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 Recall the fundamental assumption that we only specify 
 Structure: Objects and state variables 

 Initial state and goal 

 Physical preconditions and physical effects of actions 

We only specify what can be done 

The planner must decide what should be done 

But even the most sophisticated heuristics and domain analysis methods 
lack our intuitions and background knowledge… 



 

 

 

 
 Planners taking advantage of additional knowledge can be called: 

▪ Knowledge-rich 

▪ Domain-configurable 

▪ (Sometimes incorrectly called “domain-dependent”) 

Let’s see how we can make a planner take advantage 
of what we know! 



Domain-specific 

Must write an entire planner 
Can specialize the planner for very high performance 

Domain-configurable 

High-level (but sometimes complex) domain definition 
Can provide more information for high performance 

“Domain-independent” 

Provide minimal information about actions 
Less efficient 

More effort 
Higher 

performance 



Domain-specific 

Only works in a single domain 

Domain-configurable 

Easier to improve expressivity and efficiency 
 Often practically useful for a larger set of domains! 

“Domain-independent” 

Should be useful for a wide range of domains 

More 
coverage 





 First, what we’re already used to… Heuristics! 
 Given the current state, 

how much will it cost to reach the goal? 

 

How can a planner take advantage of what we know? 



 Blocks World, step : 

B should be on C 
 

A should be on B 
 

A should be on B, 
B should be on C  
 

We are not holding block A, and it is misplaced 
 we will need one  or , 

then one  or 

A should be on B 
B should be on C 
 



 Blocks World, step : 

B should be on C 
 

A should be on B / remain above C 
 

A should be on B / remain above C, 
B should be on C  
 

In addition to the previous condition, 
block A is above block C, which it should remain above 

we need to place it somewhere temporarily, then restore it 
( )

 two more actions 

A should be on B, 
but remain above C 
 
B should be on C 
 
 



 Blocks World, step : 

+ Holding A 
 

+ Holding B 
 

+ Holding D 
 

 

If we are holding a block, 
we will need at least one putdown or one stack for that block 

Steps 1/2 never apply 
for the same block 
 independent 
 addition yields 

admissible heuristic! 



 Blocks World, step : 

+ Holding A, its destination B is not ready 
 

A should be on B, 
holding B, its destination D is not ready 
 

 

A should be on B, 
B should be on C 
 

We are holding A, 
but its destination is B, which is not ready 

 We also need to put it down now, pick it up later 
(two more actions) 



 Does this calculate true costs, h*(s)? 
 No! 

 

 

 
 A should not be on C, not remain above C  

 D should not be on B, not remain above B  

 Total estimated cost: 

 Shortest plan: 

Domain-configurable heuristics: 
Feasible, but not so commonly used! 





 Heuristics only prioritize 
 Good when you are uncertain – keep nodes in case they are needed later 

 We can often find cases where we can prune the search tree 
 Prune = beskära = cutting off branches 

 If we “don’t approve” of a search node, 
backtrack and never consider the node or its descendants again! 

 

 

 

 



 Emergency Services Logistics 
 Goal: 

 Now: 

 

 

 

 

 

 

 

 

 Picking up  again is physically possible 

 It “destroys” , which is a goal – obviously stupid! 

The branch beginning with  can be pruned from the tree! 



 

 

 Goal: 

 Now: 

 

 

 

 

 

 Moving disk  to the third peg is possible but “destroys” a goal:  

▪ Is this also obviously stupid? 

▪ No, it is necessary!  Disk  is blocking us from moving disk … 

Deciding which goals the planner may “destroy” 
is one of many non-trivial tasks for a planner! 

 

 It should benefit from more control information from the user! 

Should we always prevent the destruction of achieved goals? 



 

 





▪

▪

▪ …and the goal doesn’t state that crate should end up at location! 

 

 

 Alternative 1: New predicate ” ” 

▪ Duplicates the information already specified in the goal 

▪

 

 Alternative 2: New language extension ” φ ” 

▪ Evaluated in the set of goal states, not in the current state 

▪

 

Simplest control information: Precondition Control 

How to express this??? 

Supported by any 
planner 

Requires 
extensions, but 

more convenient 



 A UAV should never be where it can’t reach a refueling point 
 If this happens in a plan, we can’t possibly 

extend it into a solution satisfying the goal 

 

 How to express this? 
 

 

Must be verified for every action: 
, … 

 
Must be checked even when 

the UAV is idle, hovering 
 

Inconvenient! 

Using preconditions again? 

Defined once, 
applied to every generated state 

 
  



Using state constraints? 

Comparatively simple extension! 



Current state 
 
 
 
 
 
 
 
 
 

New state 
 
 
 
 
 
 
 
 
 

 Testing such state constraints is simple 
 When we apply an action, a new state is generated 

▪ If the formula is not true in that state: Prune! 

 Similar to preconditions 

▪ But tested in the state after an action is applied, not before! 

 

apply 
 

unstack(a,c) 

apply 
 

fly(…) 



 A package on a carrier should remain there until it reaches its 
destination 

▪ For any plan where we move it, 
there is another (shorter, more efficient) plan where we don’t 

 

How to express this as a single formula? 



 “A package on a carrier should remain there 
until it reaches its destination” 

 

 

 

 

 

 

 

 

 

 

¬on(pkg1,carr3) 

at(pkg1, depot4) 
on(pkg1,carr3) 

¬on(pkg1,carr3) 

at(pkg1,dest1) 

If the 
package is 

on a carrier… 

…it must remain on the carrier 
in all future states… 

up to some 
future state 

where it is at 
its dest! 

unload(pkg1,dest1) 

¬on(pkg1,carr3) 

at(pkg1, depot4) 
on(pkg1,carr3) 

¬on(pkg1,carr3) 

at(pkg1,otherloc) 

on carrier must remain… backtrack! 

unload(pkg1,otherloc) 

We need a formula constraining an entire state sequence, not a single state! 
 

In planning, this is called a control formula or control rule 



 One possibility: Use Linear Temporal Logic (as in TLplan) 
 All formulas evaluated relative to a state sequence and a current state 

 Assuming that  is a formula: 

▪   is true in the next state, e.g., 

▪ ♢  is true either now or in some future state 

▪ □  is true now and in all future states  

▪ ⋃  is true either now or in some future state, 
  and   is true until then 

 

 

 

 

 

 

 

  

We need to extend the logical language! 



 “A package on a carrier should remain there 
until it reaches its destination” 

▪

 





 How do we come up with good control rules? 
 Good starting point: ”Don’t be stupid!” 

 Trace the search process – suppose the planner tries this: 

 

 

 

 

 

 

 

 Placing F on top of B is stupid, because we’ll have to remove it later 

▪ Would have been better to put F on the table! 

 Conclusion: Should not extend a good tower the wrong way 

▪ Good tower: a tower of blocks that will never need to be moved 

 

 

goal 

st
ac

k
(F

,B
) 



 Rule : Every goodtower must always remain a goodtower 


 

 

 

 

s0 s1 s2 s3 





 Rule , second attempt: 


 

 

 

 

s0 s1 s2 s3 









 Some planners allow us to define a predicate recursively 
 goodtowerbelow(x) means we will not have to move x 

▪ 







 

 

 

 

 

goal 

goodtowerbelow: B, C, H 

X is on the table, 
and shouldn’t be on anything else 

X is on something else 

Shouldn’t be on the table, 
shouldn’t be holding it, 

shouldn’t be clear 

If x should be on z, then it is (z is y) 

If z should be on y, then it is (z is x) 

The remainder of the tower is also good 



 goodtower(x)  means x is the block at the top of a good tower 

▪ goodtower(x)    clear(x)   GOAL(holding(x))   goodtowerbelow(x) 

 

 badtower(x) means x is the top of a tower that isn’t good 

▪ badtower(x)    clear(x)  goodtower(x) 

goal 
goodtower: B 

goodtowerbelow: B, C, H 
badtower: G, E 
(neither: D, A) 



 Step 2: Is this stupid? 

 

 

 
 

 

 

 Placing F on top of E is stupid, because we have to move E later… 

▪ Would have been better to put F on the table! 

▪ But E was not a goodtower, so the previous rule didn’t detect the problem 

 Never put anything on a badtower! 

▪

 

goal 

st
ac

k
(F

,E
) 



 Step 3: Is this stupid? 

 

 

 

 

 
 Picking up F is stupid! 

▪ It is on the table, so we can wait until its destination is ready:  

 

▪

 

 

goal 

p
ic

k
u

p
(F

) 





 How do we decide when to prune the search tree? 
 Obvious idea: 

▪ Take the state sequence corresponding to the current action sequence 

▪ Evaluate the formula over that sequence 

▪ If it is false: Prune / backtrack! 

 



 Problem: 
▪

 

s0 

No package on a carrier 
in the initial state: 
Everything is OK 

”Every boat I own 
is a billion-dollar yacht 

(because I own no boats)” 



 Problem: 
▪

 
When we add an action 

placing a package 
on a carrier… 

s0 
s1 

(on-carrier p4 c4) 

…there is no future state 
where the package is 

at its destination! 

The formula is violated, 
but only because the solution is not complete yet! 

We must be allowed to continue, 
generating new states… 



 We had an obvious idea: 
 Take the state sequence corresponding to the current plan 

 Evaluate the formula over that sequence 

 If it is false: Prune / backtrack! 

 

 This is actually wrong! 
 Formulas should hold in the state sequence of the solution 

 But they don’t have to hold in every intermediate action sequence… 



 Analysis: 

… 

We have applied some 
actions, yielding a 
sequence of states 

We intend to generate 
additional actions and states, 

but right now we don’t know which ones 

The control formula should be satisfied 
by the entire state sequence corresponding to a solution 

We only know some of 
those states 

Should only backtrack if we can prove 
that you can't find additional states 

so that the control formula becomes true 



 Analysis 2: 

s0 s1 s2 s3 

… 

The control formula should be satisfied 
by the entire state sequence corresponding to a solution 

Evaluate those parts of 
the formula that refer to 

known states 

Leave other parts of the formula 
to be evaluated later 

If the result can be proven to be FALSE, then backtrack 



 We use formula progression 
 We progress a formula Φ through a single state s at a time 

▪ First the initial state, then each state generated by adding an action 

 The result is a new formula 

▪ Containing conditions that we must "postpone", 
evaluate starting in the next state 

φ is true in 
state … 

If and only if 
progress(φ, ) 

is true in 



 Base case: Formulas without temporal operators (“on(A,B)  on(C,D)”) 

▪ progress(Φ, s) = TRUE if Φ holds in s (we already know how to test this) 

▪ progress(Φ, s) = FALSE otherwise 

 

 

 

 

 

 

 

 

 

 

 

If ”f  g” 
is true 

in state … 

Then progress 
returns , 
which is true 

in 

If ”f  g” 
is false 

in state … 

Then progress 
returns , 
which is false 

in 



 Simple case: next 
 progress(next f, s) = f 

▪ Because ”next f” is true in this state iff f is true in the next state 

▪ This is by definition what progress() should return! 

 

 ”next f” is true 
in state … 

If and only if 
”f” is true in 

state 

”next 
)” is 

true in … 

iff ) 
is true in 

Additional cases are discussed in the book (always, eventually, until, …) 



GT: Destroys a goodtower 
BT: Adds to a badtower 
CT: Creates a badtower 
PU: Pickup without the 
 destination being ready 
 





  International Planning Competition 

 TALplanner received the top award 
for a “hand-tailored” (i.e., domain-configurable) planner 

  International Planning Competition 

 TLplan won the same award 

 Both of them (as well as SHOP, an HTN planner): 
 Ran several orders of magnitude faster 

than the “fully automated” (i.e., not domain-configurable) planners 

▪ especially on large problems 

 Solved problems on which other planners ran out of time/memory 





 Example Domain: ZenoTravel 
 Planes move people between cities (board, debark, fly) 

 Planes have limited fuel level; must refuel 

 Example instance: 

▪  people 

▪  planes 

▪  cities 

 

 



 A smaller problem instance 



 No additional domain knowledge specified yet! 

 Pure depth first… 

 

 

initial node 

one of the 
goal nodes 



 First problem in the example: 
 Passengers debark whenever possible. 

 Rule: "At any timepoint, if a passenger debarks, he is at his goal.” 

 



→

∨

∧

[t]: ”now” 
[t+1]: ”next” 



 Second problem in the example: 
 Passengers board planes, even at their destinations 

 Rule:  "At any timepoint, if a passenger boards a plane, he was not at his 
destination.” 



∧
→

∧
∧

 
 

 



 



 Only constrained passengers 

 Forgot to constrain airplanes 

 
 Which cities are reasonable destinations? 

 

 1.  A passenger’s destination 

 2.  A place where a person wants to leave 

 3.  The airplane’s destination 





→



 



 





 “No plans survive first contact with the enemy!” 
 The environment – does not behave as we expect it to 

▪ Unusually strong wind today 

 

 Other agents – do not behave as we want them to 

▪ Someone took the last medicine crate from this depot 

 

 Ignorance and mistaken beliefs – our models are not perfect 

▪ We thought we could lift 4 crates – we could only lift 3 

 

 Sensors and actuators – our hardware is not perfect 

▪ A crate was dropped during flight 

 

 



 Execution monitoring is important! 
 Acknowledge that plans will fail 

 Detect problems at runtime 

 Distinguish failure types and recover 

 We will show one specific example of how you can do this 



 Idea: Similar to control formulas 
 At plan time we predict what will happen 

▪ Control formulas violated  backtrack – make the right decisions 

 

 

 

 

 

 And at runtime, we sense what actually happens 

▪ We can use very similar monitor formulas 
to describe what should happen – detect failures 

¬on(pkg1,carr3) 

at(pkg1, depot4) 
on(pkg1,carr3) 

¬on(pkg1,carr3) 

at(pkg1,dest1) 

on carrier must remain… at dest 

unload(pkg1,dest1) 

¬on(pkg1,carr3) 

at(pkg1, depot4) 
on(pkg1,carr3) 

¬on(pkg1,carr3) 

at(pkg1,dest1) 

on carrier must remain… at dest 

unload(pkg1,dest1) 



 Since timing is important, a metric temporal logic is used 
 □

▪ f holds in all states at a time of from “now” 

▪ Example: At , we specify the formula □

▪ Then f should hold in all states with timestamps in 

 

 

 

 ♢

▪ f holds in some state whose distance from “now” is in 

 

 ⋃

▪ holds in some state at a distance of from “now”, 
and  holds until then 

 

t=0 t=5 t=25 t=26 t=30 t=34 t=40 t=47 



 Global monitor formulas are always active 
 Planner ensures predicted power usage within limits 

 Monitor ensures actual power usage within limits 

▪

 Very expressive formalism! 

▪ May exceed the nominal maximum by a factor of , 

for a limited time, in certain conditions 

▪

→



 Plan provides context:  Operator-specific formulas 
 Example: A desired effect must occur, and not just temporarily 

▪ Temporary electromagnet lock  “carrying” temporarily true 

▪

 

 

(Time in ms) 

… Attach … 

at most  ms 

at least  ms 

C Carrying 



 Introspection: What operators are being executed? 
 

 

 

 Conditions can span multiple actions 

 Attach a crate  remain attached until explicitly detached 

▪

▪ Operator-specific, but remains after execution of this operator 

 

 

 

 

 

Fly Attach Detach 

carrying(uav,crate) 

… 

at most  ms 

Detach 



 Monitoring is an incremental process 
 States are generated at regular or irregular intervals 

▪ Using multiple sensors, 
sensor fusion techniques, 
state synchronization, … 

 

 Formulas are tested against states using progression 

▪ φ holds in iff φ Δ  holds in , 
where Δ  is the duration of state 

▪ Progress() returns ⊥  proven violation 

 

State 
Generation 

Monitor 

φ is true 
starting in state 

s0… 

φ Δ


