time 3 

12000 
reachable 

states 

Time 4 

Goal not 
satisfied 

in any 
state 

Goal not 
satisfied 

Goal not 
satisfied 

in any 
state 

Goal not 
satisfied 

in any 
state 

Goal satisfied 
in 14 of the states: 

The shortest solution 
must have 4 actions! 



 Reachability could be a pruning filter in backward search! 

Initial 
state 

10 
reachable 

states 

200 
reachable 

states 

4000 
reachable 

states 

Time 0 

Time 1 

Time 2 

Time 3 

12000 
reachable 

states 

Time 4 

Not true (reachable) in any of the 4000 states at time 3! 
We know preconds can’t be achieved in 3 steps  backtrack 

True in 14 states 



 

Initial 
state 

10 
reachable 

states 

200 
reachable 

states 

4000 
reachable 

states 

Time 0 

Time 1 

Time 2 

Time 3 

12000 
reachable 

states 

Time 4 

Preconds are achievable at time 3! 
(True in several states) 

Continue backward search 
as usual, 

using reachable states 
to prune the search tree 

True in 14 states 



 ”Suppose we could quickly calculate all reachable states…” 
 In most cases, calculating exactly the reachable states 

would take far too much time and space… 

Problem: This is not possible! 



 Solution: Don’t be exact! 
 Quickly calculate an overestimate 

Initial 
state 

15 
possibly 

reachable 
 

500  
possibly 

reachable 
states 

 
 

15000  
possibly 

reachable 
states 

 
 
 
 
 

Time 0 

Time 1 

Time 2 

Time 3 

…out of a billion? 

42000 
possibly 

reachable 
states 

 
 
 
 
 
 

Time 4 



 Planning algorithm: 
 Keep calculating until we find a timepoint 

where the goal might be achievable 

Initial 
state 

15 
possibly 

reachable 
states 

500  
possibly 

reachable 
states 

15000  
possibly 

reachable 
states 

 
 
 
 
 

Time 0 

Time 1 

Time 2 

Time 3 

Goal not 
satisfied 

in any 
state 

Goal not 
satisfied 

Goal not 
satisfied 

in any 
state 

Satisfied in 
37 possibly reachable states: 

The shortest solution must have  
at least 3 actions! 



 Backward search will verify what is truly reachable 
 In a much smaller search space than plain backward search 

Initial 
state 

15 
possibly 

reachable 
states 

500  
possibly 

reachable 
states 

15000  
possibly 

reachable 
states 

 
 
 
 
 

Time 0 

Time 1 

Time 2 

Time 3 

The goal seems 
to be reachable here, 
but we can’t be sure 
(overestimating!)  

These are all of the 
relevant actions – 
none is applicable 

at time 2! 

May need 
to search more  
(and deeper) 

than visualized here! 



 Extend one time step and try again 
 A larger number of states may be truly reachable then 

Initial 
state 

15 
possibly 

reachable 
states 

500  
possibly 

reachable 
states 

15000  
possibly 

reachable 
states 

 
 
 
 
 

Time 0 

Time 1 

Time 2 

Time 3 
42000 

possibly 
reachable 

states 
 
 
 
 
 
 

Time 4 

Continue backward search, 
using reachable states 

to prune the search tree 
 smaller search space 



 This is a form of iterative deepening search! 

Classical problem P 

Plan! 

no solution 
of length i exists 

{ solutions to P } = 
{ solutions to P with i time steps | i ∈ ℕ, i > 0 } 





 Planning Graph also considers possibly executable actions 
 Useful to generate states, useful in backwards search 

Initial 
state 

10  possibly 

executable 

actions 

8 possibly 
reachable 

states 

47 possibly 

executable 

actions 

200 
possibly 

reachable 
states 

1200 

possibly 

executable 

actions 

4000 
possibly 

reachable 
states 

k+1 proposition levels 
Which propositions may possibly hold in each state? 

k action levels 
Which actions may possibly be executed in each step? 



 GraphPlan’s plans are sequences of sets of actions 
 Fewer levels required! 

 

Initial 
state 

10  possibly 

executable 

actions 

8 possibly 
reachable 

states 

47 possibly 

executable 

actions 

200 
possibly 

reachable 
states 

1200 

possibly 

executable 

actions 

4000 
possibly 

reachable 
states 

load(Package1,Truck1), 

load(Package2,Truck2), 

load(Package3,Truck3) 

drive(T1,A,B), 

drive(T2,C,D), 

drive(T3,E,F) 

unload(Package1,Truck1), 

unload(Package2,Truck2), 

unload(Package3,Truck3) 

Can be executed in 
arbitrary order 

Can be executed in 
arbitrary order 

Arbitrary 
order 



 Running example due to Dan Weld (modified): 
 Prepare and serve a surprise dinner, 

take out the garbage, 
and make sure the present is wrapped before waking your sweetheart! 

 

 



 

 

 

 







▪ 



▪ 

▪ 

▪ 

▪ 

▪ 

▪ 

▪ 

▪ 

▪



▪ 

▪ 

▪ 

▪ 

▪ 

▪ 

▪ 

Can’t calculate and store 
all reachable states, 

one at a time… 

Let’s calculate  
reachable literals 

instead! 
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Not all combinations of literals 
are reachable, 

but every individual literal is! 

No need to explicitly consider 
sets of actions: 

All literals made true by any set 
are already there 



 Planning Graph Structure: 
 Don’t explicitly calculate 

states  

 For each applicable action 

▪ Add its effects 
to the next state level 

▪ Add edges to preconditions 
and to effects 
for bookkeeping (used later!) 












 

 



But wait!   
Some propositions are missing… 



 They could remain 
from the previous level! 

 

 To handle this consistently, 
introduce 
maintenance (noop) actions 
 One for each literal 

 Precond = effect = 









 

 



 

 



 



 Now the graph is sound 

 If an action might be executable, 
it is part of the graph 

 If a literal might hold 
in a given state, 
it is part of the graph 

 

 But it is quite “weak”! 

 Even at state level 1, 
it seems any literal 
except served 
can be achieved 

 Let’s try to add 
some more information: 
Mutual exclusion 









 

 







▪ One causes , 
the others cause not 



 

 









 

 



Two actions in a level are mutex 
if their effects are inconsistent 

Can’t execute them in parallel, and 
order of execution is not arbitrary 

No mutexes at state level 0: 
We assume a consistent initial state! 



  is mutex with 

▪  deletes 

▪  needs 

 

  is mutex with 

▪  deletes 

▪  needs 

 

 … 









 

 



Two actions in one level are mutex 
if one destroys a precondition 
of the other 

Can’t be executed in arbitrary order 











 

 



Two propositions are mutex 
if one is the negation of the other 

Can’t be true at the same time… 



  can only be achieved by , 
 can only be achieved by , 

and  are mutex 
   and  are mutex 

 

  can only be achieved by , 
 can only be achieved by , 

and  are mutex 
   and  are mutex 









 

 



Two propositions are mutex 
if they have inconsistent support 

All actions that achieve them 
are pairwise mutex  
in the previous level 



 Two actions at the same action-level are mutex if 

 Inconsistent effects: an effect of one negates an effect of the other 

 Interference: one deletes a precondition of the other 

 Competing needs: they have mutually exclusive preconditions 

 Otherwise they don’t interfere with each other 

 Both may appear at the same time step in a solution plan 

 Two literals at the same state-level are mutex if 

 Inconsistent support: one is the negation of the other, 
or all ways of achieving them are pairwise mutex 

Recursive 
propagation 
of mutexes 



 Is there a possible solution? 

 

 No: We cannot reach a state 
where served is true 
in a single (parallel) step 









 

 













 

 















All goal literals are present in level 2, and none of them are mutex! 











 

 





























 

 



























 

 





























 

 



























 

 



















 

 

The level of the state si, 
starting at the highest level 

The set of goals we are 
trying to achieve 

A form of backwards search, 
but only among the actions in the graph 
(generally much fewer)! 



Example Planning Graph for Rover problem (mutexes not shown) 

At each step, an overestimate of reachable properties / applicable actions! 



 A form of iterative deepening: 

 

 

 

 

 

 Therefore, GraphPlan is optimal in the number of time steps 
 Not very useful: We normally care much more about 

▪ Total action cost 

▪ Number of actions (special case where action cost = 1) 

▪ Total execution time (”makespan”) 

Classical problem P 

Plan! 

load(Package1,Truck1), 

load(Package2,Truck2), 

load(Package3,Truck3) 

drive(T1,A,B), 

drive(T2,C,D), 

drive(T3,E,F) 

unload(Package1,Truck1), 

unload(Package2,Truck2), 

unload(Package3,Truck3) 





 Heuristics as approximations of h+ (optimal DR) 

cost(p and q) = max(cost(p), cost(q)) 
 

Optimistic:  
As if achieving the most expensive goal 

would always achieve the others 
 

Gives far too little information 

cost(p and q) = cost(p) + cost(q) 
 

Pessimistic: 
As if achieving one goal 

could never help in achieving the others 
 

Informative, 
but can exceed even h* by a large margin! 

  

How can we take some positive interactions into account? 



 The planning graph takes positive interactions into account 
 Creating a full planning graph for every visited state?  Too slow, but… 

 

 

 

 No delete effects  no mutexes to calculate 
  (no inconsistent effects, no interference, …) 
 

 No mutexes exist  fewer levels required 

 

 No mutexes exist  no backtracking needed in solution extraction 

 

 Can extract a Graphplan-optimal relaxed plan in polynomial time 

Let’s apply delete relaxation to the planning graph! 
(Technique pioneered by FastForward, FF) 

Heuristic: hFF(s) = number of actions in relaxed plan from state s 



 

 

 

 The plan that is extracted is only GraphPlan-optimal! 

▪ Optimal number of time steps 

▪ Possibly sub-optimal number of actions (or suboptimal action costs) 

▪  hFF  is not admissible, 
can be greater than h+ (but not smaller!) 
and can be greater than h* 

 

 Still, the delete-relaxed plan can take positive interactions into account 

▪  Often closer to true costs than hadd 

 

 Plan extraction can use several heuristics (!) 

▪ Trying to reduce the sequential length of the relaxed plan 

But calculating h+ is NP-complete! 



 Recall that plan extraction uses backward search 
 For each goal fact at a given level, we must find an achiever 

 

 

 

 

 

1. Here, some 
action has at(β) 

as a precondition 

2. Here, 
at(β) must 
be achieved 

3. Here, at least one of 
drive(α,β), noop-at-β, drive(γ,β) 

must be the achiever 



 

 

 

 

 

1. If we need 
to achieve 
this fact… 

2. And there’s a NOOP action 
available in the preceding level… 

 Then use the noop action as the achiever 

▪ Achieve every fact as early as possible! 

 In a delete-relaxed problem, this is always possible 

▪ There is a noop action  The fact can be achieved earlier 

▪ There are no delete effects  No action can conflict with achieving it earlier  



 Difficulty Heuristic: 
 If there is no maintenance action available for f in level i-1, 

we should choose an action that seems "easy" 

 

 Intuition: 

▪ The difficulty of achieving one precondition p of an action a 
corresponds to the first layer at which p can first be achieved 

 

 Define: 

▪

 

 Select an action with minimal difficulty 





∈
∈ ∈

 ∪
∈

∪

∈

Partition the goals of the problem instance 
depending on the level 

where they are first reached 

One action can achieve 
more than one goal – 

mark them all as "done" 

Must achieve prec(a) at some 
time!  Heuristic: Do this at the 
first level we can – layerof(f). 

All goals that could not be 
reached before level i must 

be reached at level i 



 FF also pioneered enforced hill-climbing (EHC) 
 Breadth-first search until you find a node with better heuristic value 

None better than 10: 
Expand all! 

Some better than 10: 
Choose the best 

Compared to  
standard HC:  

 
More persistent. 

 
More systematic 
when searching 

for 
better nodes. 



 FF also introduced helpful actions 
 Approximately: 

▪ The actions in the first action level of the delete-relaxed plan 

▪ Plus all other actions that could achieve the same subgoals 
(but did not happen to be chosen) 

 

 Helpful actions are more likely to lead you closer to the goal 

▪ Though they are not the only ones that could do so… 

▪ Slightly misleading name 

 

 FF restricts EHC to only use and apply helpful actions! 

 

 

 



Possible in level 1: 
   carry, roll, cook, wrap 

 

Used in relaxed plan: 
    roll, cook 

 

Achieved at level 1: 
    garbage, dinner 

 

Helpful actions: 
    carry, roll, cook 

    (because carry could 
      have been used to 
      achieve garbage) 

 

state-level 0 state-level 1 action-level 1 

garbage 

clean 

quiet 

present 

garbage 

clean 

quiet 

dinner 

present 

garbag

e 

present 

clean 

quiet 

dinner dinner 

carry 

roll 

cook 

wrap 

…more levels 

Suppose 
this is the 

relaxed plan 
generated 

by FF… 



 EHC with helpful actions: 
 Non-helpful actions crossed over, never expanded 



 EHC with helpful actions: 








 Incomplete 
if there are dead ends! 

 
If EHC fails, fall back on 
best-first search using 

f(s)=hFF(s) 



 Finally: 
 During enforced hill climbing 

FF uses several goal ordering techniques 

 Like the use of EHC and helpful actions, 
these techniques also introduce incompleteness 

▪ For more information: 
Hoffmann & Nebel 
The FF Planning System: Fast Plan Generation through Heuristic Search 
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Fully Automated Blocks Time Comparison 
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Fully Automated Schedule Time Comparison 
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 Lasting impact! 
 Many planners at least partly use the FF heuristic  

▪ At least as one of their possible heuristics 

 

 Many planners use enforced hill climbing 

▪ At least as one of their possible search methods 

 

 Many planners have extended the relaxed planning graph 

▪ For temporal actions, resources, … 

 

 



 Example: Temporal Planning Graph 


