
Jonas Kvarnström

Automated Planning Group

Department of Computer and Information Science

Linköping University

 Let’s take a different view of planning!
 Instead of a goal, let’s specify a task to perform

▪ 

 If I want to travel-to some place, I know I can:

▪ Walk

▪ Go by bike

▪ Drive

▪ Fly

 If I want to travel-to Paris using the fly method, I know I have to:

We can specify alternative methods
for performing a task

Alternative  must choose which to use  planning!

Get a ticket
Travel

to local airport
Fly

to remote airport
Travel to final

destination

We can decompose tasks into simpler subtasks

Recursive! Recursive!

  Hierarchical Task Network planning
 Instead of goals, we have tasks to perform

 For each non-primitive task:

▪ One or more methods can be applied, resulting in subtasks

 A primitive task corresponds to an operator in standard planning

A simple form of Hierarchical Task Network

travel(x,y)

buy-ticket (airport(x), airport(y)) travel (x, airport(x)) fly(airport(x), airport(y)) travel (airport(y), y)

air-travel(x,y)

Task

Method

In Totally Ordered Simple Task Networks (STN),
each method must specify a sequence of subtasks

(indicated by the horizontal arrow)

The “travel” task has a method
called “air-travel”

Each method can also have a precondition
(not shown here)

 Any non-primitive task can have many methods
 So you still need to search, to determine which method to use

▪ You can also travel by taxi-travel (faster) or foot-travel (cheaper)

travel(x,y)

get-taxi-at(x) ride-taxi(x, y) pay-driver

taxi-travel(x,y)

Task

Method

travel(x,y)

walk(x, y)

foot-travel(x,y)

Task

Method

Non-primitive
subtasks

Primitive
subtask

 Plans have a natural
hierarchical structure!

travel(x,y)

buy-ticket (airport(x), airport(y)) travel (x, airport(x)) fly (airport(x), airport(y)) travel (airport(y), y)

air-travel(x,y)

Task

Method

get-taxi-at(x) ride-taxi(x, airport(x)) pay-driver

taxi-travel(x,airport(x))

walk(x, y)

foot-travel(x,y)

 Let’s switch to Dock Worker Robots…

 To move the topmost container from one pile to another:








move-topmost-container(pile1, pile2)

take(…) put(…)

take-and-put(…)

Task

Method

In the task, we only specify
the ”natural” parameters

In each method, we may use
additional parameters

whose values are chosen by
the planner – just as in

classical planning!

Then we use the precond
to constrain allowed values
(must be the topmost

container of , …)

 We want to move three entire stacks of containers
 But preserve the order of the containers!

 Call this task ()

Initial state, with 3 locations, 3 piles to move

Corresponding goal, all piles moved

 How do we do it?
 First move all containers to another pile,

so they end up in inverse order

 Then move them to the real destination

 Total-order formulation of move-each-twice:
 Task:

▪ method:

▪ precond:

▪ subtasks:
All subtasks are

sequentially
ordered

 Alternative total-order formulation of move-each-twice:


▪

▪

▪

Let the planner choose an intermediate pile
(there might be several alternatives)!

 How can we implement the task ?

 Must move all containers in a stack, but we don’t know how many…

 HTN planning allows recursion

▪ Move the topmost container (we know how to do that!)

▪ Then move the rest

 First attempt: Task

▪ method:

▪ precond:

▪ subtasks:

But the bottom of the pile is the pallet, and we don’t want to move that!

In the BW, we had an ”ontable” predicate.
The bottom block was not ”on” another block.

In DWR: A special ”bottom object” in each pile,
the pallet.

 Problem fixed: Task

▪ Method

▪ precond:

▪ subtasks:

The topmost container is on top of something (x), so it can’t be the pallet

 The planner can now create a structure like this:

move-topmost-container(pile1, pile2)

take(…) put(…)

take-and-put(…)

move-stack(pile1, pile2)

recursive-move(pile1, pile2, …)

move-stack(pile1, pile2)

recursive-move(pile1, pile2, …)

move-topmost-container(pile1, pile2)

take(…) put(…)

take-and-put(…)

move-stack(pile1, pile2)

recursive-move(pile1, pile2, …)

But when will the recursion end?

move-topmost move-stack

 At some point, only the pallet will be left in the stack
 Then recursive-move will not be applicable

 But we specified that we must execute some form of move-stack!

 move-topmost-container(pile1, pile2)

take(…) put(…)

take-and-put(…)

move-stack(pile1, pile2)

recursive-move(pile1, pile2, …)

move-stack(pile1, pile2)

recursive-move(pile1, pile2, …)

move-topmost-container(pile1, pile2)

take(…) put(…)

take-and-put(…)

move-stack(pile1, pile2)

 is empty!
No applicable methods…
Planner would backtrack!

 We must have a method that can terminate the recursion
 Method

▪ task:

▪ precond:

▪ subtasks:

move-topmost-container(pile1, pile2)

take(…) put(…)

take-and-put(…)

move-stack(pile1, pile2)

recursive-move(pile1, pile2, …)

move-stack(pile1, pile2)

recursive-move(pile1, pile2, …)

move-topmost-container(pile1, pile2)

take(…) put(…)

take-and-put(…)

move-stack(pile1, pile2)

already-moved(pile1,pile2)

Method preconds satisfied
Zero subtasks!

Unique pallet object –
not a variable!

 An HTN planning domain specifies:
 Tasks that are available (primitive and non-primitive)

 Methods to decompose non-primitive tasks into subtasks

 Constraints to be enforced

▪ E.g., don't use a taxi for long distances

 An HTN problem instance specifies:
 Initial state information

 One or more tasks to perform, with concrete parameters

▪ For Total Order Simple Task Networks:
A sequence of tasks to perform

No goals to be achieved!
We should perform tasks.

 A solution is any executable action sequence
that can be generated from the initial task(s)
by recursively applying
 methods to non-primitive tasks

 operators to primitive tasks

 (No goals to be achieved)

 The planner uses only the methods specified for a given task
 Will not try arbitrary actions…

 For this to be useful, you must have useful “recipes” for all tasks

 Total Order Forward Decomposition:

mtc(pile1, pile2)

take(…) put(…)

take-and-put(…)

move-stack(pile1, pile2)

recursive-move(pile1, pile2, …)

move-stack(pile1, pile2)

recursive-move(pile1, pile2, …)

mtc(pile1, pile2)

take(…) put(…)

take-and-put(…)

move-topmost move-stack

take(…) put(…)

take(…) put(…)

move-stack(pile1, pile2)

recursive-move(pile1, pile2, …)

Like forward search, TFD generates actions
in the same order in which they’ll be executed
 When we plan the next task, we know the
current state of the world

Task to perform, specified in
the problem instance

Check preconds in first!

Check
preconds…

 TFD takes four inputs:
 – the current state

 – a list of tasks to be achieved in the specified order

 – the available operators

 – the available methods

 :

▪



▪

▪



 ∈

∅

▪ ∈

▪  γ


π 
π

π

If tasks are ground…



▪

▪



 σ ∈
σ σ

∅

▪ σ ∈

▪  γ
 σ

π
π

π

If tasks can be non-ground:

Basically, σ can specify variable
bindings for parameters of …



▪

▪

▪



 σ ∈
σ σ

∅
σ ∈

▪

 σ
π

π
π

travel(x,y)

get-taxi-at(x) ride-taxi(x, y) pay-driver

taxi-travel(x,y)

As before,
but

methods
instead of

actions

Replace
the task

by its
subtasks

 TFD requires totally ordered methods
 Can’t interleave subtasks of different tasks

 Suppose we want to fetch one object somewhere,
then return to where we are now

 Task:

▪ method:

▪ precond:

▪ subtasks:

 Task:

▪ method:

▪ method:

pickup(p) travel(a,b) travel(b,a)

I’m at A, the thing to fetch is at B

fetch(p)

get(p, a, b)

 Suppose we want to fetch two objects somewhere, and return
 (Simplified example – consider “fetching all the objects we need”)

 One idea: Just “fetch” each object in sequence
 Task:

▪ method:

▪ precond:

▪ subtasks:

get(p) get(q)

pickup(p) travel(a,b) travel(b,a) pickup(q) travel(a,b) travel(b,a)

I’m at A, both objects are at B

Have to start with the first Fetch… I’m back at A and have to walk again!

fetch-both(p, q)

get-both(p,q)

fetch(p) fetch(q)

 To generate more efficient plans using total-order STNs:
 Use a different domain model!



▪

▪

▪



▪

▪

▪

 Partially ordered method:
 The subtasks are a partially ordered set {t1, …, tk}

buy-ticket (a(x), a(y)) travel (x, a(x)) fly (a(x), a(y)) travel (a(y), y)

air-travel(x,y)

travel(x,y)

No horizontal arrow
ordering all tasks

Indicate partial ordering

 With partially ordered methods, subtasks can be interleaved

 Requires a more complicated planning algorithm: PFD

 SHOP2: implementation of PFD-like algorithm + generalizations

travel(a,b) pickup(p) travel(b,b) pickup(q) travel(b,a) travel(a,a)

fetch-both(p, q)

get-both(p,q)

fetch(p) fetch(q)

walk(a,b) stay-at(b) travel(b,a) stay-at(a)

get(p) get(q)

pickup(p) pickup(q)

 Partial-order formulation of move-each-twice:

 Old total-order formulation:

Each stack is moved to the temp pile
before it is moved to its final pile

Otherwise, no ordering constraints

 PFD takes four inputs:
 – the current state

 – a network/graph of tasks to be achieved

 – the available operators

 – the available methods

 :

▪



▪

▪

▪



 σ ∈
σ σ

∅

σ ∈

▪  γ
 σ

π
π

π

A task that can be first – not
necessarily a unique ”first

task”!



▪

▪

▪



 σ ∈
σ σ

∅
σ ∈

▪

  

π
π

π travel(x,y)

get-taxi-at(x) ride-taxi(x, y) pay-driver

taxi-travel(x,y)

Replacing the task by its subtasks
is more complicated here!

Either of these
could be first

 What does   mean?

 We picked a task that could be first

 We picked a partial-order decomposition of that task

 First, we replace the selected task with its expansion

buy-ticket (x, y) travel (x, b(x)) fly (b(x), b(y)) travel (b(y), y)

bus-travel(x,y)

travel(x,y)

prepare-lecture() travel (home, liu) do-lecture()

teach-by-lecture()

teach()

buy-ticket (x, y) travel (x, b(x)) fly (b(x), b(y)) travel (b(y), y)

bus-travel(x,y)

prepare-lecture() travel (home, liu) do-lecture()

teach-by-lecture()

teach()

 Second, the method itself can have preconditions
 We have tested the preconditions, and they hold

 We must make sure they still hold when the first subtask is executed

 Must do u’s first subtask before the first subtask of every ti ≠ u
 The first subtask of

before the first subtask of

 But which one is first? It’s partially ordered, so we don’t know!

 So  creates one alternative for each possible “first” subtask of u

▪ In our case, or can be first

 Then we nondeterministically choose between these alternatives

 Note that only methods are partially ordered
 The problem specification does not have to define

the exact execution order in advance

 The final plan is totally ordered!
 The planner chooses an order

Any classical problem
Polynomial-time
transformation

Corresponding
STN problem

For some STN problems,
there exists no classical problem with the same set of solutions!

Even Simple Task Networks
are strictly more expressive than classical planning

 Artificial example:
 Two primitive tasks, a and b

 Two STN methods:



 Initial task:

a aNbN b

continue()

aNbN

a b

terminate()

aNbN

aNbN

 Possible solutions:


 No classical problem has this set of solutions!

▪ Corresponds to a finite-state automaton,
which cannot recognize

▪ STNs can even express undecidable problems

a b

continue()

aNbN

a b

terminate()

aNbN a b

continue()

a b

terminate()

aNbN

a b

continue()

aNbN

aNbN

a b

terminate()

aNbN

 Control Rules or Hierarchical Task Networks?
 Both can be very efficient and expressive

 If you have ”recipes” for everything, HTN can be more convenient

▪ Can be modeled with control rules, but not intended for this purpose

▪ You have to forbid everything that is ”outside” the recipe

 If you have knowledge about ”some things that shouldn’t be done”:

▪ With control rules, the default is to ”try everything”

▪ Can more easily express localized knowledge
about what should and shouldn’t be done

▪ Doesn’t require knowledge of all the ways in which the goal can be reached

