
Jonas Kvarnström

Automated Planning Group

Department of Computer and Information Science

Linköping University

 Classical Planning: Find a path in a finite graph

initial

goal
goal

goal

We’ve seen this
direction:

Forward search,
initial goal

Forward State Space

Given a state :

For every action a applicable in s,
generate the state
that results from applying a to s

Corresponds directly to the initial state
Initial search node

Child node Child node

Goal criterion: The state of the node
satisfies the goal formula

Plan extraction: Generate the sequence of
all actions on the path to the goal node

Edges correspond to applicable actions

Forward planning, forward-chaining,
progression: Begin in the initial state

How to interpret a node:
If I can find a way

from this state to a goal state,
then I have a complete plan

A complication in backward search:
We have multiple goal states

 Classical Planning: Find a path in a finite graph

initial

goal
goal

goal

What about
this direction:

Backward,
goal initial?

”Simple” Backward State Space

Given a goal state :

For every action a relevant to ,
generate the state
in which executing a would result in

Corresponds to the single goal state
Initial search node

Child node Child node

Stop criterion: The initial state
satisfies the current goal state

Plan extraction: Generate the sequence of
all actions on the constructed path

Edges correspond to
”relevant actions, executed backwards”

Backward planning, backward-chaining,
regression: Begin in the goal state

How to interpret a node:
If I can find a way

from the initial state to this goal state,
then I have a complete plan

First, the simple case: A single goal state!

”Simple” case: A single goal state!

The goal
is not

already
achieved

…
This must have

been true before

was executed

This must have
been true before

was executed

 Relevant actions:

▪

▪

▪

▪ Cycle!

”Simple” case: A single goal state!

Now these
states are

goals…

Second, allow sets of goal states…

 Backward State Space

Given a set G of goal states:

For every action a relevant to G,
generate the set of states
from which a would result in a state in G

Corresponds to the set of goal states
Initial search node

Child node Child node

Stop criterion:
The initial state satisfies

at least one of the node’s goal states

Plan extraction: Generate the sequence of
all actions on the constructed path

Edges correspond to
”relevant actions, executed backwards”

Backward planning, backward-chaining,
regression: Begin in the set of goal states

How to interpret a node:
If I can find a way from the initial state

to one of these states,
then I have a complete plan

How do we represent a set of goal states?

Too expensive to calculate
regression, relevant actions

Arbitrary set of ground goal literals:

Arbitrary set of states? Use classical representation!

γ
Γ γ ∈

γ γ
∪

Γ γ ∈

∩ ∅
∩ ∅
∩ ∅

precond(a) was true,
so a was applicable

Everything except
effects(a) must

already be true before a

Contribute to the goal,
and do not destroy it

Forward / progression:
Which state do I end up in?

Backward / regression:
Which states could I start from?

All successor subgoals

Regression Example

The goal
is not

already
achieved

…

Represents
many

possible
goal states!

 Relevant:
Achieves
on(B,C),
does not

delete any
goal fact

Relevant:
Achieves
on(A,B),
does not

delete any
goal fact

Symmetric problems!

Forward search Backward search

I can reach this node
from the initial state…
But what comes next?
Can I reach the goal?

Efficiently?

I can reach the goal
from this node…

But what comes before?
Can I reach it from ?

Efficiently?

FORWARD SEARCH

 Problematic when:

 There are many applicable actions
 high branching factor
 need guidance

 Blind search knows
if an action is applicable,
but not if it will contribute
to the goal

BACKWARD SEARCH

 Problematic when:

 There are many relevant actions
 high branching factor
 need guidance

 Blind search knows
if an action contributes to the goal,
but not if you can achieve its
preconditions

Blind backward search

is generally better than blind forward search:
Relevance tends to provide better guidance than applicability

But this in itself is not enough to generate plans quickly!

 Let’s take a look at expressivity:
 Suppose we have disjunctive preconditions

▪

 How do we apply such actions backwards?

▪ More complicated
disjunctive
goals to achieve?

▪ Additional
branching?

Some extensions are less straight-forward in backward search (but possible!)

 Consider heuristics using forward search:

New search node
new starting state

recalculate from scratch!

 What about backward search?

New search node
same starting state
use the old ∆m values
for those goal subsets

that were already
calculated!

 Results:
 Faster calculation of heuristics

 Applied in HSPr (non-optimal) and HSPr* (optimal)

 Difficult to compare directly due to different search spaces

▪ Requires different search algorithms

▪ Permits different tweaks and optimizations

 In limited tests:

▪ HSPr often faster, typically by a factor of

▪ HSP sometimes faster…

 Not true for all heuristics!

Jonas Kvarnström

Automated Planning Group

Department of Computer and Information Science

Linköping University

BACKWARD SEARCH

 We know if the effects of an action
can contribute to the goal

 Don't know if we can reach a state
where its preconditions are true
so we can execute it

at(LiU)
…

at(home)
have-heli

at(home)
have-shoes

 Suppose we could quickly calculate all reachable states
at time

Initial
state

10
reachable

states

200
reachable

states

4000
reachable

states

Time 0

Time 1

Time 2

Time 3

12000
reachable

states

Time 4

Goal not
satisfied

in any
state

Goal not
satisfied

Goal not
satisfied

in any
state

Goal not
satisfied

in any
state

Goal satisfied
in 14 of the states:

The shortest solution
must have 4 actions!

 Reachability could be a pruning filter in backward search!

Initial
state

10
reachable

states

200
reachable

states

4000
reachable

states

Time 0

Time 1

Time 2

Time 3

12000
reachable

states

Time 4

Not true (reachable) in any of the 4000 states at time 3!
We know preconds can’t be achieved in 3 steps backtrack

True in 14 states

Initial
state

10
reachable

states

200
reachable

states

4000
reachable

states

Time 0

Time 1

Time 2

Time 3

12000
reachable

states

Time 4

Preconds are achievable at time 3!
(True in several states)

Continue backward search
as usual,

using reachable states
to prune the search tree

True in 14 states

 ”Suppose we could quickly calculate all reachable states…”
 In most cases, calculating exactly the reachable states

would take far too much time and space…

Problem: This is not possible!

 Solution: Don’t be exact!
 Quickly calculate an overestimate

Initial
state

15
possibly

reachable

500
possibly

reachable
states

15000
possibly

reachable
states

Time 0

Time 1

Time 2

Time 3

…out of a billion?

42000
possibly

reachable
states

Time 4

 Planning algorithm:
 Keep calculating until we find a timepoint

where the goal might be achievable

Initial
state

15
possibly

reachable
states

500
possibly

reachable
states

15000
possibly

reachable
states

Time 0

Time 1

Time 2

Time 3

Goal not
satisfied

in any
state

Goal not
satisfied

Goal not
satisfied

in any
state

Satisfied in
37 possibly reachable states:

The shortest solution must have
at least 3 actions!

 Backward search will verify what is truly reachable
 In a much smaller search space than plain backward search

Initial
state

15
possibly

reachable
states

500
possibly

reachable
states

15000
possibly

reachable
states

Time 0

Time 1

Time 2

Time 3

The goal seems
to be reachable here,
but we can’t be sure
(overestimating!)

These are all of the
relevant actions –
none is applicable

at time 2!

May need
to search more
(and deeper)

than visualized here!

 Extend one time step and try again
 A larger number of states may be truly reachable then

Initial
state

15
possibly

reachable
states

500
possibly

reachable
states

15000
possibly

reachable
states

Time 0

Time 1

Time 2

Time 3
42000

possibly
reachable

states

Time 4

Continue backward search,
using reachable states

to prune the search tree
 smaller search space

 This is a form of iterative deepening search!

Classical problem P

Plan!

no solution
of length i exists

{ solutions to P } =
{ solutions to P with i time steps | i ∈ ℕ, i > 0 }

 Planning Graph also considers possibly executable actions
 Useful to generate states, useful in backwards search

Initial
state

10 possibly

executable

actions

8 possibly
reachable

states

47 possibly

executable

actions

200
possibly

reachable
states

1200

possibly

executable

actions

4000
possibly

reachable
states

k+1 proposition levels
Which propositions may possibly hold in each state?

k action levels
Which actions may possibly be executed in each step?

 GraphPlan’s plans are sequences of sets of actions
 Fewer levels required!

Initial
state

10 possibly

executable

actions

8 possibly
reachable

states

47 possibly

executable

actions

200
possibly

reachable
states

1200

possibly

executable

actions

4000
possibly

reachable
states

load(Package1,Truck1),

load(Package2,Truck2),

load(Package3,Truck3)

drive(T1,A,B),

drive(T2,C,D),

drive(T3,E,F)

unload(Package1,Truck1),

unload(Package2,Truck2),

unload(Package3,Truck3)

Can be executed in
arbitrary order

Can be executed in
arbitrary order

Arbitrary
order

 Running example due to Dan Weld (modified):
 Prepare and serve a surprise dinner,

take out the garbage,
and make sure the present is wrapped before waking your sweetheart!

▪

▪

▪

▪

▪

▪

▪

▪

▪

▪

▪

▪

▪

▪

▪

▪

▪

Can’t calculate and store
all reachable states,

one at a time…

Let’s calculate
reachable literals

instead!

D
ep

en
d

in
g

 o
n

 w
h

ic
h

 a
ct

io
n

s
w

e
ch

o
o

se
 h

er
e…

Not all combinations of literals
are reachable,

but every individual literal is!

No need to explicitly consider
sets of actions:

All literals made true by any set
are already there

 Planning Graph Structure:
 Don’t explicitly calculate

states

 For each applicable action

▪ Add its effects
to the next state level

▪ Add edges to preconditions
and to effects
for bookkeeping (used later!)

But wait!
Some propositions are missing…

 They could remain
from the previous level!

 To handle this consistently,
introduce
maintenance (noop) actions
 One for each literal

 Precond = effect =

 Now the graph is sound

 If an action might be executable,
it is part of the graph

 If a literal might hold
in a given state,
it is part of the graph

 But it is quite “weak”!

 Even at state level 1,
it seems any literal
except served
can be achieved

 Let’s try to add
some more information:
Mutual exclusion

▪ One causes ,
the others cause not

Two actions in a level are mutex
if their effects are inconsistent

Can’t execute them in parallel, and
order of execution is not arbitrary

No mutexes at state level 0:
We assume a consistent initial state!

 is mutex with

▪ deletes

▪ needs

 is mutex with

▪ deletes

▪ needs

 …

Two actions in one level are mutex
if one destroys a precondition
of the other

Can’t be executed in arbitrary order

Two propositions are mutex
if one is the negation of the other

Can’t be true at the same time…

 can only be achieved by ,
 can only be achieved by ,

and are mutex
 and are mutex

 can only be achieved by ,
 can only be achieved by ,

and are mutex
 and are mutex

Two propositions are mutex
if they have inconsistent support

All actions that achieve them
are pairwise mutex
in the previous level

 Two actions at the same action-level are mutex if

 Inconsistent effects: an effect of one negates an effect of the other

 Interference: one deletes a precondition of the other

 Competing needs: they have mutually exclusive preconditions

 Otherwise they don’t interfere with each other

 Both may appear at the same time step in a solution plan

 Two literals at the same state-level are mutex if

 Inconsistent support: one is the negation of the other,
or all ways of achieving them are pairwise mutex

Recursive
propagation
of mutexes

 Is there a possible solution?

 No: We cannot reach a state
where served is true
in a single (parallel) step

All goal literals are present in level 2, and none of them are mutex!

The level of the state si,
starting at the highest level

The set of goals we are
trying to achieve

A form of backwards search,
but only among the actions in the graph
(generally much fewer)!

Example Planning Graph for Rover problem (mutexes not shown)

At each step, an overestimate of reachable properties / applicable actions!

 A form of iterative deepening:

 Therefore, GraphPlan is optimal in the number of time steps
 Not very useful: We normally care much more about

▪ Total action cost

▪ Number of actions (special case where action cost = 1)

▪ Total execution time (”makespan”)

Classical problem P

Plan!

load(Package1,Truck1),

load(Package2,Truck2),

load(Package3,Truck3)

drive(T1,A,B),

drive(T2,C,D),

drive(T3,E,F)

unload(Package1,Truck1),

unload(Package2,Truck2),

unload(Package3,Truck3)

 Heuristics as approximations of h+ (optimal DR)

cost(p and q) = max(cost(p), cost(q))

Optimistic:
As if achieving the most expensive goal

would always achieve the others

Gives far too little information

cost(p and q) = cost(p) + cost(q)

Pessimistic:
As if achieving one goal

could never help in achieving the others

Informative,
but can exceed even h* by a large margin!

How can we take some positive interactions into account?

 The planning graph takes positive interactions into account
 Creating a full planning graph for every visited state? Too slow, but…

 No delete effects no mutexes to calculate
 (no inconsistent effects, no interference, …)

 No mutexes exist fewer levels required

 No mutexes exist no backtracking needed in solution extraction

 Can extract a Graphplan-optimal relaxed plan in polynomial time

Let’s apply delete relaxation to the planning graph!
(Technique pioneered by FastForward, FF)

Heuristic: hFF(s) = number of actions in relaxed plan from state s

 The plan that is extracted is only GraphPlan-optimal!

▪ Optimal number of time steps

▪ Possibly sub-optimal number of actions (or suboptimal action costs)

▪ hFF is not admissible,
can be greater than h+ (but not smaller!)
and can be greater than h*

 Still, the delete-relaxed plan can take positive interactions into account

▪ Often closer to true costs than hadd

 Plan extraction can use several heuristics (!)

▪ Trying to reduce the sequential length of the relaxed plan

But calculating h+ is NP-complete!

 Recall that plan extraction uses backward search
 For each goal fact at a given level, we must find an achiever

1. Here, some
action has at(β)

as a precondition

2. Here,
at(β) must
be achieved

3. Here, at least one of
drive(α,β), noop-at-β, drive(γ,β)

must be the achiever

1. If we need
to achieve
this fact…

2. And there’s a NOOP action
available in the preceding level…

 Then use the noop action as the achiever

▪ Achieve every fact as early as possible!

 In a delete-relaxed problem, this is always possible

▪ There is a noop action The fact can be achieved earlier

▪ There are no delete effects No action can conflict with achieving it earlier

 Difficulty Heuristic:
 If there is no maintenance action available for f in level i-1,

we should choose an action that seems "easy"

 Intuition:

▪ The difficulty of achieving one precondition p of an action a
corresponds to the first layer at which p can first be achieved

 Define:

▪

 Select an action with minimal difficulty

∈
∈ ∈

 ∪
∈

∪

∈

Partition the goals of the problem instance
depending on the level

where they are first reached

One action can achieve
more than one goal –

mark them all as "done"

Must achieve prec(a) at some
time! Heuristic: Do this at the
first level we can – layerof(f).

All goals that could not be
reached before level i must

be reached at level i

 FF also pioneered enforced hill-climbing (EHC)
 Breadth-first search until you find a node with better heuristic value

None better than 10:
Expand all!

Some better than 10:
Choose the best

Compared to
standard HC:

More persistent.

More systematic
when searching

for
better nodes.

 FF also introduced helpful actions
 Approximately:

▪ The actions in the first action level of the delete-relaxed plan

▪ Plus all other actions that could achieve the same subgoals
(but did not happen to be chosen)

 Helpful actions are more likely to lead you closer to the goal

▪ Though they are not the only ones that could do so…

▪ Slightly misleading name

 FF restricts EHC to only use and apply helpful actions!

Possible in level 1:
 carry, roll, cook, wrap

Used in relaxed plan:
 roll, cook

Achieved at level 1:
 garbage, dinner

Helpful actions:
 carry, roll, cook

 (because carry could
 have been used to
 achieve garbage)

state-level 0 state-level 1 action-level 1

garbage

clean

quiet

present

garbage

clean

quiet

dinner

present

garbag

e

present

clean

quiet

dinner dinner

carry

roll

cook

wrap

…more levels

Suppose
this is the

relaxed plan
generated

by FF…

 EHC with helpful actions:
 Non-helpful actions crossed over, never expanded

 EHC with helpful actions:

 Incomplete
if there are dead ends!

If EHC fails, fall back on
best-first search using

f(s)=hFF(s)

 Finally:
 During enforced hill climbing

FF uses several goal ordering techniques

 Like the use of EHC and helpful actions,
these techniques also introduce incompleteness

▪ For more information:
Hoffmann & Nebel
The FF Planning System: Fast Plan Generation through Heuristic Search

0.1

10

1000

S
e

c
o

n
d

s

 System

R

 FF

 HSP2

 STAN

 GRT

Mips

Fully Automated Blocks Time Comparison

0.001

0.1

10

1000

S
e

c
o

n
d

s

 BlackBox

 Mips

 System R

 FF

 HSP2

 IPP

 PropPlan

 TokenPlan

 STAN

 BDDPlan

 AltAlt

 GRT

Fully Automated Schedule Time Comparison

0.01

1

100

10000

2

3

5

7

8

1
0

1
2

1
3

1
5

1
7

1
8

2
0

2
2

2
3

2
5

2
7

2
8

3
0

3
2

3
3

3
5

3
7

3
8

4
0

4
2

4
3

4
5

4
7

4
8

5
0

S
e

c
o

n
d

s

 Mips

 FF

 HSP2

 IPP

 PropPlan

 BDDPlan

 Lasting impact!
 Many planners at least partly use the FF heuristic

▪ At least as one of their possible heuristics

 Many planners use enforced hill climbing

▪ At least as one of their possible search methods

 Many planners have extended the relaxed planning graph

▪ For temporal actions, resources, …

 Example: Temporal Planning Graph

