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 Planning algorithms are often based on search 

 Search space 
Classical planning: Finite number of search nodes 

 

A successor function / branching rule 
returns all successors of any search node 
 can build the graph incrementally  

We usually don’t have all search nodes 
explicitly represented: 
We start with a single initial search node 

Initial search node  
(contains some information, 

depending on the search space…) 

Child node Child node 

Expand a node = generate its successors 

Now we have multiple unexpanded nodes! 
A search strategy chooses 
which one to expand next 



Search space 
Classical planning: Finite number of search nodes 

 

Two nodes might have the same successor! 
Option : Keep track of all visited nodes, 
detect when the same successor is 
generated again 
 
 Requires a lot of memory 
 Only investigate a given node once, 
  second time: backtrack 
 The search space is a general graph 

Initial search node  
(contains some information, 

depending on the search space…) 

Child node 

Node 

Child node 



Search space 
Classical planning: Finite number of search nodes 

 

Option : 
Don’t keep track of visited nodes 
 
 Saves memory 
 Investigate some nodes multiple times 
 The search space is a tree 

Initial search node  
(contains some information, 

depending on the search space…) 

Child node Child node 

Node 
Node 



Search space 
Classical planning: Finite number of search nodes 

 

An ancestor may also be a successor 
 loops in the search graph 
 
Depending on the search algorithm, 
it may or may not be necessary 
to detect and handle this 

Initial search node  
(contains some information, 

depending on the search space…) 

Child node Child node 

Node Node 



Search space 
Classical planning: Finite number of search nodes 

 

Additional requirements: 
 
 A goal criterion, detecting whether a 

node satisfies the goal 
 

  A ”plan extractor”, telling us 
which plan a goal node corresponds to 

Initial search node  
(contains some information, 

depending on the search space…) 

Child node Child node 



 General Search-Based Planning Algorithm: 

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 To keep track of visited nodes: 

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 Our next example domain: The Blocks World 
 A simple example domain 

allowing us to focus on algorithms and concepts, not domain details 

 

 

 

 

 

 
 

Your greatest desire Initial State You 

  



 We will generate classical sequential plans 
 A common blocks world version, with  operators 

▪  – takes ?x from the table 

▪  – puts ?x on the table 

▪  – takes ?x from on top of ?y 

▪  – puts ?x on top of ?y 

 Predicates used: 

▪  – block ?x is on block ?y 

▪  – ?x is on the table 

▪  – we can place a block on top of ?x 

▪  – the robot is holding block ?x 

▪  – the robot is not holding any block 





Classical representation, structured Formal model: State transition system 

initial 

goal 

goal 

goal 

state 

Simple translation! 

The model itself 
is a possible search space! 



Forward State Space 

The successor function / branching rule: 
 

Given a state s, 
generate all states that result from 
applying an action that is applicable in s 

Corresponds directly to the initial state 
Initial search node 

 

Child node Child node 

Goal criterion: The state of the node 
satisfies the goal formula 

 

Plan extraction: Generate the sequence of 
all actions on the path to the goal node 

Edges correspond to actions 

Forward planning, forward-chaining, 
progression: Begin in the initial state 



 Blocks world example: 
 Generate the initial state = initial node 

from the initial state description in the problem 

 

 



 Incremental expansion: Choose a node 

▪ First time, the initial state – other times, depends on the search strategy used 

 Expand all possible successors 

▪ “What actions are applicable in the current state, and where will they take me?” 

▪ Generates new states by applying effects  

 Repeat until a goal node is found! 

 

 

 Notice that 
the BW lacks 
dead ends. 

 In fact, it is 
even 
symmetric. 

 This is not 
true for all 
domains! 



 General Forward State Space Search Algorithm 

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Is always sound 
Completeness depends on the strategy 

To simplify extracting a plan, 
a state space search node could include 

the plan to reach that state! 
 

Still generally called 
state space search… 

What strategies are 
available and useful? 



 We see that for classical planning problems, 
we can search directly in the formal model – the STS 
 Does this mean planning is trivial? 





 First search strategy: Dijkstra’s algorithm 
 

 

 

 

 

 

 

 Simple problem, for illustration: 

▪ Navigation in a grid 

▪ Each state specifies only 
the coordinates of the robot: 
Two state variables 

▪ Actions: Move left, move right, … 
(cost = ) 

▪ Single goal node 
Start 

Goal 

Obstacle 

 Matches the given forward search ”template” 

▪ Selects from open a node n with minimal g(n): 
Cost of reaching n from the starting point 

 Efficient graph search algorithm: O(|E| + |V| log |V|) 

▪ |E| = the number of edges, |V| = the number of nodes 

 Optimal: Returns minimum-cost plans 

 



 Dijkstra’s Algorithm: 

Animation from Wikimedia Commons 

Search in 
all possible 
directions! 



 Explores all states that can be reached more cheaply 
than the cheapest goal node 

Goal nodes 

Usually we have many more ”dimensions”, 
 many more nodes within a given distance 

(this was just a trivial 2-dimensional 8-connected example)! 



 Blocks world,  blocks initially on the table, goal is a -block tower 

▪ Given uniform action costs, 
Dijkstra will always consider all plans that stack less than  blocks! 

▪ Stacking  block: =  plans, … 

▪ Stacking  blocks: >  plans, … 
▪

Efficient in terms of the search space size: O(|E| + |V| log |V|) 

The search space is exponential in the size of the input description… 



 But computers are getting very fast! 
 Suppose we can check  states per second 

▪ >  billion states per clock cycle for today’s computers, 
each state involving complex operations 

 Then it will only take seconds… 

 

 But we have multiple cores! 
 The universe has at most  

particles, including electrons, … 

 Let’s suppose every one 
is a CPU core 

  only  seconds 
> years 

 The universe is around  
years old 



 Dijkstra’s algorithm is completely impractical here 
 Visits all nodes with cost < cost(optimal solution) 

 

 Breadth first would not work 
 Visits all nodes with length < length(optimal solution) 

 

 Iterative deepening would not work 
 Saves space, still takes too much time 

 

 Depth first search would normally not work 
 Could work in some domains and some problems, by pure luck… 

 Usually either doesn’t find the goal, 
or finds very inefficient plans 

 [movies/4_no-rules] 

 



 Depth first search: 
 Always prefers adding a new action to the current action sequence 

 Always adds the first action it can find 

 

Goal nodes 



Language L defined by 
predicates, objects 

 

Real World 
+ current 
problem 

Planning 
Problem 

P = 

Abstraction 

Approximation 

Equivalence 

Trillions of states in    
would be a rather small 

planning problem 

Trillions of state transitions in  
would also correspond to a small 

planning problem 

Thousands of constants and predicates 
in L would be a rather large 

classical planning problem statement 

Hundreds of operators 
would correspond to a very large 

classical planning problem statement 

Problem 
Statement 

PDDL description = 
problem statement 

(  blocks) 

Search space = 
transition system 
(> plans) 

We discussed problem sizes before! 



 Is there still hope for planning? 
 Of course there is! 

 Our trivial planning method uses blind search – tries everything! 

 We wouldn’t choose such silly actions – so why should the computer? 

 

 Planning is part of Artificial Intelligence! 
 We should develop methods to judge what actions are promising 

given our goals  





 Two distinct types of guidance 

 
Definitely bad  

remove the node, prune the tree  
never have to consider the node again! 

 
Possibly good  keep the node 

 
A heuristic function, 

used to prioritize the search order 
 

Low value  try earlier 
High value  keep, possibly try later 

Binary decision: Is this search node 
definitely bad or possibly good? 

On a scale: 
How promising is this search node? 

Potentially very effective 

A single mistake, removing a good node 
 might not find a solution at all! 

 

Therefore, difficult to find good 
domain-independent pruning rules 

Resilient: Prioritize in the wrong order 
 can come back later 

Less efficient: Have to keep all nodes 
in case you need to go back later 

For now, we will focus on heuristics! 



 Two aspects of guiding search 

 
Examples: 

 
A* uses a heuristic (function) 

Hill-climbing uses a heuristic… 
differently! 

 
Example: 

 
Finding a suitable heuristic function 

for A* or hill-climbing 

Defining a search strategy 
that takes guidance into account 

Generating the actual guidance 
as input to the search strategy 

Can be domain-specific, 
given as input in the planning problem 

Can be domain-independent, 
generated automatically by the planner 

given the problem domain 

We will consider both – heuristics more than algorithms 



 Two distinct objectives for guidance 

Prioritize nodes that appear to be 
close to a goal node in the search space 

Prioritize nodes that appear to 
lead to good solutions, 

even if finding those solutions  
will be difficult 

Find a solution quickly Find a good solution 

Often one strategy can achieve both reasonably well, 
but for optimum performance, the distinction can be important! 





Cheapest solution starting here: 







h*(initnode) = 

Cost = sum of action costs for cheapest solution starting in n 
In the example, each action has a cost of 

We don’t explicitly consider computational costs of finding solutions! 

Let h*(n) be the actual cost of reaching a goal from n 

For now: A solution is better if it has lower cost when executed







If we knew the true goal distances h*(n): 

Trivial straight-line path 
minimizing h* values 

gives an optimal solution! 



 So regardless of method, computing h* is 
as hard as optimal planning! 
 Planning is PSPACE-complete in general… 

(in terms of input size = representation size) 

 

 A heuristic function h(n): 

▪ An approximation of h*(n) 

▪ Often used together with g(n), the known cost of reaching node n 

 Admissible if ∀n. h(n) ≤ h*(n) 

▪ Never overestimates – important for some search algorithm 

Heuristics should quickly provide good estimates of h* 



 General Heuristic Forward Search Algorithm 




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 The strategy selects nodes from the 

open set depending on: 

 h(n) 

 Possibly other factors such as g(n) 

 What is a good heuristic depends on: 

 The algorithm (examples later) 

 The purpose (good solutions / 

finding solutions quickly) A*, simulated annealing, 
hill-climbing, … 





 In planning, we often want domain-independent heuristics 
 Should work for any planning domain – how? 

 Take advantage of high-level representation! 

 Plain state transition system 

 We are in state 

 The goal is to be in one of the 
 states in 

 Should we try action 
 

leading to state 

 Or maybe action  
leading to state 

 Classical representation 

 We are in a state where  
disk  is on top of disk 

 The goal is for all disks to be 
on peg C 

 Should we try take(B), leading to a 
state where we are holding disk ? 

 … 



 

 

 

 

 All facts can be “tested” independently of each other 

▪ What is the difference between states 0 and 1? 
Only that in state , disk  is being carried 
instead of being on top of disk 2 on peg B 
(so the states are very similar) 

 We can see “how close” a state is to the goal 

▪ “Almost all disks are in the right place, only C needs to be moved” 

 We see actions as having structure: Parameters, conditions, effects 

▪ Can see that in state , we cannot execute , 
because the precondition  is not true 
(there is something on top of disk ) 

This can be used as a basis for our heuristics! 



 A very simple domain-independent heuristic: 
 Count the number of facts that are “wrong” 

▪ Competely independent of the domain 

”repaired” 

”destroyed” 
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Optimal: 
unstack(A,C) 

stack(A,B) 
pickup(C) 
stack(C,A) 



 A perfect solution?  No! 
 We must often go away from the goal 

before we can approach it again 

Optimal: 



 Not admissible! 
 Matters to some heuristic search algorithms (not all) 
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  facts are ”wrong”, 

can be fixed with a 
single action 



 In the scenario below: 
 Facts to add: 

 Facts to remove: 

 Heuristic value of  – but is it close to the goal? 



 What we see from this analysis is… 
 Not very much:  All heuristics have weaknesses! 

 

 

 

 

 

 

 But a thorough empirical analysis would tell us: 
 This heuristic is far from sufficient! 

Even the best planners 
will make “strange” choices, 

visit tens, hundreds or even 
thousands of ”unproductive” nodes 

for every action in the final plan 

The heuristic should make sure 
we don’t need to 

visit millions, billions or even 
trillions of ” unproductive” nodes 
for every action in the final plan! 



 Planning Competition : Elevators domain, problem 

 A* with goal count heuristics 

▪

 LAMA  planner, good heuristics, other strategy: 

▪

▪

 Elevators, problem 
 LAMA  planner: 

▪

▪

 Elevators, problem 
 LAMA  planner: 

▪

▪

 

 

 

Even a 
state-of-the-art 
planner can’t go 

directly to a goal state! 
 

Generates many more 
states than those 

actually on the path to 
the goal… 



 What properties do good heuristic functions have? 
 Informative: Provide guidance to the search strategy 

 In what sense?  Depends on the strategy (examples later)! 

Heuristic 
Function 

Heuristic 
Search 

Algorithm 

Planning 
Problem 

Test on a 
variety of 

benchmark 
examples 



 What properties do good heuristic functions have? 
 Efficiently computable! 

▪ Spend as little time as possible deciding which nodes to expand 

 Balanced… 

▪ Don’t spend more time computing h than you gain by expanding fewer nodes! 

▪ Illustrative (made-up) example: 

Heuristic 
quality 

Nodes 
expanded 

Expanding 
one node 

Calculating h 
for one node 

Total time 

Worst μ μ

Better μ μ

… μ μ

… μ μ

… μ μ

Best μ μ



 

 

 Bonet, Loerincs & Geffner, : 

 Planning problems are search problems: 

▪ There is an initial state, 
there are operators mapping states to successor states, 
and there are goal states to be reached. 

 Yet planning is almost never formulated in this way 
in either textbooks or research. 

 The reasons appear to be two: 

▪ the specific nature of planning problems, that calls for decomposition, 

▪ and the absence of good heuristic functions. 

Good domain-independent heuristics were difficult to find… 



 At the time, research diverged into alternative approaches 

Use another search space 
to find plans more efficiently 

 
Backward state search 

Partial-order plans 
Planning graphs 

Planning as satisfiability 
… 

Include more information 
in the problem specification 

 
(Domain-specific heuristics) 
Hierarchical Task Networks 

Control Formulas 

But that was  years ago! 
Heuristics have come a long way since then… 





Used in many optimal planners 

 



 Dijstra vs. A*: The essential difference  

 
 

 

 

 

 

 Example: 

▪ Hand-coded heuristic function 

▪ Can move diagonally  
h(n) = Chebyshev distance 
from n to goal = 

▪ Related to Manhattan Distance  = 

Start 

Goal 

Obstacle 

 Selects from open a node n with 
minimal f(n) = g(n) 
 Cost of reaching n from initial 

node 

 Selects from open a node n with 
minimal f(n) = g(n) + h(n) 
 + estimated cost 

of reaching a goal from n 

Dijkstra A* 

Uninformed (blind) Informed 



 A* Search: 

Here: 
A single 

physical obstacle 
 

In general: 
Many states where  
all available actions 

will increase g+h 
(cost + heuristic) 

 
Investigate all states 

where g+h=15, 
then all states 

where g+h=16, … 



 Given an admissible heuristic h, A* is optimal in two ways 
 Guarantees an optimal plan 

 Expands the minimum number of nodes 
required to guarantee optimality when this heuristic is used 

 

 Still expands many ”unproductive” nodes in the example 
 Because the heuristic is not perfectly informative 

▪ Even though it is hand-coded 

▪ Does not take obstacles into account 



 What is an informative heuristic for A*? 
 As always, h(n) = h*(n) would be perfect – but maybe not attainable… 

 

 But the closer h(n) is to h*(n), the better 

▪ Suppose hA and hB are both admissible 

▪ Suppose ∀n. hA(n) ≥ hB(n):  hA is at least close to true costs as hB  

▪ Then A* with hA cannot expand more nodes than A* with hB 

 

 Sounds obvious 

▪ But not true for all search strategies! 





Suppose we have a planning problem P… 
…and we add more edges (transitions), 

resulting in P’ 

An optimal solution for P’ 
can never be more expensive than the corresponding optimal solution for P 

The problem is simpler, the constraints are relaxed: 
All old solution plans remain valid, new solutions become possible! 



Suppose we have a planning problem P… 
…and we add more solutions, 

resulting in P’ 

No matter how this is done: 
Changing existing transitions,  

using different states altogether, … 

The optimal solution for P’ 
can never be more expensive than the optimal solution for P 

As long as all old solution plans remain solutions for P’: 

P P’ 



 Classical example: The 8-puzzle ( -puzzle, …) 

 

 

 

 

 
 Relaxation: Suppose that tiles can be moved across each other 

▪ Now we have  possible first moves! 

 All old solutions are still valid, but new ones are added 

▪ To move “8” into place: 

▪ Two steps to the right, two steps down, ends up in the same place as ” ” 

Goal Initial 

Possible first moves: 

The optimal solution for modified 8-puzzle 
can never be more expensive than the optimal solution for original 8-puzzle 



 We want: 
 A heuristic h for P that is admissible: ∀n. h(n) ≤ h*(n) 

 

 We know: 
 An optimal solution for P’ 

can never be more expensive than the corresponding optimal solution 
for P 

 ∃

 ∀ h*’(n) is an admissible heuristic for P 

h*’(n) may be much easier to calculate than h*(n) 

How does this help? 



 Let’s analyze the relaxed 8-puzzle… 
 Each piece has to be moved to the intended row 

 Each piece has to be moved to the intended column 

 These are exactly the required actions given the relaxation! 

 

  optimal cost for relaxed problem 
     = sum of Manhattan distances 

 

  admissible heuristic 
     for original problem 
     = sum of Manhattan distances 

 

 Can be coded procedurally 
in a solver – efficient! 

▪ (Though we’d prefer to extract 
heuristics automatically – later!) 

Rapid calculation 
is the reason for relaxation 

 
Shorter solutions 

are an unfortunate side effect: 
Leads to less informative heuristics 



 Relaxation: One general principle 
for designing admissible heuristics for optimal planning 
 Find a way of transforming planning problems, so that 

given a problem instance P: 

▪ Computing its transformation P’ is easy (polynomial) 

▪ Calculating the cost of an optimal solution to P’ is easier than for P 

▪ All solutions to P are solutions to P’, 
but the new problem can have additional solutions as well 

 Then the cost of an optimal solution to P’ 
is an admissible heuristic for the original problem P 

 

Relaxation is not the only method 
used to derive new heuristics! 



 Should be easy to calculate – but must find a balance! 
 Relax too much  not informative 

▪ Example: Any piece can teleport into the desired position 
 h(n) = number of pieces left to move 

Original problem 

Somewhat relaxed 

Medium relaxation 

Very relaxed 

No problem left! 
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 Important: 

You don’t just solve the relaxed problem once.   
Every time you reach a new state and want to calculate a heuristic, 

you have to solve the relaxed problem 
of getting from that state to the goal. 

Solving the relaxed problem 
can result in a more expensive solution 

 inadmissible! 
 

You have to solve it optimally to get the admissibility guarantee. 

You cannot “use a relaxed problem as a heuristic”. 
What would that mean?  

You use the cost of an optimal solution to the relaxed problem as a heuristic. 





 What about domain-independent heuristics? 
 Planners don’t reason: 

”Suppose that tiles can be moved across each other”… 

 

 One general technique: Precondition relaxation 

▪ Remove some preconditions 

▪ Solve the resulting problem in a standard optimal planner 

▪ Return the cost of the optimal solution 

Adds more 
transitions 



 

 

 

 

 

▪

 

Remove this  exactly the same 
relaxation that we hand-coded! 
 
Problem : How can a planner 
automatically determine which 
preconditions to remove/relax? 
 
Problem : Need to actually solve 
the resulting planning problem 
(unlikely that the planner can 
automatically find an efficient 
closed-form solution!) 



 Second general technique: delete relaxation 
 Assume a pure "old-fashioned" STRIPS problem with: 

▪ Positive preconditions 

▪ Positive goals 

 

 

 

 

 Why? 

▪ If adding a fact to a state makes an action inapplicable, 
this has to be due to a negative precondition 

▪ If adding a fact to a state makes a goal inachievable, 
this has to be due to a negative goal 

 

 

Then a state where additional facts are true can be better, but never worse! 
⊃ 



 Assume we have both negative and positive effects 

▪ The relaxation: remove all negative effects (all "delete effects")! 

 

 Example: 

▪ Before transformation: 

▪ After transformation: 

 Modifies the state transition system, moves existing transitions! 



STS for the original problem STS for the delete-relaxed problem 
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All the same actions applicable – 
and more! 



 Analysis: 
 "All the same actions applicable – and more" 

 In fact, given any action sequence: 

▪ If it is applicable P,   it is applicable in P’ 

▪ If it results in a goal state in P, it results in a goal state in P’ 

▪  This is a relaxation! 

 

 Easy to apply mechanically 
 Remove all negative effects 

 

 If only this relaxation is applied: 
 Gives us the optimal delete relaxation heuristic, h+(n) 

 h+(n) = the cost of an optimal solution 
  to a delete-relaxed problem 
  starting in node n 

 



 How close is h+(n) to the true goal distance h*(n)? 
 Asymptotic accuracy as problem size approaches infinity: 

▪ Blocks world:    

Optimal plans in delete-relaxed Blocks World 
can be down to 25% of the length of optimal plans in ”real” Blocks World 



 How close is h+(n) to the true goal distance h*(n)? 
 Asymptotic accuracy as problem size approaches infinity: 

▪ Blocks world:    

▪ Gripper domain:  

▪ Logistics domain:  

▪ Miconic-STRIPS:  

▪ Miconic-Simple-ADL: 

▪ Schedule:  

▪ Satellite:  

 

 Details: 

▪ Malte Helmert and Robert Mattmüller 
Accuracy of Admissible Heuristic Functions in Selected Planning Domains 

 

 



 Delete relaxation example 
 Accuracy will depend on the domain and problem instance! 

 Performance also depends on the search strategy 

▪ How sensitive it is to specific types of inaccuracy 











 Why is h+(n) easier to calculate than the true goal distance? 

 Only positive effects remain 

▪  The set of true facts increases monotonically 

 Only positive preconditions exist 

▪  The set of applicable actions increases monotonically 

▪  If a solution contains actions , then the order of addition is irrelevant 

 Still difficult to calculate in general! 

▪ Remains a planning problem 

▪ NP-equivalent (reduced from PSPACE-equivalent), 
since you must find optimal solutions to the relaxed problem 
in order to guarantee admissibility 

▪ Even a constant-factor approximation is NP-complete to compute! 

 

 Therefore, not directly useful 

 But forms the basis of many other heuristics such as 

 



Delete relaxation does not mean that we "delete the relaxation" (anti-relax)! 
 
Pattern: 
 Precondition relaxation ignores/removes/relaxes some preconditions 
 Delete relaxation  ignores/removes/relaxes all ”delete effects” 
 





 For optimal planning, 
we need a “faster” admissible heuristic than h+ ! 
 Idea in HSPr*: 

Compute the cost of achieving subsets of the goal 

▪ The most expensive atom 

▪ The most expensive pair of atoms 

▪ The most expensive triple of atoms 

▪ … 

▪  A family of admissible heuristics 
for optimal classical planning 

 



 Basic idea: Try to achieve individual goals; sum their costs 

) (optimal delete relaxation): 
Remove delete effects, 
find a single long plan 

: Solve each goal subset of size m 
Take the maximum of their costs 

Much easier, 
given that search trees tend to be wide 

 
A plan that achieves all goals 

must be a valid solution for any subset 
 This is a relaxation 



More calculations  expensive… 

Cheaper! 

h1( ) =



This is why it is fast!  No need to consider interactions  no combinatorial explosion 

We don’t search for 
a valid plan achieving 

on(B,C)! 
 

Then we would need 
… 

 
The heuristic considers 

individual subgoals 
at all levels, 

misses interactions 
at all levels 

Each precondition 
considered 
separately! 

Each goal considered  
separately! 

Each precondition 
considered 
separately! 



The same action can ”occur” twice! 
 
Doesn’t affect admissibility, 
since we take the maximum of subcosts, 
not the sum Cheaper! 



 For a goal, a set g of facts to achieve: 
 ∆1(s, g) = the cost of achieving the most expensive proposition in g 

▪ ∆1(s, g) = 0 (zero) if g ⊆ s // Already achieved entire goal 

▪ ∆1(s, g) =  max    { ∆1(s, p) | p ∈ g } otherwise // Part of the goal not achieved 

 The cost of each 
atom in goal g 

h1(s) = ∆1(s, g) – the heuristic depends on the goal g 

Max: The entire goal 
must be at least as 

expensive as the most 
expensive subgoal 

So how expensive is it to achieve a single proposition? 

Implicit delete relaxation: 
Cheapest way of 
achieving ∈

may actually delete ∈



 For a single proposition p to be achieved: 
 ∆1(s, p) = the cost of achieving p from s 

▪ ∆1(s, p) = 0 if p ∈ s // Already achieved p 

▪ ∆1(s, p) = ∞ if ∀a∈A. p ∉ effects+(a) // Unachievable 

▪ Otherwise: 
∆1(s, p) =  min    { cost(a) + ∆1(s, precond(a)) | a∈A and p ∈ effects+(a) } 

 

 

Must execute an action a∈A that achieves p, 
and before that, acheive its preconditions 

h1(s) = ∆1(s, g) – the heuristic depends on the goal g 

Min: Choose the action 
that lets you achieve the proposition p as cheaply as possible 



 In the problem below: 

▪

 So for any state s: 

▪

 With unit action costs: 











 h1(s) is: 
 Easier to calculate than the optimal delete relaxation heuristic h+ 

 Admissible (never overestimates the cost) 

 Somewhat useful for this simple BW problem instance 

 Not sufficiently informative in general 



 h2(s) = ∆2(s, g): The most expensive pair of goal propositions 

 
▪ ⊆

▪ ∈

▪ ∈

▪ ∀ ∈ ∉
∀ ∈ ∉

▪

∈ ∈
∪ ∈ ∈ ∉
∪ ∈ ∈ ∉

  more informative than , requires non-trivial time 

 m >  rarely useful 



 In this definition of h2: 

▪

∈ ∈
∪ ∈ ∈ ∉
∪ ∈ ∈ ∉

 

 

 

 Misses other delete effects 

▪

▪

▪

▪

▪

▪

Takes into account some delete effects 
So h2 is not a delete relaxation heuristic (but it is admissible)! 



 In the book: 

▪

∈ ∈
∪ ∈ ∈
∪ ∈ ∈

 This is not how the heuristic is normally presented! 

▪ Corresponds to applying (full) delete relaxation 

▪ Fixed action costs ( ) 

 



 : 

 Characterized by Bellman equation over a specific search space 

 Solvable using variation of Generalized Bellman-Ford (GBF) 

 

 

 

 

 

 

 

Cost of cheapest action 
taking you from s to s' 



 How close is hm(n) to the true goal distance h*(n)? 
 Asymptotic accuracy as problem size approaches infinity: 

▪ Blocks world:   

▪ For any constant m! 

 

 

 



 Consider a constructed family of problem instances: 

▪  blocks, all on the table 

▪ Goal:  specific towers of  blocks each 

 What is the true cost of a solution from the initial state? 

▪ For each tower,  block in place +  blocks to move 

▪  actions per move 

▪ actions 



▪ All instances of clear, ontable, handempty already achieved 

▪ Achieving a single on(…) proposition 
requires two actions 



▪ Achieving two on(…) propositions 



 … 

 

 

 

 

 

As problem sizes grow, 
the number of goals can grow 

and plan lengths can grow indefinitely 
 

But hm(n) only considers a constant 
number of goal facts! 

Each individual set of size m does not 
necessarily become harder to achieve, 
and we only calculate max, not sum… 



 How close is hm(n) to the true goal distance h*(n)? 
 Asymptotic accuracy as problem size approaches infinity: 

▪ Blocks world:   

▪ Gripper domain:  

▪ Logistics domain:  

▪ Miconic-STRIPS:  

▪ Miconic-Simple-ADL: 

▪ Schedule:  

▪ Satellite:  

 For any constant m! 

 

 

 

 Details: 

▪ Malte Helmert, Robert Mattmüller 
Accuracy of Admissible Heuristic Functions in Selected Planning Domains 

Still useful – this is a worst-case 
analysis as sizes approach infinity! 
+ Variations such as additive  exist 



 Experimental accuracy of  in a few classical problems: 

Seems to work well 
for the blocks world… 

Less informative for the 
gripper domain! 





 Optimal planning often uses admissible heuristics + A* 
 Are there worthwhile alternatives? 

 If we need optimality: 
 Can’t use non-admissible heuristics 

 Can’t expand fewer nodes than A* 

 But we are not limited to optimal plans! 
 High-quality non-optimal plans can be quite useful as well 

 Satisficing planning 

▪ Find a plan that is sufficiently good, sufficiently quickly 

▪ Handles larger problems 

Investigate many different points on the efficiency/quality spectrum! 



Also called 



  heuristics are admissible, but not very informative 

 Only measure the most expensive goal subsets 

 

 For satisficing planning, we do not need admissibility 
 Let's consider a modification: 

Use the sum of individual plan lengths for each atom! 

 Result: , also called 



More calculations  expensive… 

Cheaper! 

hadd( ) =



 For a goal, a set g of facts to achieve: 
 = the cost of achieving the most expensive proposition in g 

▪ = 0 if ⊆  // Already achieved entire goal 

▪ =  sum  { ∈  } otherwise // Part of the goal not achieved 

 The cost of each 
atom  in goal 

– the heuristic depends on the goal 

Sum: We assume we 
have to achieve every 
subgoal separately 

So how expensive is it to achieve a single proposition? 



 For a single proposition p to be achieved: 
 = the cost of achieving p from s 

▪  if ∈  // Already achieved p 

▪  if ∀ ∈ ∉  // Unachievable 

▪ Otherwise: 
∈ ∈

 

 

Must execute an action a∈A that achieves p, 
and before that, acheive its preconditions 

– the heuristic depends on the goal 

Min: Choose the action 
that lets you achieve p as cheaply as possible 





 For another example: 

▪ 

▪ 

▪ 

▪ 

▪ 

▪ 

▪  sum is 

Can underestimate but also overestimate, not admissible! 



– No specific action used twice 
– Still misses interactions 

 Why not admissible? 
 Does not take into account interactions between goals 

 Simple case: Same action used 

▪ 

▪ 

 

 More complicated to detect: 

▪

▪

▪

▪

 

▪ To achieve p: Use A1 

▪ To achieve q: Use A2 

 

 

 

















Seems to work well, but no optimality 
guarantee:  is informative but  
not admissible.  Are there alternatives? 



 What about Hill Climbing? 
 Greedy algorithm:  

▪ Searches the local neighborhood around the current solution 

▪ Makes a locally optimal choice at each step 

▪  Climbs the hill towards the top, 
without exploring as many nodes as A* 



 

 

 

 

 

 

 

 

 

 

 

 

 

 Which objective function for planning? 
 –h(s):  We want to minimize heuristic value 



 ∅







Ignore g(n): prioritize finding a plan quickly 
over finding a good plan 

Be stubborn: Only 
search among 
children of this node 
(like depth first), 
never mind other 
open nodes 



 What is a good heuristic for HC in planning? 
 

Which is best, hA or hB? 

Equally good! 
 

HC only cares about 
the relative quality 

of the children of one node… 
 

For A*, hA is much better: 
Much closer to real costs 



 What is a good heuristic for HC in planning? 
 

Which is best, hA or hB? 

hB is better! 
 

hA prioritizes children 
in the opposite order… 

 
For A*, hA is much better: 
Much closer to real costs 

 



 What is a good heuristic for HC in planning? 
 

h(n) 

h*(n) 

A* prefers h(n) near h*(n) 
Works well with HC/HSP as well 

HC/HSP works equally well with this: 
Cares about relative values 

A* would expand many more nodes: 
Cares about absolute values 

HC may have problems with this 
heuristic – for A* it is strictly better 

than the "lower heuristic" 

Strictly simplified diagram: 
All nodes with the same h*(n) 

don’t have the same h(n)! 



No successor improves the 
heuristic value; some are equal!   

We have a plateau… 

Standard hill climbing: 
”Can’t improve  

Jump to a random state” 
 

But the heuristic is not so accurate – 
maybe some child is closer to the goal 

even though h(n) isn’t lower! 
 

 Let’s allow a small number of 
consecutive moves across plateaus 

















 A plateau… 

















If we continue, all successors 
have higher heuristic values!   

We have a local optimum… 
Impasse = optimum or plateau 

Some impasses allowed 



 



 What if there are many impasses? 
 Maybe we are in the wrong part of the search space after all… 

▪ Misguided by hadd  at some earlier step 

 

  Select another promising expanded node where search continues 



 Example from HSP : 

 Hill Climbing with hadd 

allowing some impasses 
(plus some other tweaks) 

…in that case we 
might restart 

from this node. 

Its children seem 
to be worse. If we 
have reached the 
impasse threshold: 

Now the best child 
is an improvement 

There’s a plateau 
here… 

But HSP allows a 
few impasses! 

 Move to the 
best child 



 HSP :   heuristic + hill climbing + modifications 

 Works approximately like this (some intricacies omitted): 

▪





 





Pure HC with limited domain-indep. 
heuristics  jump around too much! 
Allow limited downhill/plateau moves 

 be a bit more persistent, 
but eventually try another path 



 Late : “State-space planning too simple to be efficient!” 

 Most planners used very elaborate and complex search methods 

 

 HSP: 
 Simple search space: Forward-chaining 

 Simple search method: Hill-climbing with limited impasses + restarts 

 Simple heuristic: Sum of distances to propositions 
 (still spends % of its time calculating !) 

  Very clever combination 

 

 Planning competition : 

 HSP solved more problems than most other planners 

 Often required a bit more time, but still competitive 

 (Later versions were considerably faster) 

 





 Several heuristics solve subproblems, combine their cost 

 
Pick two goal literals 

Ignore the others 
Solve the problem optimally 

 
Pick some state atoms 

Ignore the others 
Solve the problem optimally 

Subproblem for 
the h2 heuristic: 

Subproblem for 
Pattern Database Heuristics 

Database: 
Solve for all values of the state atoms 

Store in a database 
Look up values quickly during search 



 Pattern Database Heuristics: 
 Example problem: 

 

 

 

 If you use the classical (predicate) representation: 

▪ Reduce state space size: Partition atoms into mutually exclusive groups 

▪ In all states reachable from  using available actions, 
exactly one atom in each group is true! 

 

{p} represents that p always holds, 
{p,true} represents that 
p may or may not hold 



 Every group can be seen as a single state variable 
 Variable  has  possible values: 

▪

 Equivalent way of viewing the problem! 

▪ 



▪ 

▪ Many modern planners work with this representation internally, 
even if they don't use PDBs 



 Every group can be seen as a single state variable 
 Variable  has  possible values: 

▪ and 

 Equivalent way of viewing the problem! 

▪ 

▪ Many modern planners work with this representation internally, 
even if they don't use PDBs 



 Why change the representation like this? 
 Original:  atoms,  =  states 

 Now:  states  

▪ Remove a lot of "useless" unreachable states 

Not important for search: We would never have reached an 
unreachable state… 

 
Helps when creating pattern databases 



 How to find mutually exclusive groups? 
 Find pairwise mutexes (e.g., using ) 

 Create a graph: 

▪ One node per atom 

▪ Edge (pq) iff p and q are pairwise mutex 

 Find maximal cliques 

▪ Groups where all nodes are connected 

▪ Does not give a unique solution: Consider 
{  } 

(on c a) 

(on b a) 

(on d a) 

(clear a) 

(holding a) 

(holding b) 

(handempty) 



 A planning space abstraction ”ignores” some groups 
 A mapping φ from atoms to atoms + {true}, where for each group G: 

▪ Either ∀f∈G: φ(f) = f – all atoms in the group are preserved 

▪ Or ∀f∈G: φ(f) = true – all atoms in the group are ignored 

▪ Results in an exponentially smaller state space 

 Suppose φ preserves all even groups 

▪ Real goal = { (on d c), (on c a), (on a b) } 

▪ Relaxed goal = { (on d c),   true,     (on a b) } 

▪ pickup(a): 

▪ No longer requires (ontable a): In group 5 

▪ No longer causes (holding a): In group 1 

 The resulting mini-problem 
is called a pattern 

▪ Matches many states 
that we might reach 
in the complete problem! 



 Using these abstractions for heuristics – general idea: 
 Automatically generate a set of planning space abstractions 

▪ Set of selections of groups/variables 

▪ Difficult issue – different approaches exist 

 Each abstraction results in a much smaller abstract state space 

▪ Complete state space: states 

▪ Abstraction containing all even groups: states =  states 



 For each abstraction, compute a pattern database 
 Exhaustive search: Cheapest way of achieving any state in the pattern 

▪ Assigns a cost to each abstract state 

 To be computable in polynomial time: 

▪ Each individual pattern must have at most logarithmic size 

 

 To calculate a heuristic: 
 From the current state, generate the corresponding abstract state 

 Look up its precalculated cost 

▪ Using perfect hash function: Near constant time lookups 

 

 Each such cost is an admissible heuristic 

▪ Therefore the maximum over many different abstractions 
is also an admissible heuristic 

 

 



 How close to h*(n) can an admissible PDB-based heuristic be? 
 Assuming polynomial computation: 

▪ Each abstraction can have at most O(log n) variables/groups 

▪ So h(n) <= cost of reaching the most expensive subgoal of size O(log n) 

 

 Problem size grows much faster than h(n) 

▪  For a single pattern, asymptotic accuracy is 0 



 Example: 
 pickup(A) affects holding(A), ontable(A), clear(A), handempty 

 

 If we use pickup(A) in abstraction 1: 

▪ It must affect some fact that is part of abstraction 1 

 

 "Suppose every action affects atoms in at most one of them" 

▪ So pickup(A) can't affect any atom used in abstraction 2 

▪ So it isn't used in any optimal plan in abstraction 2 

 

 

 

 

 



  Given several abstractions: 
 Suppose every action affects atoms in at most one of them 

▪ Then optimal solutions from distinct abstractions 
can’t share actions 

▪ Therefore, the abstractions are additive: 
The sum of the corresponding heuristics is admissible 

 

 If we have several sets of additive abstractions: 
 Can calculate an admissible heuristic from each additive set, 

then take the maximum of the results 
as a stronger admissible heuristic 



 How close to h*(n) can an admissible PDB-based heuristic be? 
 For additive PDB heuristics with a single sum, 

Asymptotic accuracy as problem size approaches infinity: 

 

 

 

 

 

 

 

 

 

 Assuming that the planner finds the best combination of abstractions! 

 

h+ (too slow!) h2 Additive PDB 

Gripper 

Logistics 

Blocks world 

Miconic-STRIPS 

Miconic-Simple-ADL 

Schedule 

Satellite 





Landmark: 
”a geographic feature used by explorers and others 

to find their way back or through an area” 



 Landmarks in planning: 
Something you must pass by/through 

in every solution to a specific planning problem 

Landmark: 
 

A formula that must be achieved 
in every solution 

 

 

 

 

clear(A) 
holding(C) 

… 

Action Landmark: 
 

An action that must be used 
in every solution 

 

 

 

 

unstack(B,C) 
putdown(B) 
stack(D,C) 

…but not putdown(C)!  (Why?) 

…so their 
preconds and 

effects are 
landmarks! 



Current planning problem, P 
 

Modified planning problem, P’ 
 
 

Removed all actions 
adding atom A 

 

 One general technique for discovering landmarks: 

If this (P’) is unsolvable… 
 

…then every solution to P 
must use one of the actions adding A 

 
 Atom A is a landmark 

 

Delete relaxation of P’ is unsolvable, 
or hm(s0) = ∞,  

or … 
 P’ is unsolvable 



 Discover landmarks using (1) means-ends analysis 

 

 

 

 

 

 

 

The goals are (obviously) landmarks: 

is a landmark, 
is not true in the current state 

we must cause with an action 

All actions causing require
 is a landmark! 

is not true in the current state, 
all actions causing require

 is a landmark 



 Discover landmarks using (2) domain transition graphs 

▪ Use state variables, or generate mutually exclusive sets of atoms 

▪ {  } 

▪ Add transitions caused by actions 

 

 

 

 

 

▪  If A is on the table  now and must be on B in the goal, 
then at some point we must be holding A 
(all paths pass through this node!) 

 

 …and other methods. 

 Can sometimes find or approximate necessary orderings 

▪ We must achieve holding(A), then holding(B) 

 

 

 

 

 





 Use of landmarks: 
 As subgoals: Try to achieve each landmark in succession, 

using inferred landmark orderings 

▪ Example from Karpas & Richter: 
Landmarks – Definitions, Discovery Methods and Uses 

 

 

 

 

 

 

 

 

 

 

 

 



 

Already true 
when we start 

Current goal: t-at-B or p-at-C (disjunctive!) 



 

Suppose we begin with 
drive(t, B) 

Current goal: o-in-T or p-at-C 



 

Suppose we continue with 
load-truck(o,t,B) 



 Sometimes very helpful 
 But there are choices to be made 

 Simply achieving each landmark in some permitted order 
can lead to long plans or even incompleteness… 

 





All discovered landmarks, 
minus those that are 
accepted as achieved 

(has become true after 
predecessors are achieved!) 

Plus those we can show will 
have to be re-achieved 

 Use of landmarks: 
 As a basis for non-admissible heuristic estimates 

▪ Used by LAMA, the winner of the sequential satisficing track 
of the International Planning Competition in 2008, 2011 

 

 LAMA counts landmarks: 

▪ Identifies a set of landmarks that still need to be achieved 
after reaching state s through path (action sequence) π 

▪ L(s,π) =            (L \ Accepted(s,π))            ∪               ReqAgain(s,π) 

Not admissible: One action may achieve multiple landmarks! 



 The LAMA planner: 
 Won the sequential satisficing track 

of the International Planning Competition in 2008, 2011 

 Heuristics combining: 

▪ FF heuristics (discussed later) 

▪ The number of landmarks still to be achieved in a state 

 Searches for low-cost plans 

▪ But we also want to find plans quickly! 

▪ Heuristics estimate both: 

▪ Cost of actions required to reach the goal 

▪ Cost of the search effort required to reach the goal 

 

 Search strategy: 

▪ First, greedy best-first (create a solution as quickly as possible) 

▪ Then, repeated weighted A* search with decreasing weights 
(iteratively improve the plan – anytime planning) 



 Use of landmarks: 
 As a basis for admissible heuristic estimates 

 

 Idea: The cost of each action is shared across the landmarks it achieves 

 

 Simplified example: 

▪ Suppose there is a  action of cost , 
that achieves both  and 

▪ Suppose no other action can achieve these landmarks 

▪ One can then let (for example) 
and 

 

 The sum of the cost of remaining landmarks 
is then an admissible heuristic 

▪ Must decide how to split costs across landmarks 

▪ Optimal split can be computed polynomially, 
but is still expensive  



 Use of landmarks: 
 As a basis for a modified planning problem 

▪ For example, add new predicates ”achieved-landmark-n” 

▪ Each action achieving a landmark makes the corresponding predicate true 

▪ The goal requires all such predicates to be true 

▪  Other heuristics can be applied to the modified problem 

 


