f‘“ﬁswﬂ!%‘% Ll L1d . . .
a%#;f Linkdping University

Automated Planning

]

3. Planning as Search,
Forward State Space Search

Planning as Search

Planning as Search

Planning algorithms are often based on search

Search space
Classical planning: Finite number of search nodes

We usually don'’t have all search nodes
explicitly represented:

Sgpsnliig o bt e We start with a single initial search node

A successor function / branching rule
returns all successors of any search node

Y =» can build the graph incrementally

. Now we have multiple unexpanded nodes!
venifnagy A search strategy chooses
which one to expand next

Planning as Search (2)

Search space
Classical planning: Finite number of search nodes

depending on the search space...)

Two nodes might have the same successor!

Option 1: Keep track of all visited nodes,
detect when the same successor is
generated again

=» Requires a lot of memory

=» Only investigate a given node once,
second time: backtrack

=» The search space is a general graph

Planning as Search (3)

Search space
Classical planning: Finite number of search nodes

(contains some information,

depending on the search space...)

Node 3 (identical!)

Option 2:
Don’t keep track of visited nodes

=» Saves memory
=» Investigate some nodes multiple times
=>» The search space is a tree

Planning as Search (4)

Search space
Classical planning: Finite number of search nodes

(contains some information,
depending on the search space...)

An ancestor may also be a successor
=» loops in the search graph

Depending on the search algorithm,
it may or may not be necessary
to detect and handle this

Planning as Search (5)

Search space
Classical planning: Finite number of search nodes

depending on the search space...)

Additional requirements:

=» A goal criterion, detecting whether a
node satisfies the goal

=>» A “plan extractor’, telling us
which plan a goal node corresponds to

Planning as Search (6)

General Search-Based Planning Algorithm:

search() {
open € { initial-node }
while (open + emptyset) {
use a search strategy to select and remove node from open
if goal-satisfied-by(node) then return path

foreach mod € possible-modifications-to(node) {
node’ € apply(mod, node) // dynamically generate a successor
add node’ to open

}
}

return failure;

V
}

Planning as Search (7)

To keep track of visited nodes:

search() {
open € {initial-node }
added € { initial-node }
while (open + emptyset) {
use a search strategy to select and remove node from open
if goal-satisfied-by(node) then return path

foreach mod € possible-modifications-to(node) {
node’ € apply(mod, node) // dynamically generate a successor
if not (node' € added)

add node’ to open
add node’ to added

}
}

return failure;

}

Forward State Space Search

Blocks World (1)

Our next example domain: The Blocks World

A simple example domain
allowing us to focus on algorithms and concepts, not domain details

Initial State Your greatest desire

Blocks World (2)

We will generate classical sequential plans

A common blocks world version, with 4 operators

(pickup ?x) — takes ?x from the table
(putdown ?x) - puts ?x on the table H
(unstack ?x ?y) - takes ?x from on top of ?y E
(stack ?x ?y) — puts ?x on top of ?y

Predicates used:
(on ?x ?y) — block ?x is on block ?y
(ontable ?x) — ?x is on the table
(clear ?x) — we can place a block on top of ?x (not (eX(iz: ?(?Y?)X)))
(holding ?x) — the robot is holding block ?x &4
(handempty) - the robot is not holding any block (not (exists (?x)

(holding ?x)))

unstack(A,C) =» putdown(A) =» pickup(B) = stack(B,C)

Blocks World (3): Operator Reference

(:action pickup (:action putdown
:;parameters (?x) :;parameters (?x)
:precondition (and (clear ?x) (on-table ?x) :precondition (holding ?x)

(handempty))
-effect .effect
(and (not (on-table ?x)) (and (on-table ?x)
(not (clear ?x)) (clear ?x)
(not (handempty)) (handempty)
(holding ?x))) (not (holding ?x))))

(:action unstack (:action stack
:;parameters (?top ?below) :parameters (?top ?below)
:precondition (and (on ?top ?below) :precondition (and (holding ?top)

(clear ?top) (handempty)) (clear ?below))
-effect .effect
(and (holding ?top) (and (not (holding ?top))
(clear ?below) (not (clear ?below))
(not (clear ?top)) (clear ?top)
(not (handempty)) (handempty)

(not (on ?top ?below)))) (on ?top ?below)))

Representation and Model |

(define (domain bw)
(:requirements :strips)
(:predicates
(on ?x ?y) initial
(ontable ?x)
(clear ?x) C%
(handempty)
(holding ?x))

(:action pickup : ,
.parameters (?x) Simple translation!

:precondition (and (clear ?x)
(ontable ?x) (handempty))

action

1
goal — 5%

.effect ...)
) .
(define (problem bw42) The model itself
(:domain bw) is a possible search space!

)

Forward State Space

Forward State Space Forward planning, forward-chaining,

progression: Begin in the initial state

Initial search node 0

D IT n irectl he initial
i idrlkessie Corresponds directly to the initial state

Edges correspond to actions

The successor function / branching rule:

Child node 1 Child node 2
= result state = result state Given a state s,
generate all states that result from

applying an action that is applicable in s

Goal criterion: The state of the node
satisfies the goal formula

Plan extraction: Generate the sequence of
all actions on the path to the goal node

Forward State Space Search (1)

Blocks world example:

Generate the initial state = initial node
from the initial state description in the problem

Hoo

Forward State Space Search (2)

Incremental expansion: Choose a node
First time, the initial state - other times, depends on the search strategy used

Expand all possible successors
“What actions are applicable in the current state, and where will they take me?”

Generates new states by applying effects

: : :
Repeat until a goal node is found! Notice that

u H u the BW lacks

dead ends.

In fact, it is
even

HBH % symmetric.

—— This is not
true for all
domains!

Forward State Space Search (3)

General Forward State Space Search Algorithm

= forward-search(operators, s, g) {
open € { <sg, & } C —
while (open + empty et) {
use a strategy to select and remove <s,path> from open
if goal g satisfied in state s then return path

foreach a € { ground instances of operators applicable in state s } {
s’ € apply(a, s) // dynamically generate a new state
path’ € append(path, a)
add <state’, path’> to open

}
}

return failure: To simplify extracting a plan,

| a state space search node could include
the plan to reach that state!

Still generally called
state space search...

[s always sound

Completeness depends on the strategy

Forward State Space Search: Trivial?

We see that for classical planning problems,
we can search directly in the formal model - the STS

Does this mean planning is trivial?

=] |

d£] &) L1l 21) &L Lll Jls |4

Forward State Space Search:
Search Strategies
and the Difficulty of Planning

Forward State Space Search: Dijkstra

First search strategy: Dijkstra’s algorithm

Matches the given forward search "template”

Selects from open a node n with minimal g(n):
Cost of reaching n from the starting point

Efficient graph search algorithm: O(|E| + |V| log |V])

|E| = the number of edges, |V| = the number of nodes

Optimal: Returns minimum-cost plans

Simple problem, for illustration:

_— Goal

Navigation in a grid 4

Each state specifies only
the coordinates of the robot: Obstacle
Two state variables

Actions: Move left, move right, ...
(cost=1)

Single goal node

Starft |

Dijkstra’s Algorithm (2)

Dijkstra’s Algorithm:

Search in \
all possible R
directions! 47/‘\\‘

Animation from Wikimedia Commons

Dijkstra’s Algorithm (3)

Explores all states that can be reached more cheaply
than the cheapest goal node

Usually we have many more "dimensions”,
many more nodes within a given distance
(this was just a trivial 2-dimensional 8-connected example)!

‘\,7 Goal nodes

Dijkstra’s Algorithm (4)

Blocks world, 400 blocks initially on the table, goal is a 400-block tower

= Given uniform action costs,
Dijkstra will always consider all plans that stack less than 400 blocks!

Stacking 1 block: = 400*399 plans, ...
Stacking 2 blocks: > 400*399 * 399*398 plans, ...
= More than

16305698390789310586457967937334728775645948416347826722586241976230426399420799766425821395576658116365413711
81631192204882263831691616483204594902834106357987452326989711329392844798003040966743549740387225888734809637
19240642724363629154726632939764177236010315694148636819334217252836414001487277618002966608761037018087769490
61484788741874440260622613480393693523356841805595037118535183714054851594943130931387521082788894333711361366
09283180862996179538929537220067341589332765764704756406073917010260309590403035481742212740523295796377736587
2245254973845940445258650369 139180912754853265795909113444084441755664
21179627432025699299231777374 K 1 73 5 071085488265744484456318793090777966157299
0289194810585217819146476629 1 6 3 1 O 424654413723505687486652490219918497606469
8803169139438655119417119333 > 302032441302649432305620215568850657684229
67838517772535893398611212735 910292069308720174243236072916252738750807
3225578630777685901637435541458%408 344176291224488351917210773338752306956814
80990867109051332104820413607822206465635272711073906611800376194410428900071013695438359094641682253856394743
33567854582432093210697331749851571100671998530498260475511016725485476618861912891705393354709843502065977868
94996069041570770057976322876697641450955815650565898117215204346127705949506137017308793077271410935265343286
71360002096924483494302424649061451726645947585860104976845534507479605408903828320206131072217782156434204572
43461604240437521105232403822580540571315732915984635193126556273109603937188229504400

Efficient in terms of the search space size: O(|E| + |V| log |V|)

The search space is exponential in the size of the input description...

Fast Computers, Many Cores

But computers are getting very fast!

Suppose we can check 10”20 states per second

>10 billion states per clock cycle for today’s computers,
each state involving complex operations

Then it will only take 1071735 /10720 = 10*1715 seconds...

But we have multiple cores!

The universe has at most 10787
particles, including electrons, ...

Let’s suppose every one
1s a CPU core

=>» only 10”1628 seconds
> 1071620 years

The universe is around 10710
years old

Impractical Algorithms

Dijkstra’s algorithm is completely impractical here

Visits all nodes with cost < cost(optimal solution)

Breadth first would not work
Visits all nodes with length < length(optimal solution)

Iterative deepening would not work

Saves space, still takes too much time

Depth first search would normally not work

Could work in some domains and some problems, by pure luck...

Usually either doesn’t find the goal,
or finds very inefficient plans

[movies/4_no-rules]

Depth First Search Example

Depth first search:

Always prefers adding a new action to the current action sequence

Always adds the first action it can find

‘\,7 Goal nodes

Problems and Problem Statements

We discussed problem sizes before!

Search space = PDDL description =
transition system Real World problem statement
(>1071700 plans) + current (400 blocks)

.,‘,o"‘“:4bstracti01;.."'~.~.., Language L defined by
éu““ Approximation'A predicates, ObjeCtS
Planning Problem
Problem <----------: --------- F"'} Statement
2= (3, s, Sg) Equivalence P=(0,s,,9)

Trillions of states in X = (S,A,y)
would be a rather small

planning problem

Thousands of constants and predicates
in L would be a rather large
classical planning problem statement

Hundreds of operators
would correspond to a very large
classical planning problem statement

Trillions of state transitions in y
would also correspond to a small
planning problem

Hopeless?

[s there still hope for planning?
Of course there is!

Our trivial planning method uses blind search - tries everything!

We wouldn’t choose such silly actions - so why should the computer?

Planning is part of Artificial Intelligence!

We should develop methods to judge what actions are promising
given our goals

Search Guidance

Two Types of Guidance

Two distinct types of guidance

On a scale:
How promising is this search node?

Definitely bad = A heuristic function,
remove the node, prune the tree = used to prioritize the search order
never have to consider the node again!

Binary decision: Is this search node

definitely bad or possibly good?

Low value =» try earlier
Possibly good = keep the node High value =» keep, possibly try later

Potentiallv verv effective Resilient: Prioritize in the wrong order
yvery =>» can come back later
A single mistake, removing a good node Less efficient: Have to keep all nodes
=» might not find a solution at all! in case you need to go back later

Therefore, difficult to find good
domain-independent pruning rules For now, we will focus on heuristics!

Two Aspects of Guidance

Two aspects of guiding search

Defining a search strategy Generating the actual guidance
that takes guidance into account as input to the search strategy

Examples: Example:
A* uses a heuristic (function) Finding a suitable heuristic function
Hill-climbing uses a heuristic... for A* or hill-climbing
differently!

Can be domain-specific,
given as input in the planning problem

Can be domain-independent,

generated automatically by the planner
given the problem domain

We will consider both - heuristics more than algorithms

Two Uses for Guidance

Two distinct objectives for guidance

Find a solution quickly

Prioritize nodes that appear to be
close to a goal node in the search space

Find a good solution

Prioritize nodes that appear to
lead to good solutions,
even if finding those solutions

will be difficult

Often one strategy can achieve both reasonably well,

but for optimum performance, the distinction can be important!

Node: Plan length 50, estimated goal distance 10

Node: Plan length 5, estimated goal distance 30

Heuristics for Forward State Space Search:
True Costs and Heuristic Estimates

True Goal Distances

Cost = sum of action costs for cheapest solution starting in n
In the example, each action has a cost of 1

We don't explicitly consider computational costs of finding solutions!

Y Cheapest solution starting here:
S— putdown(A); pickup(B); stack(B,C);
E pickup(A); stack(A,B) = h*(thisnode) = 5

Al
o

h*(initnode) = 6

putdown(B); unstack(A,QO);
putdown(A); pickup(B); stack(B,C);

pickup(A); stack(A,B) = 7 Y N

Hoo

GE
[\ﬂ

u putdown(D); unstack(A,C);
putdown(A); pickup(B); stack(B,C); u

>
®

pickup(A); stack(A,B) = 7 |

Planning given True Goal Distances

we Knew tne true goal aistances n):

node € initstate
while (not reached goal) {
node € a successor of node with minimal h*(n)

}

Trivial straight-line path
minimizing h* values
gives an optimal solution!

Heuristics Estimate True Goal Distances (&X

So regardless of method, computing h* is
as hard as optimal planning!

Planning is PSPACE-complete in general...
(in terms of input size = representation size)

A heuristic function h(n):

An approximation of h*(n)
Often used together with g(n), the known cost of reaching node n
Admissible if Vn. h(n) < h*(n)

Never overestimates — important for some search algorithm

General Heuristic Forward Search

General Heuristic Forward Search Algorithm

heuristic-forward-search(ops, s,, 9) {
open € { <s,, >}
while (open = emptyset) {
use a heuristic search strategy to selegt_and remove <s,path> from open

if path is cyclic then skip it

if goal-satisfied(g, s) then return path ﬂ

The strategy selects nodes from the
open set depending on:

foreach a € groundapp(ops, s) {

s & apply(a,)
path’ € append(path,) h(n)
add <state, path"> to open Possibly other factors such as g(n)
} } What is a good heuristic depends on:
return failure; The algorithm (examples later)
} The purpose (good solutions /

finding solutions quickly)

li-cambing, ...

A Simple
Domain-Independent Heuristic

Heuristics given Structured States

o

In planning, we often want domain-independent heuristics

Should work for any planning domain - how?

Take advantage of high-level representation!

Plain state transition system

We are in state
572,342,104,485,172,012

The goal is to be in one of the
10747 states in Sg={ s[482,293],
s[482,294], ... }

Should we try action
A297,295,283,291

leading to state
572,342,104,485,172,0167

Or maybe action A297,295,283,292
leading to state
572,342,104,485,175,2017

Classical representation

We are in a state where
disk 1 is on top of disk 2

The goal is for all disks to be

on peg C

Should we try take(B), leading to a
state where we are holding disk 17?

1
So L | take(®) | S1 put(C) | S2 .

- rd

&

X put(B) h take(C)

All facts can be “tested” independently of each other

What is the difference between states o and 1?
Only that in state 1, disk 1 is being carried
instead of being on top of disk 2 on peg B

(so the states are very similar)

We can see “how close” a state is to the goal
“Almost all disks are in the right place, only C needs to be moved”

We see actions as having structure: Parameters, conditions, effects

Can see that in state s,, we cannot execute take(2,b),
because the precondition top(2) is not true
(there is something on top of disk 2)

This can be used as a basis for our heuristics!

Counting Remaining Goals

A very simple domain-independent heuristic:

« » 1 A,
Count the number of facts that are “wrong unstack(A,C
stack(A,B)
Competely independent of the domain pickup(C)
stack(C,A)
” . ”” - On(A,C) J - _‘OH(A’B)
W ontable(C) repalred — dlear(A) 4 holding(A)
i;:J on(A,C) - ﬂclee}r(C) ‘ ' -handempty
<l -on(C,A) ”destroyed” holding(A) u + clear(A)
o0 —|01’1(A B) + handempty]
g clear(A,) 6
= A , \ - holding(A)
I clear(B) g ,6 - handempty
~clear(C) un — + clear(A)
7 - T HEH + ontable(A)
H T E ‘ 9
O ya -
- clear(B)
+-ontable(B)
+ holding(B)

+ handempty

Counting Remaining Goals (2)

A perfect solution? No!

We must often go away from the goal
before we can approach it again

-on(A,C)
ontable(B) : :lceljf(ré?)
ﬂoniA,B) | 8 +-handempty
or;r(1 (];Cé) A + holding(A)
clear(],S) M . |
N 5 |
s -8B
5[D ya
> ‘A
. D [|8 < B
B

unstack(A,C)
putdown(A)
pickup(B)

stack(B,C)
pickup(A)
stack(A,B)

Counting Remaining Goals (3)

Not admissible!

Matters to some heuristic search algorithms (not all)

ﬂﬁzr(lljl,fn)l . 4 facts are "wrong’,
K Pty can be fixed with a
-clear(B)

clear(D) single action

Eﬂu —*ﬂ

Counting Remaining Goals (4)

In the scenario below:
Facts to add: on(L,J)
Facts to remove: ontable(I), clear(J) Goal
Heuristic value of 3 - but is it close to the goal?

Counting Remaining Goals (5): Analysis

What we see from this analysis is...

Not very much: All heuristics have weaknesses!

Even the best planners The heuristic should make sure
will make “strange” choices, we don't need to
visit tens, hundreds or even visit millions, billions or even
thousands of "unproductive” nodes trillions of ” unproductive” nodes
for every action in the final plan for every action in the final plan!

But a thorough empirical analysis would tell us:

This heuristic is far from sufficient!

Example Statistics

Planning Competition 2011: Elevators domain, problem 1

A* with goal count heuristics
States: 108922864 generated, gave up

LAMA 2011 planner, good heuristics, other strategy
Solution: 79 steps, 369 cost

States: 13236 generated, 425 evaluated/expanded Even a
state-of-the-art

Elevators, problem 5 , :
planner cant go

LAMA 2011 planner: directly to a goal state!
Solution: 112 steps, 523 cost
States: 41811 generated, 1317 evaluated/expanded (TEIE IS) I
states than those
Elevators, problem 20 actually on the path to
LAMA 2011 planner: the goal...

Solution: 354 steps, 2182 cost
States: 1364657 generated, 14985 evaluated/expand

Some Desired Properties (1)

What properties do good heuristic functions have?

Informative: Provide guidance to the search strategy

In what sense? Depends on the strategy (examples later)!

Heuristic
Search
- Algorithm

Heuristic
Function

Planning
Problem

o T

N\

/ Performance
and \

| |
‘@

F benchmrk
| examples

Some Desired Properties (2)

What properties do good heuristic functions have?
Efficiently computable!

Spend as little time as possible deciding which nodes to expand

Balanced...

Don’t spend more time computing h than you gain by expanding fewer nodes!

[llustrative (made-up) example:

Worst 100000 100 ps 1 ps 10100 ms
Better 20000 100 ps 10 ps 2200 ms
5000 100 ps 100 ps 1000 ms

2000 100 ps 1000 ps 2200 ms

500 100 ps 10000 ps 5050 ms

Best 200 100 ps 100000 us 20020 ms

Heuristic Search: Difficult

Good domain-independent heuristics were difficult to find...

Bonet, Loerincs & Geffner, 1997:

Planning problems are search problems:

There is an initial state,
there are operators mapping states to successor states,
and there are goal states to be reached.

Yet planning is almost never formulated in this way
in either textbooks or research.

The reasons appear to be two:
the specific nature of planning problems, that calls for decomposition,

and the absence of good heuristic functions.

Alternative Approaches

At the time, research diverged into alternative approaches

Use another search space Include more information
to find plans more efficiently in the problem specification
Backward state search (Domain-specific heuristics)
Partial-order plans Hierarchical Task Networks
Planning graphs Control Formulas

Planning as satisfiability

But that was 15 years ago!

Heuristics have come a long way since then...

Heuristics and Search Strategies
for Optimal Forward State Space Planning

A Well Known Heuristic Search
Algorithm: A*

Used in many optimal planners

Dijstra vs. A*: The essential difference

Dijkstra R

Selects from open a node n with Selects from open a node n with
minimal f(n) = g(n) minimal f(n) = g(n) + h(n)
Cost of reaching n from initial + estimated cost
node of reaching a goal from n
Example:
Hand-coded heuristic function
Can move diagonally = — Goal
h(n) = Chebyshev distance
from n to goal = > Obstacle

max(abs(n.x-goal.x), abs(n.y-goal.y))

Related to Manhattan Distance =
sum(abs(n.x-goal.x), abs(n.y-goal.y))

Start P

A* Search:

Here:
A single
physical obstacle

In general:
Many states where
all available actions
will increase g+h
(cost + heuristic)

Investigate all states
where g+h=15,
then all states

where g+h=16, ...

Given an admissible heuristic h, A* is optimal in two ways

Guarantees an optimal plan

Expands the minimum number of nodes

required to guarantee optimality when this heuristic is used

Still expands many "unproductive” nodes in the example

Because the heuristic is not perfectly informative

Even though it is hand-coded

Does not take obstacles into account

£ o
o

oo o
OO ww eSS
CHERBRERERREN
TR RBARERRR RN
IHARBARREREN
THRRARRERR
THRMA RN

.
.
eaade b
L b i b s b s EERh
o 2 e et
Rk
COGOGOGDEae

»
-y i T

Tk

What is an informative heuristic for A*?

As always, h(n) = h*(n) would be perfect — but maybe not attainable...

But the closer h(n) is to h*(n), the better
Suppose hA and hB are both admissible
Suppose ¥n. hA(n) > hB(n): hA is at least close to true costs as hB
Then A* with hA cannot expand more nodes than A* with hB

Sounds obvious

£ o
o

But not true for all search strategies! cood

o RRees

SEEEEEEEE RS S S
P+ S S EEEEEE S S Y
bR X EEEERE R R N
b = X E R E E K X |
b = X E R E E K &

L X ¥)
L K F
:ii
seesseneco
Rl L R

LR R R R R

» .
SRRl B LA

S F E X X
s 00T

pEE X X F F
pE4E X X F F

Creating Admissible Heuristics:
The Relaxation Principle

Relaxation 1: Intro

...and we add more edges (transitions),
resulting in P’

Suppose we have a planning problem P...

The problem is simpler, the constraints are relaxed:

All old solution plans remain valid, new solutions become possible!

An optimal solution for P’
can never be more expensive than the corresponding optimal solution for P

Relaxation 2: Generalization

...and we add more solutions,
resulting in P’

A ——

No matter how this is done:
Changing existing transitions,
using different states altogether, ...

Suppose we have a planning problem P...

As long as all old solution plans remain solutions for P”:

The optimal solution for P’
can never be more expensive than the optimal solution for P

Relaxation 3: Example

Classical example: The 8-puzzle (15-puzzle, ...)

Initial Goal

Possible first moves:
Move 8 right

Move 4 up

Move 6 left

Relaxation: Suppose that tiles can be moved across each other

Now we have 21 possible first moves!

All old solutions are still valid, but new ones are added

To move “8” into place:
Two steps to the right, two steps down, ends up in the same place as ”1”

The optimal solution for modified 8-puzzle
can never be more expensive than the optimal solution for original 8-puzzle

Relaxation 4: Admissible Heuristic

We want: Original 8-puzzle
A heuristic h for P that is admissible: Vn. h(n) < h*(n)

We know: Relaxed 8-puzzle

An optimal solution for P’

can never be more expensive than the corresponding optimal solution
for P

-3n. h*(n) > h*(n)

Vn. h*(n) < h*(n): h*(n) is an admissible heuristic for P

How does this help?

h*(n) may be much easier to calculate than h*(n)

Relaxation 5: Example

Let’s analyze the relaxed 8-puzzle...

Each piece has to be moved to the intended row

Each piece has to be moved to the intended column

These are exactly the required actions given the relaxation!

=» optimal cost for relaxed problem Rereil elkelarfmm
= sum of Manhattan distances is the reason for relaxation
Shorter solutions

=» admissible heuristic
for original problem
= sum of Manhattan distances

are an unfortunate side effect:
Leads to less informative heuristics

Can be coded procedurally
in a solver - efficient!

(Though we’d prefer to extract
heuristics automatically - later!)

Relaxation 6: Principle

Relaxation: One general principle
for designing admissible heuristics for optimal planning

= Find a way of transforming planning problems, so that
given a problem instance P:

- Computing its transformation P’ is easy (polynomial)

= Calculating the cost of an optimal solution to P’ is easier than for P

= All solutions to P are solutions to P’,
but the new problem can have additional solutions as well

= Then the cost of an optimal solution to P’
is an admissible heuristic for the original problem P

Relaxation is not the only method

used to derive new heuristics!

Relaxation 7: Balance

Should be easy to calculate - but must find a balance!

Relax too much = not informative

Example: Any piece can teleport into the desired position
=>» h(n) = number of pieces left to move

[No problem left! }

I

Very relaxed

I

Medium relaxation

I

Somewhat relaxed

I

L Original problem]

Relaxation 8: Important Issues!) |

Important:

You cannot “use a relaxed problem as a heuristic”.
What would that mean?
You use the cost of an optimal solution to the relaxed problem as a heuristic.

Solving the relaxed problem
can result in a more expensive solution
=» inadmissible!

You have to solve it optimally to get the admissibility guarantee.

You don'’t just solve the relaxed problem once.
Every time you reach a new state and want to calculate a heuristic,
you have to solve the relaxed problem
of getting from that state to the goal.

General Domain-Independent
Techniques:

Precondition Relaxation,
Delete Relaxation

Precondition Relaxation

What about domain-independent heuristics?

Planners don'’t reason:
"Suppose that tiles can be moved across each other”...

One general technique: Precondition relaxation

Remove some preconditions
Solve the resulting problem in a standard optimal planner

Return the cost of the optimal solution

Adds more
transitions

Example: 8-puzzle

(define (domain strips-sliding-tile)

(:xrequirements :strips)
(:predicates

(tile ?x) (position ?x)

(at ?t ?x ?y) (blank ?x ?y)

(inc ?p ?pp) (dec ?p ?pp))
(:action move-up

:parameters (?t ?px ?py ?by)

:precondition (and

(dec ?by ?py)

Remove this = exactly the same
relaxation that we hand-coded!

Problem 1: How can a planner

automatically determine which

preconditions to remove/relax?

Problem 2: Need to actually solve

the resulting planning problem
(unlikely that the planner can
automatically find an efficient
closed-form solution!)

(blank ?px ?by)

(tile ?t) (position ?px) (position 26y) (position ?by)

(at ?t ?px ?py))

-effect (and (not (blank ?px ?by)) (not (at ?t ?px ?py))
(blank ?px ?py) (at ?t ?px ?by)))

)

Delete Relaxation (1)

Second general technique: delete relaxation
Assume a pure "old-fashioned” STRIPS problem with:

Positive preconditions

Positive goals

Then a state where additional facts are true can be better, but never worse!
s D s’ = h*(s) <= h*(s")

Why?
If adding a fact to a state makes an action inapplicable,
this has to be due to a negative precondition

If adding a fact to a state makes a goal inachievable,
this has to be due to a negative goal

Delete Relaxation (2)

Assume we have both negative and positive effects
The relaxation: remove all negative effects (all "delete effects")!

Example: (unstack ?x ?y)

Before transformation:

:precondition (and (handempty) (clear ?x) (on ?x ?y))

-effect (and |(not (handempty)) (holding ?x) (not (clear ?x)) (clear ?y)
(not (on ?x ?y))

After transformation:
:precondition (and (handempty) (clear ?x) (on ?x ?y))
-effect (and (holding ?x) (clear ?y))

Modifies the state transition system, moves existing transitions!

Delete Relaxation (3): Example

STS for the original problem STS for the delete-relaxed problem

ti

on(A,C)
ontable(B)
ontable(C)
clear(A)
clear(B)
handempty

ontable(B)
ontable(C)
clear(B)
clear(C)
holding(A)

(<8

on(A,C)
ontable(C)
clear(A)
holding(B)

go

on(A,C)
ontable(B)
ontable(C)
clear(A)
clear(B)
clear(C)
holding(A)
handempty

on(A,C)
ontable(B)
ontable(C)
clear(A)
clear(B)
handempty

- & ontable(B)

5 G ontable(C)

E,'E clear(A)

"a a clear(B)

@) § holding(B)

2 5 handempty
O

All the same actions applicable -
and more!

Delete Relaxation (4): Heuristic

Analysis:

"All the same actions applicable - and more"

In fact, given any action sequence:

If it is applicable P, it is applicable in P’
If it results in a goal state in P, it results in a goal state in P’

=» This is a relaxation!

Easy to apply mechanically

Remove all negative effects

[f only this relaxation is applied:

Gives us the optimal delete relaxation heuristic, h+(n)

h+(n) = the cost of an optimal solution
to a delete-relaxed problem
starting in node n

Accuracy of h+ in Selected Domains

How close is h+(n) to the true goal distance h*(n)?

Asymptotic accuracy as problem size approaches infinity:
Blocks world: 1/4 = h+(n) >1/4 h*(n)

Optimal plans in delete-relaxed Blocks World
can be down to 25% of the length of optimal plans in "real” Blocks World

Standard.: Relaxed:
A A

unstack(A,B) pickup(G) unstack(A,B)
putdown(B) stack(G,H) unstack(B,C)
unstack(B,C) pickup(F) unstack(C,D)
putdown(C) stack(EG) unstack(D,E)
— unstack(C,D) pickup(E) unstack(E,F)
putdown(D) stack(E,F) unstack(E,G)
unstack(G,H)
G unstack(H,I) unstack(H,I)

H stack(H,J) stack(H,J)

n 3 DONE!

Accuracy of h+ in Selected Domains (2) |

How close is h+(n) to the true goal distance h*(n)?

Asymptotic accuracy as problem size approaches infinity:

Blocks world: 1/4
Gripper domain: 2/3
Logistics domain: 3/4
Miconic-STRIPS: 6/7
Miconic-Simple-ADL: 3/4
Schedule: 1/4
Satellite: 1/2
Details:

= h+(n) 21/4 h*(n)

(single robot moving balls)

(move packages using trucks, airplanes)
(elevators)

(elevators)

(job shop scheduling)

(satellite observations)

Malte Helmert and Robert Mattmiiller
Accuracy of Admissible Heuristic Functions in Selected Planning Domains

Example of Accuracy

Delete relaxation example

Accuracy will depend on the domain and problem instance!

Performance also depends on the search strategy
How sensitive it is to specific types of inaccuracy

unstack(A,C) Q I;CI}(llip_(]Z);[iiaflé(]B,C); stack(A,B)
pickup(B) ; -° ' =
stack(B,C) Hﬂu Good action!
tack(A,B
S—)aip,(4) E unstack(A,C); stack(B,C); stack(A,B)
h* = = h+ =3 [h*=7]
u Seems equally good as unstack,but is worse
R
Bu u unstack(A,C); pickup(B);
EB stack(B,C); stack(A,B)
— 9 h+ =4 [h* = 7] u

Calculating h+

Why is h+(n) easier to calculate than the true goal distance?

Only positive effects remain

=» The set of true facts increases monotonically

Only positive preconditions exist

=» The set of applicable actions increases monotonically
=>» If a solution contains actions al+a2, then the order of addition is irrelevant

Still difficult to calculate in general!
Remains a planning problem

NP-equivalent (reduced from PSPACE-equivalent),
since you must find optimal solutions to the relaxed problem
in order to guarantee admissibility

Even a constant-factor approximation is NP-complete to compute!

Therefore, not directly useful
But forms the basis of many other heuristics such as hl(n), h2(n)

Important Issues

Delete relaxation does not mean that we "delete the relaxation” (anti-relax)!

Pattern:
Precondition relaxation ignores/removes/relaxes some preconditions
Delete relaxation ignores/removes/relaxes all "delete effects”

Optimal Classical Planning
Using Admissible h_ Heuristics

The h_ Heuristics

For optimal planning,
we need a “faster” admissible heuristic than h+ !

Idea in HSPr*:
Compute the cost of achieving subsets of the goal

h,(s)=A,(s,g): The most expensive atom
h,(s)=A,(s,g): The most expensive pair of atoms

h;(s)=A5(s,g): The most expensive triple of atoms

=>» A family of admissible heuristicsh_=h,, h,, ...
for optimal classical planning

The h_ Heuristics: Essential Difference

Basic idea: Try to achieve individual goals; sum their costs

h+(n) (optimal delete relaxation):
Remove delete effects,
find a single long plan

h_(n): Solve each goal subset of size m
Take the maximum of their costs

)

Q © O O

Much easier,
given that search trees tend to be wide

A plan that achieves all goals
must be a valid solution for any subset
=» This is a relaxation

clear(A) on(A,B) on(B,C) ontable(C) clear(D) ontable(D)

cost 0 gOst 2 cost cost 0 cost 0 cost 0

stack(A,B)
holding(A) clear(B) holding(B) clear(C)

cost 1 cost O co !t 1 cogt 1

handempty clear(A) on(A,C)
cost 0 cost 0 cost O pickup(B)
e Cheapert IR SR C)

cost O cost 0

handempty clear(A) on(A,D)

More calculations =» expensive... handempty | clear(A) on(A,C) ﬁ B u

so: clear(A), on(A,C), ontable(C), clear(B), ontable(B), clear(D), ontable(D), handempty

We don'’t search for

a valid plan achieving
on(B,C)!

Then we would need
putdown(A)...

The heuristic considers
individual subgoals
at all levels,
misses interactions
at all levels

1IS1swhy 1t 1S

on(B,C) Each goal considered
separately!
— mcioh
Each precondition
holding(B) = clear(C) considered
cost 1 cost 1 separately!

pickup(B) Each precondition
handempty clear(B) considered
cost 0 cost 0 separately!
- handempty clear(A) on(A,C)

clear(A) on(A,B) on(B,C) ontable(C) clear(D) ontable(D)
cost O Ost 2 cost cost 0 cost 0 cost 0
stack(A,B)
holding(A) clear(B) holding(B) clear(C)
cost 1 cost O cost 1 cogt 1
The same action can "odcur” twice!
handempty clear(A) on(A,C) , b
Doesn'’t affect admissibility,
cost O cost O cost 0

since we take the maxi
not the sum

um of subcosts,

handempty

clear(A)

on(A,C)

The h, Heuristic: Formal Definition

h (s) = A (s, g) - the heuristic depends on the goal g

For a goal, a set g of facts to achieve:

A (s, g) = the cost of achieving the most expensive proposition in g

= A[s, g) =0 (zero) ifgSs /] Already achieved entire goal
= Afs, g) =

{A(s,p) | p€ g} _ otherwise // Part of the goal not achieved

The cost of each \

atom in goal g

Implicit delete relaxation:
Cheapest way of
achievingpl € g

may actually deletep2 € g

Max: The entire goal
must be at least as

expensive as the most
expensive subgoal

So how expensive is it to achieve a single proposition?

The h, Heuristic: Formal Definition

h (s) = A (s, g) - the heuristic depends on the goal g

For a single proposition p to be achieved:
= A(s, p) = the cost of achieving p from s

- A(s,p)=o0 ifp€Es /| Already achieved p
= A(s,p) =0 if Va€A. p & effects*(a)// Unachievable
= Otherwise:

A (s, p) = { cost(a) + A (s, precond(a)) | a€A and p € effects*(a) }

Must execute an action a€A that achieves p,
and before that, acheive its preconditions

Min: Choose the action

that lets you achieve the proposition p as cheaply as possible

The h, Heuristic: Examples

In the problem below:
g = { ontable(C), ontable(D), clear(A), clear(D), on(A,B), on(B,C) }
So for any state s:

A4(s, g) = max { A, (s, ontable(C)), A,(s, ontable(D)), A,(s, clear(A)),
A (s, clear(D)), A4(s, on(A,B)), A4(s, on(B,0)) }

With unit action costs:

Q => 2 [h+=3,h*=5]
cle[D
e HB =2 2 [h+=3,h*=7]
— - S

ﬁnu

u = 3[h+=4,h*=7] E
Ll

>
®

|
ﬂ

The h. Heuristic: Properties

h. (s) is:
Easier to calculate than the optimal delete relaxation heuristic h+

Admissible (never overestimates the cost)

Somewhat useful for this simple BW problem instance
Not sufficiently informative in general

The h, Heuristic

h,(s) = A,(s, g): The most expensive pair of goal propositions

Goal
(set)

Pair of

propo-
sitions

(maybe
p=q)

Ay(s,g) =0 ifgCs // Already achieved
A,(s, g) =max {A,(s,p,9) | p.qE g} otherwise // Can have p=q!
A(s,p,q) =0 ifp,q€s // Already achieved
A (s, p, q) = oo if Va€A. p & effects*(a)

or Va€A. q & effects*(a)

Ay(s, p, @) = min {
min { cost(a) + A,(s, precond(a)) | a€A and p,q € effects*(a) },
min { cost(a) + A,(s, precond(a)U{q}) | a€A, p € effects*(a), q & effects(a) },
min { cost(a) + A,(s, precond(@)U{p}) | a€A, q € effects*(a), p & effects(a) }
}

h,(s) is more informative than h,(s), requires non-trivial time

m > 2 rarely useful

The h, Heuristicand Delete Effects

In this definition of h,:
AQ(S7 P, C_l) = m{
cost(a) + min { A, (s, precond(a)) | a€A and p,q € effects*(a) },
cost(a) + min { A, (s, precond(a) U {q}) | a€A, p € effects*(a), q & effects(a) },
cost(a) + min { A, (s, precond(a) U {p}) | a€A, q € effects*(a), p & effects(a) }
}

Takes into account some delete effects
So h, is not a delete relaxation heuristic (but it is admissible)!

Misses other delete effects

Goal: {p, q, 1}

Al Adds {p,q} Deletes {r}
A2: Adds {p,r} Deletes {q}
A3: Adds {q,r} Deletes {p}

A(s, p,q), Ay(s, q,1), Ay(s, p,r) = 1: Any pair can be achieved with a single action

A,(s, g) = max(A,(s, p,q), A,(s, q,1), Ay(s, p,¥)) =max(1,1,1) =1,
but the problem is unsolvable!

The h, Heuristicand Delete Relaxation

In the book:

A,(s, p, @) = min {
1 + min { A,(s, precond(a)) | a€A and p,q € effects*(a) },
1 + min { A,(s, precond(a) U {q}) | a€A, p € effects*(a) },
1 + min { A,(s, precond(a) U {p}) | a€A, q € effects*(a) }

}

This is not how the heuristic is normally presented!

Corresponds to applying (full) delete relaxation
Fixed action costs (1)

The h_ Heuristics: Calculating

Calculating h_(s) in practice:
Characterized by Bellman equation over a specific search space

Solvable using variation of Generalized Bellman-Ford (GBF)
0 itsC/
h™(s) = § Milgegyee(s) R (8") +6(s,8")_if [s] < m
HlaXs’gs,\s’\ém h'™ (S/)

Cost of cheapest action
taking you from s to s'

Accuracy of h_ in Selected Domains

How close is h_(n) to the true goal distance h*(n)?

Asymptotic accuracy as problem size approaches infinity:
Blocks world: 0 = h_(n) >0h*n)

For any constant m!

Consider a constructed family of problem instances:
= 10n blocks, all on the table
= Goal: n specific towers of 10 blocks each

What is the true cost of a solution from the initial state?
= For each tower, 1 block in place + 9 blocks to move

= 2 actions per move
= 9%2*n=18nactions

h,(initial-state) = 2 — regardless of n!

= All instances of clear, ontable, handempty already achieved

= Achieving a single on(...) proposition

. . As problem sizes grow,
requires two actions

the number of goals can grow

= h,(initial-state) = 4 and plan lengths can grow indefinitely
= Achieving two on(...) propositions But h_(n) only considers a constant

= hg(initial-state) = 6 number of goal facts!

_ Each individual set of size m does not

necessarily become harder to achieve,
and we only calculate max, not sum...

Accuracy of h_ in Selected Domains (3) {

How close is h_(n) to the true goal distance h*(n)?

Asymptotic accuracy as problem size approaches infinity:
Blocks world: 0 = h_(n) >20h*n)

Gripper domain: 0
Logistics domain: 0
.g , Still useful - this is a worst-case
Miconic-STRIPS: 0 . 3 . e .
T analysis as sizes approach infinity!
Miconic-Simple-ADL: 0 + Variations such as additive h__ exist
Schedule: 0
Satellite: 0

For any constant m!

Details:

Malte Helmert, Robert Mattmuller
Accuracy of Admissible Heuristic Functions in Selected Planning Domains

The h, Heuristic: Accuracy

Experimental accuracy of h2 in a few classical problems:

Instance | Opt. | h(root)

blocks-9 0 0 Seems to work well
blocks-11) 7 for the blocks world...
blocks-15 14 11

eight-1 31 15

eight-2 31 15

eight-3 20 12

grid-1 14 14

gr}pper—‘l S ?) Less informative for the
gl‘?pp e .) gripper domain!
gripper-3 15 4

Heuristics for Satisficing

Forward State Space Planning

Optimal and Satisficing Planning o8

j
Optimal planning often uses admissible heuristics + A*

Are there worthwhile alternatives?

[f we need optimality:

Can’t use non-admissible heuristics
Can’t expand fewer nodes than A*

But we are not limited to optimal plans!

High-quality non-optimal plans can be quite useful as well

Satisficing planning
Find a plan that is sufficiently good, sufficiently quickly

Handles larger problems

Investigate many different points on the efficiency/quality spectrum!

The h_,, Heuristic Function
and HSP (Heuristic Search Planner)

Also called h,

Background

h_ heuristics are admissible, but not very informative

Only measure the most expensive goal subsets

For satisficing planning, we do not need admissibility

Let's consider a modification:
Use the sum of individual plan lengths for each atom!

Result: h_,,, also called h,

clear(A) on(A,B) on(B,C) ontable(C) clear(D) ontable(D)

cost 0 gOst 2 cost cost 0 cost 0 cost 0

h,44(s) =
stack(A,B) suifl(Z(iS) _
holding(A) clear(B) holding(B) clear(C) 5

cost 1 cost O co !t 1 cogt 1

handempty clear(A) on(A,C)
cost 0 cost 0 cost O pickup(B)
e Cheapert IR SR C)

cost O cost 0

handempty clear(A) on(A,D)

More calculations =» expensive... handempty | clear(A) on(A,C) ﬁ B u

so: clear(A), on(A,C), ontable(C), clear(B), ontable(B), clear(D), ontable(D), handempty

The h_,, Heuristic: Formal Definition

h_;4(s) =hy(s) = A(s, g) — the heuristic depends on the goal g

For a goal, a set g of facts to achieve:

A, (s, g) = the cost of achieving the most expensive proposition in g

= Ays,g)=0
= Dy(s, g) =

Ao(s,p) | pEg}

The cost of each
atom p in goal g

Sum: We assume we

have to achieve every
subgoal separately

ifgSs /] Already achieved entire goal
otherwise // Part of the goal not achieved

So how expensive is it to achieve a single proposition?

The h_,, Heuristic: Formal Definition

h_;4(s) =hy(s) = A(s, g) — the heuristic depends on the goal g

For a single proposition p to be achieved:
= A,(s, p) = the cost of achieving p from s

= Ay(s,p)=0 ifp€Es /| Already achieved p
= Ay(s,p) =0 if Va€A. p € effects*(a) // Unachievable
= QOtherwise:

Ay(s, p) = { cost(a) + A,(s, precond(a)) | a€A and p € effects*(a) }

Must execute an action a€A that achieves p,
and before that, acheive its preconditions

Min: Choose the action

that lets you achieve p as cheaply as possible

The h_,, Heuristic: Example

h,q4(s) = Ay(s, g)
For another example:
ontable(E): unstack(E,A), putdown(E) =» 2
clear(A): unstack(E,A) = 1
on(A,B): unstack(E,A), unstack(A,C), stack(A,B) = 3
on(B,C): unstack(E,A), unstack(A,C), pickup(B), stack(B,C) =» 4
on(C,D): unstack(E,A), unstack(A,C), pickup(C), stack(C,D) =» 4

on(D,E): pickup(D), stack(D,E) =» 2
=» sum is 16 [h+ =10, h*=12] _‘

_

The h_,, Heuristic: Admissibility

Why not admissible?

Does not take into account interactions between goals

Simple case: Same action used
on(A,B): unstack(E,A); unstack(A,C); stack(A,B) = 3
on(B,C): unstack(E,A); unstack(A,C); pickup(B); stack(B,C) =>» 4

More complicated to detect:

Goal: pandq
Al: causes p
A2: causes q

A3: causes p and q

To achieve p: Use A1 - No specific action used twice
To achieve q: Use A> - Still misses interactions

The h_,, Heuristic: Using A*

(onAB) 2 133 022 00
(onB () 3 344 322 44
(clear A) 0 100 0O0O0 O00O
(clear D) 0 0 0 1 010 01
(ontableC) 0 0 0 0 O0 00 10
(ontableD) 0 0 0 1 000 O01
h(n)=sum 5 579 354 56
Y
1+5 |}
0+5 HEU H D
149 H u]

Seems to work well, but no optimality
guarantee: h_, is informative but

not admissible. Are there alternatives?

3+5LJ J
2+3 .
fiaf(O

3+6 LJJ
2+5
ol

2+4 §3+7: pickup(C)
3+4: pickup(B)
c|B[D|A}

3+8: pickup(D)

g,

g

J

Hill Climbing (1)

What about Hill Climbing?

Greedy algorithm:

Searches the local neighborhood around the current solution
Makes a locally optimal choice at each step

=» Climbs the hill towards the top,
without exploring as many nodes as A*

i
—
- L
J 1) ..\"\.
|.—I [Ly
e, A
w4 7 T § "k
L 1] y Fa !
1§ L 1
| A
' 1 i I 1 A L
iy] | B . ["'q.
Il.-"- =T i] i
=, P B e W
i 1§) . y = - e m—
& T | [y G
-_. e k | 1 . i ™ 3 e g
o | i . . e
iy o, Pl ; i . e —
g I o
i L y e
-i - 3) - x "o
o g g I X P & " o —
- s - | . e "-__" s
i g £ A e o
AL T ™ . o e i
e e R L B
- AT = > — e e
e I iy e o e
P e A e A e e e e
gl o e e S o e] - - - I
o e g— - - e ™ - S S -
T i e e

Hill Climbing (2)

A* search:

n € initial state
open € @

loop

if n is a solution then return n
expand children of n
calculate h for children
add children to open
n € node in open
minimizing f(n) = g(n) + h(n)

end loop

search among

Plain Hill-climbing
n € initial state

(like depth first),
never mind other
open nodes

loop
if n is a solution then return n
expand children of n
calculate h for children

if (some child decreases h(n)):
n €< child with minimal h(n)
else stop // locql minimum
end loop

gnore g(n): prioritize finding a plan quickly

over finding a good plan
Which objective function for planning?

~h(s): We want to minimize heuristic value

| children of this node

Heuristics for HC Planning

What is a good heuristic for HC in planning?

Which is best, hA or hB?

*=55
hA=50
hB=4 | Equally good!
h*=55 h*=57 HC only cares about
h A;SO hA=53 the relative quality
hB=3 hB=20 of the children of one node...
" / : V.

For A*, hA is much better:
h*=62 Much closer to real costs
hA=55
hB=21

~ /

Heuristics for HC Planning (2)

What is a good heuristic for HC in planning?

Which is best, hA or hB?

*¥=55
hA=54
hB=4) hB is better!
h*=55 h*=57 hA prioritizes children
hA;SO hA=53 in the opposite order...
hB=3 hB=20 .
! / ~ / For A*, hA is much better:
Much closer to real costs
h*=62
hA=47
hB=21
: /

Heuristics for HC Planning (3)

What is a good heuristic for HC in planning?

Strictly simplified diagram:
All nodes with the same h*(n)
don’t have the same h(n)!

A A* prefers h(n) near h*(n)
h(n) Works well with HC/HSP as well

HC may have problems with this
heuristic - for A* it is strictly better
than the "lower heuristic"

HC/HSP works equally well with this:
Cares about relative values

A* would expand many more nodes:
Cares about absolute values

> h*(n)

Hill Climbing with h_, .: Plateaus

(onAB) 2 13 3 No successor improves the
(onB () 3 344 heuristic value; some are equal!
(clear A) 0 100

(dear D) o 00 1 We have a plateau...
(ontableC) 0 0 0 0

(ontableD) 0 0 0 1 Standard hill climbing:
h(n)=sum 5 5 7 9 "Can’t improve =

Jump to a random state”

5 u But the heuristic is not so accurate -
Hﬂu maybe some child is closer to the goal
LY even though h(n) isn’t lower!

h=5 H / B =>» Let’s allow a small number of

u consecutive moves across plateaus
)

Ao .

O

Plateaus

A plateau...

Hill Climbing with h_, .: Local Optima

(onAB) 2 133 022 00 If we continue, all successors
(onB () 3 344 322 44 have higher heuristic values!
(clear) 0 100 000 00 We have a local optimum...
jcearp) o 00 000 Impasse =0 timuntl or plateau
(ontable) 0 000 000 10 passe = op p
(ontableD) 0 001 000 0 1 Some impasses allowed
h(n)=sum 5 57 9 3 54 56
5
h=5 E 7

3+7: pickup(C)

9 E EJ 4 'c|B[D|A §3+4:pickup()E
B ‘ D

3+8: pickup(D)

Elevation

Objective Function

25+
2
1.5\ M P
L "’l"‘a":’:“:ﬂ“\'}\
0s e T
' S
0, ;
B PRSI
N
) i R

#-Coordinate

Y-Coordinate

Impasses and Restarts

What if there are many impasses?

Maybe we are in the wrong part of the search space afterall...
Misguided by h_,,; at some earlier step

=» Select another promising expanded node where search continues

HSP Example

Example from HSP 1.x: :
_ o _ Its children seem
* Hill Climbing with h,44 to be worse. If we
allowing some impasses have reached the
(plus some other tweaks) impasse threshold:

There’s a plateau
here...

But HSP allows a
few impasses!

=» Move to the
best child

...in that case we

might restart
from this node.

HSP 1: Heuristic Search Planner

HSP 1.x: h_,, heuristic + hill climbing + modifications

Works approximately like this (some intricacies omitted):

greedy =true; impasses =0; unexpanded = {initialNode}; node = pop(unexpanded);
while (not yet reached the goal) {

children € expand(node); /1 Apply all applicable actions
add children to unexpanded in order of h(n); // Keep track of visited nodes for “random” restarts!
Deadend=> if (|children|=0) { // Dead end
restart node = pop(unexpanded); /1 Restart from the next node (fail if none available)
} else if (greedy) {
best Child < first(children); /1 Child with the lowest heuristic value, hill-climbing-style

Essentially
hill-climbing, but
less strict: not all

remove bestChild from unexpanded;
if (h(bestChild) >= h(node)) {

heuristics = jump around too much!

steps have to !mpasses++; Allow limited downhill/plateau moves
move “up” if (impasses == threshold) greedy = false; => be a bit more persistent,
} but eventually try another path
}else {
Too many node = pop(unexpanded); /] Restart from another node (fail if none available)
downhill/plateau greedy = true; 1/ Go back to hill-climbing search
moves =» escape impasses = 0;

ool

HSP (2): Heuristic Search Planner

'”

Late 1990s: “State-space planning too simple to be efficient

Most planners used very elaborate and complex search methods

HSP:
Simple search space: Forward-chaining
Simple search method: Hill-climbing with limited impasses + restarts

Simple heuristic: Sum of distances to propositions
(still spends 85% of its time calculating h_4,!)

=» Very clever combination

Planning competition 1998:

HSP solved more problems than most other planners
Often required a bit more time, but still competitive
(Later versions were considerably faster)

An Overview of
Pattern Database Heuristics

Introduction

Several heuristics solve subproblems, combine their cost

Subproblem for Subproblem for
the h2 heuristic: Pattern Database Heuristics

Pick two goal literals Pick some state atoms
Ignore the others Ignore the others
Solve the problem optimally Solve the problem optimally

Database:
Solve for all values of the state atoms

Store in a database
Look up values quickly during search

Pattern Database Heuristics (1)

Pattern Database Heuristics:

Example problem: B D
-
A

B

If you use the classical (predicate) representation:

Reduce state space size: Partition atoms into mutually exclusive groups

In all states reachable from s0 using available actions,
exactly one atom in each group is true!

— Gy ={(on ¢ a),(on d a),(on b a), (clear a), (holding a)},
— G2 ={(on a c),(on d c), (on b c), (clear c), (holding c)},
— G3 ={(on a d), (on ¢ d), (on b d), (clear d), (holding d)},
— G4 ={(on a b), (on ¢ b), (on d b), (clear b), (holding b)},
— (5 = {(ontable a),true},

— (G4 = {(ontable c),true}, aprese 5 alwav
— Gy = {(ontable d),true},

— (s = {(ontable b),true}, and
— (9 = {(handempty) , true},

{p,true} represents that

p may or may not hold

Pattern Database Heuristics (2)

Every group can be seen as a single state variable
Variable G1 has 5 possible values:
vl, v2, v3, v4, vd
Equivalent way of viewing the problem!

(onca)® Gl=vl
(onda) & Gl =v2

(onba) & G1 =v3

Many modern planners work with this representation internally,
even if they don't use PDBs

— G; ={(on ¢ a),(on d a), (on b a), (clear a), (holding a)}, B u
— G2 ={(on a c),(on d c), (on b c), (clear c), (holding c)},

— G3 ={(on a d),(on ¢ d), (on b d), (clear d), (holding d)},

— G4 ={(on a b),(on ¢ b), (on d b), (clear b), (holding b)},

— G5 = {(ontable a),true},

— (G = {(ontable c),true},

— G7 = {(ontable d),true},

— (s = {(ontable b),true}, and

— (9 = {(handempty), true},

Pattern Database Heuristics (2)

Every group can be seen as a single state variable
Variable G1 has 5 possible values:

on-c-a, on-d-a, on-b-a, clear-a, and holding-a

Equivalent way of viewing the problem!

(onca) & Gl =on-c-a

Many modern planners work with this representation internally,
even if they don't use PDBs

— G; ={(on ¢ a),(on d a), (on b a), (clear a), (holding a)},
— G2 ={(on a c),(on d c), (on b c), (clear c), (holding c)},
— G3 ={(on a d),(on ¢ d), (on b d), (clear d), (holding d)},
— G4 ={(on a b),(on ¢ b), (on d b), (clear b), (holding b)},
— G5 = {(ontable a),true},

— (G = {(ontable c),true},

— G7 = {(ontable d),true},

— (s = {(ontable b),true}, and

— (9 = {(handempty), true},

@
o

Pattern Database Heuristics (3)

Why change the representation like this?
Original: 25 atoms, 2725 = 33554432 states
Now: 574 * 275 = 20000 states

Remove a lot of "useless" unreachable states

Not important for search: We would never have reached an
unreachable state...

Helps when creating pattern databases

— G; ={(on
- GQZ{(OH
— Gz = {(on
— G4 ={(on

Cc
a
a

a

a), (on d a), (on

c),(on d c), (on
d), (on c d), (on
b), (on ¢ b), (on
— (5 = {(ontable a),true},
— (G4 = {(ontable c),true},
— Gy = {(ontable d),true},
— (s = {(ontable b),true},
— (9 = {(handempty) , true},

and

b a), (clear
b c), (clear
b d), (clear
d b), (clear

a), (holding a)},
c), (holding c)},
d), (holding d)},
b), (holding b)},

Pattern Database Heuristics (4)

How to find mutually exclusive groups? . (cl€ara)

Find pairwise mutexes (e.g., using h2) londe)

Create a graph: (on.ca)
One node per atom R
Edge (p€&—>q) iff p and q are pairwise mutex

Find maximal cliques (onba)
Groups where all nodes are connected (holding b)
Does not give a unique solution: Consider (handempty) L

{ (onab), (ona), (onad), (ontable a), (holding a) }

— G; ={(on ¢ a),(on d a), (on b a), (clear a), (holding a)}, B u
— G2 ={(on a c),(on d c), (on b c), (clear c), (holding c)},

— G3 ={(on a d),(on ¢ d), (on b d), (clear d), (holding d)},

— G4 ={(on a b),(on ¢ b), (on d b), (clear b), (holding b)},

— G5 = {(ontable a),true},

— (G = {(ontable c),true},

— G7 = {(ontable d),true},

— (s = {(ontable b),true}, and

— (9 = {(handempty), true},

Pattern Database Heuristics (5)

A planning space abstraction "ignores” some groups

A mapping ¢ from atoms to atoms + {true}, where for each group G:

Either VfeG:d(f)=f - all atoms in the group are preserved
Or VIeG: ¢(f) = true - all atoms in the group are ignored
Results in an exponentially smaller state space E u
Suppose ¢ preserves all even groups
Real goal ={(ondc), (onca), (onab)} H
Relaxed goal ={(ondc), true, (onab)} u
pickup(a):
No longer requires (ontablea): In group 5
No longer causes (holding a): In group 1

: ST — Gy ={(on ¢ a),(on d a), (on b a), (clear a), (holding a)},
The rQSUItlng mini prOblem — G2 ={(on a c),(on d c), (on b c), (clear c), (holding c)},

iS Called d Qattel'n — G3={(on a d), (on c d), (on b d), (clear d), (holding d)},
— G4 ={(on a b), (on c b),(on d b), (clear b), (holding b)},
Matches many states _ G5 = {(ontable a), true}
that we might reach — Go = {(ontable ¢),truel},

. ' — G7 = {(ontable d),true},
mn the complete pI’Oblem- — (s = {(ontable b),true}, and

— (o = {(handempty),true},

Pattern Database Heuristics (6)

Using these abstractions for heuristics — general idea:

Automatically generate a set of planning space abstractions

Set of selections of groups/variables
Difficult issue - different approaches exist

Each abstraction results in a much smaller abstract state space
Complete state space: 5°4 * 2~5 = 20000 states

Abstraction containing all even groups: 5*5*2*2 states = 100 states

— G; ={(on ¢ a),(on d a), (on b a), (clear a), (holding a)},
— G2 ={(on a c),(on d c), (on b c), (clear c), (holding c)},
— G3 ={(on a d),(on ¢ d), (on b d), (clear d), (holding d)},
— G4 ={(on a b),(on ¢ b), (on d b), (clear b), (holding b)},
— G5 = {(ontable a),true},

— (G = {(ontable c),true},

— G7 = {(ontable d),true},

— (s = {(ontable b),true}, and

— (9 = {(handempty), true},

Pattern Database Heuristics (7)

For each abstraction, compute a pattern database

Exhaustive search: Cheapest way of achieving any state in the pattern

Assigns a cost to each abstract state

To be computable in polynomial time:

Each individual pattern must have at most logarithmic size

To calculate a heuristic:

From the current state, generate the corresponding abstract state

Look up its precalculated cost
Using perfect hash function: Near constant time lookups

Each such cost is an admissible heuristic

Therefore the maximum over many different abstractions
is also an admissible heuristic

Pattern Database Heuristics (8)

How close to h*(n) can an admissible PDB-based heuristic be?

Assuming polynomial computation:

Each abstraction can have at most O(log n) variables/groups
So h(n) <= cost of reaching the most expensive subgoal of size O(log n)

Problem size grows much faster than h(n)

=» For a single pattern, asymptotic accuracy is o

Example

Example:
pickup(A) affects holding(A), ontable(A), clear(A), handempty

If we use pickup(A) in abstraction 1:
[t must affect some fact that is part of abstraction 1

"Suppose every action affects atoms in at most one of them"
So pickup(A) can't affect any atom used in abstraction 2

So it isn't used in any optimal plan in abstraction 2

Pattern Database Heuristics (9)

=» Given several abstractions:

Suppose every action affects atoms in at most one of them

Then optimal solutions from distinct abstractions
can’t share actions

Therefore, the abstractions are additive:
The sum of the corresponding heuristics is admissible

If we have several sets of additive abstractions:

Can calculate an admissible heuristic from each additive set,
then take the maximum of the results
as a stronger admissible heuristic

Pattern Database Heuristics (10)

How close to h*(n) can an admissible PDB-based heuristic be?

For additive PDB heuristics with a single sum,
Asymptotic accuracy as problem size approaches infinity:

Gripper 2/3
Logistics 3/4
Blocks world 1/4
Miconic-STRIPS 6/7
Miconic-Simple-ADL ~ 3/4
Schedule 1/4
Satellite 1/2

Assuming that the planner finds the best combination of abstractions!

o O O O O O O

2/3
1/2
0

1/2
0

1/2
1/6

An Overview of
Landmark Heuristics

Landmark Heuristics (1)

Landmark:
"a geographic feature used by explorers and others
to find their way back or through an area”

Landmark Heuristics (2)

Landmarks in planning:
Something you must pass by/through
in every solution to a specific planning problem

Landmark: Action Landmark:
A formula that must be achieved An action that must be used
in every solution in every solution
B LJ g L)
é ﬁ D a
clear(A) unstack(B,C)

holding(C) putdlozvn(B))
stack(D,C) FSaiaiiaiain

...but not putdown(C)! (Why?)

Landmark Heuristics (3)

One general technique for discovering landmarks:

Current planning problem, P Modified planning problem, P’
' Removed all actions
adding atom A
...then every solution to P If this (P’) is unsolvable...

must use one of the actions adding A

=» Atom A is a landmark

Landmark Heuristics (4)

Discover landmarks using (1) means-ends analysis

So

g

D

The goals are (obviously) landmarks:
clear(D), on(D,C), on(C,A), on(A,B), ontable(A)

on(D,C) is a landmark,
on(D,C) is not true in the current state (s0)
=» we must cause on(D,C) with an action

All actions causing on(D,C) require holding(D)
=> holding(D) is a landmark!

holding(D) is not true in the current state,
all actions causing holding(D) require handempty
=>» handempty is a landmark

Landmark Heuristics (5)

Discover landmarks using (2) domain transition graphs
Use state variables, or generate mutually exclusive sets of atoms
{ ontable(A), holding(A), on(A,B) }
Add transitions caused by actions

Ty oy Ty T,
— "\
C Pickup— > HOLDING A —put

T i
AL B Commen oA

-

=>» If A is on the table now and must be on B in the goal,
then at some point we must be holding A
(all paths pass through this node!)

...and other methods.

Can sometimes find or approximate necessary orderings
We must achieve holding(A), then holding(B)

Using Landmarks as Subgoals

Landmarks as Subgoals (1)

Use of landmarks:

As subgoals: Try to achieve each landmark in succession,

using inferred landmark orderings

Example from Karpas & Richter:
Landmarks - Definitions, Discovery Methods and Uses

0-at-B

-
.
.
.
.
N
.
+
.
+
+
+
. .
. .
. .
. "
.
. .t
.
. .t
.
. .
Y. . * .
.. .
o . O In p
------- - -

o-at-E

Landmarks as Subgoals (2)

Already true
when we start
o-at-B t-at-B
N

0 (@ 0-in-t |

o-at-E

Current goal: t-at-B or p-at-C (disjunctive!)

Landmarks as Subgoals (3)

Suppose we begin with
drive(t, B)

o-at-B

t-at-B

N

o-in-t
~ \ t-at-C

p-at-C

Current goal: o-in-T or p-at-C

o-at-C

NV

0-in-p

]

o-at-E

Landmarks as Subgoals (4)

Suppose we continue with
load-truck(o,t,B)

o-at-E

Landmarks as Subgoals (5)

Sometimes very helpful
But there are choices to be made

Simply achieving each landmark in some permitted order
can lead to long plans or even incompleteness...

Landmark Counts and Costs

Landmark Counts and Costs (1)

Use of landmarks:

As a basis for non-admissible heuristic estimates

Used by LAMA, the winner of the sequential satisficing track
of the International Planning Competition in 2008, 2011

LAMA counts landmarks:

Identifies a set of landmarks that still need to be achieved
after reaching state s through path (action sequence)

L(s,m) = (L \ Accepted(s,r)) U ReqAgain(s,)
o-at-B| |[t-at-B All discovered landmarks,
p minus those that are
0-In-t .
accepted as achieved
\ t-at-C (has become true after Plus those we can show will
v . .
0-at-C| [o-atC predecessors are achieved!) have to be re-achieved
N/
0-in-p
1

Not admissible: One action may achieve multiple landmarks!

o-at-E

Landmark Counts and Costs (2)

The LAMA planner:

Won the sequential satisficing track
of the International Planning Competition in 2008, 2011

Heuristics combining:

FF heuristics (discussed later)
The number of landmarks still to be achieved in a state

Searches for low-cost plans

But we also want to find plans quickly!
Heuristics estimate both:
Cost of actions required to reach the goal
Cost of the search effort required to reach the goal

Search strategy:

First, greedy best-first (create a solution as quickly as possible)

Then, repeated weighted A* search with decreasing weights
(iteratively improve the plan - anytime planning)

Landmark Counts and Costs (3)

Use of landmarks:

As a basis for admissible heuristic estimates

Idea: The cost of each action is shared across the landmarks it achieves

Simplified example:

Suppose there is a goto-and-pickup action of cost 10,
that achieves both t-at-B and o-in-t

Suppose no other action can achieve these landmarks

One can then let (for example)

cost(t-at-B)=3 and cost(o-in-t)=7 o-at-B| [t-at-B
N
0-in-t
The sum of the cost of remaining landmarks Tl C
is then an admissible heuristic - Vd
: : -at- -at-C
Must decide how to split costs across landmarks P < O\la
Optimal split can be computed polynomially, O'T'p

but is still expensive o-at-E

Landmarks: Modified Problem

Use of landmarks:

As a basis for a modified planning problem

For example, add new predicates "achieved-landmark-n”

Each action achieving a landmark makes the corresponding predicate true
The goal requires all such predicates to be true

=» Other heuristics can be applied to the modified problem

