

Automated Planning

3. Planning as Search, Forward State Space Search

Jonas Kvarnström Automated Planning Group Department of Computer and Information Science Linköping University

Planning as Search

Planning as Search

Planning algorithms are often based on <u>search</u>

Search space

Classical planning: Finite number of search nodes

Initial search node 0

(contains some information, depending on the search space...)

Child node 1 Child node 2

We usually don't have all search nodes explicitly represented: We start with a single <u>initial search node</u>

A <u>successor function</u> / <u>branching rule</u>
returns all successors of any search node
→ can build the graph *incrementally*

Expand a node = generate its successors

Now we have *multiple* unexpanded nodes! A <u>search strategy</u> chooses which one to expand next

Planning as Search (6)

General <u>Search-Based Planning Algorithm</u>:

search() {

open ← { initial-node }
<u>while</u> (open ≠ emptyset) {
 use a search strategy to select and remove node from open
 if goal-satisfied-by(node) then return path

}

foreach mod ∈ possible-modifications-to(node) {
 node' ← apply(mod, node) // dynamically generate a successor
 add node' to open

return failure;

Planning as Search (7)

To keep track of visited nodes:

<u>search()</u> {

}

```
open \leftarrow { initial-node }
added ← { initial-node }
while (open ≠ emptyset) {
   use a search strategy to select and remove node from open
   if goal-satisfied-by(node) then return path
```

```
foreach mod \in possible-modifications-to(node) {
       node' \leftarrow apply(mod, node) // dynamically generate a successor
       if not (node' \in added)
           add node' to open
           add node' to added
return failure;
```

Forward State Space Search

Blocks World (1)

- Our next example domain: The **Blocks World**
 - A <u>simple</u> example domain allowing us to focus on algorithms and concepts, not domain details

Blocks World (2)

- We will generate classical <u>sequential plans</u>
 - A common blocks world version, with <u>4 operators</u>
 - (**pickup** ?x) takes ?x from the table
 - (**putdown** ?x) puts ?x on the table
 - (**unstack** ?x ?y) takes ?x from on top of ?y
 - (**stack** ?x ?y) puts ?x on top of ?y
 - Predicates used:

(**ontable** ?x)

(**holding**?x)

(handempty)

(clear ?x)

- (on ?x ?y) block ?x is on block ?y
 - ?x is on the table
 - we can place a block on top of ?x
 - the robot is holding block ?x
 - the robot is not holding any block

(not (exists (?y) (on ?y ?x)))

(not (exists (?x) (holding ?x)))

Blocks World (3): Operator Reference

(:action <u>pickup</u>

:**parameters** (?x) :**precondition** (and (clear ?x) (on-table ?x) (handempty))

:effect

(and (not (on-table ?x))
 (not (clear ?x))
 (not (handempty))
 (holding ?x)))

(:action unstack :parameters (?top ?below) :precondition (and (on ?top ?below) (clear ?top) (handempty)) :effect (and (holding ?top) (clear ?below) (not (clear ?top)) (not (handempty)) (not (on ?top ?below))))) (:action <u>putdown</u> :parameters (?x) :precondition (holding ?x)

:effect

(and (on-table ?x) (clear ?x) (handempty) (not (holding ?x))))

:effect

(and (not (holding ?top))
 (not (clear ?below))
 (clear ?top)
 (handempty)
 (on ?top ?below)))

Representation and Model

Forward State Space Search (1)

- Blocks world example:
 - <u>Generate</u> the initial state = initial node from the initial state <u>description</u> in the problem

Forward State Space Search (2)

- Incremental expansion: Choose a node
 - First time, the initial state other times, depends on the **search strategy** used
- Expand all possible successors
 - "What actions are applicable in the current state, and where will they take me?"
 - Generates new states by applying effects
- Repeat until a goal node is found! Stack Stack B Outdown(a) pickup(b)
- Notice that the BW lacks dead ends.
- In fact, it is even
 - *symmetric*. This is not
 - true for all domains!

Forward State Space Search (3)

General Forward State Space Search Algorithm

forward-search(operators, s₀, g) {
 open ← { <s₀, ε> }

while (open ≠ empty et) {

What **<u>strategies</u>** are available and useful?

use a strategy to select and remove <s,path> from open if goal g satisfied in state s then **return** path

foreach a ∈ { ground instances of operators applicable in state s } {
 s' ← apply(a, s) // dynamically generate a new state
 path' ← append(path, a)
 add <state', path'> to open

return failure;

Expand the node

Is always <u>sound</u> <u>Completeness</u> depends on the strategy To simplify extracting a plan, a state space search node could include the plan to reach that state!

Still generally called state space search...

Forward State Space Search: Trivial?

 We see that for <u>classical</u> planning problems, we can <u>search</u> directly <u>in the formal model</u> – the STS 19

Does this mean planning is **trivial**? Move DiskC From Peal To Pea3 ∣ᆂ

Forward State Space Search: Search Strategies and the Difficulty of Planning

Forward State Space Search: Dijkstra

21

First search strategy: <u>Dijkstra's algorithm</u>

- <u>Matches</u> the given forward search "template"
 - Selects from open a node n with minimal g(n):
 Cost of reaching n from the starting point
- <u>Efficient</u> graph search algorithm: O(|E| + |V| log |V|)
 - |E| = the number of edges, |V| = the number of nodes
- **Optimal**: Returns minimum-cost plans
- Simple problem, for illustration:
 - <u>Navigation</u> in a grid
 - Each state specifies only the <u>coordinates of the robot</u>: Two state variables
 - <u>Actions</u>: Move left, move right, ...
 (cost = 1)
 - Single goal node

Dijkstra's Algorithm (2)

22

Dijkstra's Algorithm:

Animation from Wikimedia Commons

Dijkstra's Algorithm (3)

- 23
- Explores <u>all</u> states that can be reached more cheaply than the cheapest goal node

Usually we have many more "dimensions", many more nodes within a given distance (this was just a trivial 2-dimensional 8-connected example)!

Dijkstra's Algorithm (4)

- Blocks world, 400 blocks initially on the table, goal is a 400-block tower
 - Given uniform action costs,
 Dijkstra will <u>always</u> consider <u>all</u> plans that stack <u>less than 400 blocks</u>!
 - Stacking 1 block: = 400*399 plans, ...
 - Stacking 2 blocks: > 400*399 * 399*398 plans, ...
 - More than

 $16305698390789310586457967937334728775645948416347826722586241976230426399420799766425821395576658116365413711\\ 81631192204882263831691616483204594902834106357987452326989711329392844798003040966743549740387225888734809637\\ 19240642724363629154726632939764177236010315694148636819334217252836414001487277618002966608761037018087769490\\ 61484788741874440260622613480393693523356841805595037118535183714054851594943130931387521082788894333711361366\\ 09283180862996179538929537220067341589332765764704756406073917010260309590403035481742212740523295796377736587$

22452549738459404452586503693 21179627432025699299231777374 02891948105852178191464766293 88031691394386551194171193333 67838517772535893398611212735

139180912754853265795909113444084441755664 071085488265744484456318793090777966157299 424654413723505687486652490219918497606469 302032441302649432305620215568850657684229 910292069308720174243236072916252738750807

 $32255786307776859016374355414_{584408338787093441749839774374303275575}_{344176291224488351917210773338752306956814}\\80990867109051332104820413607822206465635272711073906611800376194410428900071013695438359094641682253856394743}\\33567854582432093210697331749851571100671998530498260475511016725485476618861912891705393354709843502065977868}\\94996069041570770057976322876697641450955815650565898117215204346127705949506137017308793077271410935265343286}\\71360002096924483494302424649061451726645947585860104976845534507479605408903828320206131072217782156434204572\\43461604240437521105232403822580540571315732915984635193126556273109603937188229504400$

Efficient in terms of the <u>search space size</u>: $O(|E| + |V| \log |V|)$

The search space is **<u>exponential</u>** in the size of the input description...

Fast Computers, Many Cores

- But computers are getting <u>very fast</u>!
 - Suppose we can check 10^20 states per second
 - >10 billion states *per clock cycle* for today's computers, each state involving complex operations
 - Then it will only take 10^1735 / 10^20 = 10^1715 seconds...

But we have <u>multiple cores</u>!

- The universe has at most 10⁸⁷ particles, including electrons, ...
- Let's suppose every one is a CPU core
- → only 10^1628 seconds
 > 10^1620 years
- The universe is around 10^10 years old

Impractical Algorithms

- **26**
- Dijkstra's algorithm is **completely impractical** here
 - Visits all nodes with cost < cost(optimal solution)
- <u>Breadth first</u> would not work
 - Visits all nodes with length < length(optimal solution)
- **Iterative deepening** would not work
 - Saves space, still takes too much time

Depth first search would <u>normally</u> not work

- Could work in *some* domains and *some* problems, by pure luck...
- Usually either doesn't find the goal, or finds <u>very</u> inefficient plans
- [movies/4_no-rules]

Depth First Search Example

27

- Depth first search:
 - Always prefers **adding a new action** to the current action sequence
 - Always adds the <u>first action</u> it can find

Problems and Problem Statements

<u>Trillions</u> of states in $\Sigma = (S, A, \gamma)$ would be a rather small planning **<u>problem</u>**

 $\frac{\text{Trillions}}{\text{planning problem}}$ of state transitions in γ

<u>Thousands</u> of constants and predicates in L would be a rather large <u>classical</u> planning problem <u>statement</u>

<u>Hundreds</u> of operators would correspond to a very large classical planning problem statement

Hopeless?

- Is there still hope for planning?
 - Of course there is!
 - Our trivial planning method uses <u>blind</u> search tries <u>everything</u>!
 - <u>We</u> wouldn't choose such silly actions so why should the computer?

Planning is part of Artificial Intelligence!

 We should develop methods to <u>judge</u> what actions are <u>promising</u> given our goals

Search Guidance

Two Types of Guidance

Two distinct **types** of guidance

Binary decision: Is this search node <u>definitely bad</u> or <u>possibly good</u>?

Definitely bad → remove the node, prune the tree → never have to consider the node again!

Possibly good \rightarrow keep the node

On a scale: <u>How promising</u> is this search node?

A **heuristic function**, used to prioritize the *search* order

Low value → try earlier High value → keep, possibly try later

Potentially very effective

A single mistake, removing a *good* node → might not find a solution at all!

Therefore, difficult to find good *domain-independent* pruning rules

Resilient: Prioritize in the wrong order → can come back later

Less efficient: Have to keep all nodes in case you need to go back later

For now, we will focus on heuristics!

Two Aspects of Guidance

Two **<u>aspects</u>** of guiding search

Defining a <u>search strategy</u> that takes guidance into account

Examples:

A* uses a heuristic (function) Hill-climbing uses a heuristic... differently! Generating the actual **guidance** as input to the search strategy

Example:

Finding a suitable heuristic function for A* or hill-climbing

Can be <u>domain-specific</u>, given as input in the planning problem

Can be <u>domain-independent</u>, generated automatically by the planner given the problem domain

We will consider both – heuristics more than algorithms

Two Uses for Guidance

Two distinct **objectives** for guidance

Find a **good** solution

Prioritize nodes that appear to be **close to a goal node** in the search space

Prioritize nodes that appear to lead to <u>good solutions</u>, even if finding those solutions will be difficult

Often one strategy can achieve *both* reasonably well, but for optimum performance, the distinction can be important!

Node: Plan length 50, estimated goal distance 10

Node: Plan length 5, estimated goal distance 30

Heuristics for Forward State Space Search: True Costs and Heuristic Estimates

True Goal Distances

For now: A solution is **better** if it has **lower cost when executed**

Let $h^*(n)$ be the <u>actual cost</u> of reaching a goal from *n*

Cost = sum of <u>action costs</u> for cheapest solution starting in *n* In the example, each action has a cost of 1 We don't *explicitly* consider computational costs of *finding* solutions!

Cheapest solution starting here: putdown(A); pickup(B); stack(B,C); pickup(A); stack(A,B) → h*(thisnode) = 5

putdown(B); unstack(A,C); putdown(A); pickup(B); stack(B,C); pickup(A); stack(A,B) → 7

putdown(D); unstack(A,C); putdown(A); pickup(B); stack(B,C); pickup(A); stack(A,B) → 7

Planning given True Goal Distances

If we *knew* the true goal distances h*(n):

```
node ← initstate
while (not reached goal) {
    node ← a successor of node with minimal h*(n)
}
```

Trivial straight-line path minimizing h* values gives an optimal solution!

Heuristics Estimate True Goal Distances

- So regardless of method, computing h* is <u>as hard as optimal planning</u>!
 - Planning is PSPACE-complete in general...
 (in terms of input size = representation size)

Heuristics should **<u>quickly</u>** provide good <u>estimates</u> of h*

- A **heuristic function** h(*n*):
 - An <u>approximation</u> of $h^*(n)$
 - Often used together with g(*n*), the known cost of *reaching* node *n*
- Admissible if $\forall n. h(n) \le h^*(n)$
 - Never overestimates important for *some* search algorithm

General Heuristic Forward Search

38

General Heuristic Forward Search Algorithm

```
heuristic-forward-search(ops, s<sub>0</sub>, g) {
     open \leftarrow \{\langle s_0, \varepsilon \rangle\}
             <u>while</u> (open \neq emptyset) {
                  use a heuristic search strategy to select and remove <s,path> from open
                  if path is cyclic then skip it
                  if goal-satisfied(g, s) <u>then</u> <u>return</u> path
                                                             The <u>strategy</u> selects nodes from the
                                                         foreach a \in \text{groundapp}(\text{ops, s}) {
                                                             open set depending on:
                      s' \leftarrow apply(a, s)
                                                                   h(n)
                       path' \leftarrow append(path, a)
                       add <state', path'> to open
                                                                   Possibly other factors such as g(n)
                                                             What is a good heuristic depends on:
                                                         The algorithm (examples later)
             return failure;
                                                                   The purpose (good solutions /
                                                                   finding solutions quickly)
A*, simulated annealing,
hill-climbing, ...
```

A Simple Domain-Independent Heuristic

Heuristics given Structured States

- 40
- In planning, we often want **<u>domain-independent</u>** heuristics
 - Should work for <u>any</u> planning domain how?
- Take advantage of <u>high-level representation</u>!

Plain state transition system

- We are in state
 572,342,104,485,172,012
- The goal is to be in one of the 10^47 states in Sg={ s[482,293], s[482,294], ... }
- Should we try action A297,295,283,291 leading to state 572,342,104,485,172,016?
- Or maybe action A297,295,283,292
 leading to state
 572,342,104,485,175,201?

Classical representation

- We are in a state where disk 1 is on top of disk 2
- The goal is for all disks to be on peg C
- Should we try take(B), leading to a state where we are holding disk 1?

Heuristics given Structured States (2)

- All facts can be "tested" independently of each other
 - What is the difference between states o and 1? Only that in state 1, disk 1 is being <u>carried</u> instead of being <u>on top of disk 2 on peg B</u> (so the states are very similar)
- We can see "how close" a state is to the goal
 - "Almost all disks are in the right place, only C needs to be moved"
- We see <u>actions</u> as having structure: Parameters, conditions, effects
 - Can see that in state s₀, we cannot execute take(2,b),
 <u>because</u> the precondition top(2) is not true (there is something on top of disk 2)

This can be used as a basis for our heuristics!

Counting Remaining Goals

- A very simple **domain-independent** heuristic:
 - <u>Count</u> the number of facts that are "wrong"
 - Competely independent of the domain

Counting Remaining Goals (2)

- A **<u>perfect</u>** solution? No!
 - We must often go <u>away</u> from the goal before we can approach it again

Optimal: unstack(A,C) putdown(A) pickup(B) stack(B,C) pickup(A) stack(A,B)

Counting Remaining Goals (3)

- Not admissible!
 - Matters to some heuristic search algorithms (not all)

Counting Remaining Goals (4)

- In the scenario below:
 - Facts to add: on(I,J)
 - Facts to remove: ontable(I), clear(J)
 - Heuristic value of 3 but is it close to the goal?

J

Counting Remaining Goals (5): Analysis (

- What we see from <u>this</u> analysis is...
 - Not very much: All heuristics have weaknesses!

Even the <u>best planners</u> will make "strange" choices, visit **tens**, **hundreds** or even **thousands** of "unproductive" nodes for every action in the final plan The heuristic should make sure we don't need to visit **millions**, **billions** or even **trillions** of "unproductive" nodes for every action in the final plan!

46

- But a thorough empirical analysis would tell us:
 - This heuristic is <u>far</u> from sufficient!

Example Statistics

Planning Competition 2011: Elevators domain, problem 1

- A* with goal count heuristics
 - States: 108922864 generated, gave up
- LAMA 2011 planner, good heuristics, other strategy
 - Solution: 79 steps, 369 cost
 - States: 13236 generated, 425 evaluated/expanded
- Elevators, problem 5
 - LAMA 2011 planner:
 - Solution: 112 steps, 523 cost
 - States: 41811 generated, 1317 evaluated/expanded
- Elevators, problem 20
 - LAMA 2011 planner:
 - Solution: 354 steps, 2182 cost
 - States: 1364657 generated, 14985 evaluated/expand

Even a state-of-the-art planner can't go directly to a goal state!

Generates *many* more states than those actually on the path to the goal...

Some Desired Properties (1)

- 48
- What properties do **good heuristic functions** have?
 - Informative: Provide guidance to the search strategy
 - In what sense? Depends on the strategy (examples later)!

Some Desired Properties (2)

- What properties do good heuristic functions have?
 - Efficiently computable!
 - Spend as little time as possible deciding which nodes to expand
 - Balanced...
 - Don't spend more time computing h than you gain by expanding fewer nodes!
 - Illustrative (made-up) example:

Heuristic quality	Nodes expanded	Expanding one node	Calculating h for one node	Total time
Worst	100000	100 µs	1 µs	10100 ms
Better	20000	100 µs	10 µs	2200 ms
	5000	100 µs	100 µs	1000 ms
	2000	100 µs	1000 µs	2200 ms
	500	100 µs	10000 µs	5050 ms
Best	200	100 µs	100000 μs	20020 ms

Heuristic Search: Difficult

<u>Good</u> domain-independent heuristics were difficult to find...

Bonet, Loerincs & Geffner, 1997:

- Planning problems are <u>search problems</u>:
 - There is an *initial state*, there are *operators* mapping states to successor states, and there are *goal states* to be reached.
- Yet planning is <u>almost never formulated in this way</u> in either textbooks or research.
- The reasons appear to be two:
 - the specific nature of planning problems, that calls for decomposition,
 - and the <u>absence of good heuristic functions</u>.

Alternative Approaches

• At the time, research diverged into **<u>alternative approaches</u>**

<u>Use another search space</u> <u>to find plans more efficiently</u>

> Backward state search Partial-order plans Planning graphs Planning as satisfiability

> > • • •

Include more information in the problem specification

(Domain-specific heuristics) Hierarchical Task Networks Control Formulas

But that was 15 years ago! Heuristics have come a long way since then...

Heuristics and Search Strategies for <u>Optimal</u> Forward State Space Planning

A Well Known Heuristic Search Algorithm: A*

Used in many **optimal** planners

Dijstra vs. A*: The essential difference

Dijkstra	A*	
Selects from <i>open</i> a node <i>n</i> with minimal $f(n) = g(n)$	 Selects from open a node n with minimal f(n) = g(n) + h(n) 	
 Cost of reaching <i>n</i> from initial node 	 + <u>estimated cost</u> of reaching a goal from n 	

Informed

Uninformed (blind)

- Example:
 - <u>Hand-coded</u> heuristic function
 - Can move diagonally →
 h(n) = <u>Chebyshev distance</u>
 from *n* to goal =
 <u>max</u>(abs(n.x-goal.x), abs(n.y-goal.y))
 - Related to <u>Manhattan Distance</u> = <u>sum</u>(abs(n.x-goal.x), abs(n.y-goal.y))

Start

- Given an admissible heuristic *h*, A* is **optimal in two ways**
 - Guarantees an <u>optimal</u> plan
 - Expands the minimum number of nodes required to guarantee optimality when this heuristic is used
- Still expands many "unproductive" nodes in the example
 - Because the heuristic is <u>not perfectly informative</u>
 - Even though it is hand-coded
 - Does not take <u>obstacles</u> into account

- What is an **informative** heuristic for A*?
 - As always, h(n) = h*(n) would be perfect but maybe not attainable...
 - But the closer h(n) is to h*(n), the better
 - Suppose <u>hA</u> and <u>hB</u> are both <u>admissible</u>
 - Suppose $\forall n. hA(n) \ge hB(n)$: hA is at least close to true costs as hB
 - Then A* with hA cannot expand more nodes than A* with hB
 - Sounds obvious
 - But not true for all search strategies!

<u>Creating</u> Admissible Heuristics: The Relaxation Principle

Relaxation 1: Intro

Suppose we have a planning problem P...

...and we add <u>more edges</u> (transitions), resulting in P'

The problem is simpler, <u>the constraints are relaxed</u>: All old solution plans remain valid, new solutions become possible!

An <u>optimal</u> solution for P' can <u>never</u> be more expensive than the corresponding optimal solution for P

Relaxation 2: Generalization

Suppose we have a planning problem P...

...and we add <u>more solutions</u>, resulting in P'

No matter how this is done: <u>Changing</u> existing transitions, using different states altogether, ...

As long as all old solution plans remain solutions for P':

The **optimal** solution for P' can **never** be more expensive than the optimal solution for P

Relaxation 3: Example

Classical example: The <u>8-puzzle</u> (15-puzzle, ...)

- Relaxation: <u>Suppose that tiles can be moved across each other</u>
 - Now we have 21 possible first moves!
- All **old solutions are still valid**, but new ones are added
 - To move "8" into place:
 - Two steps to the right, two steps down, ends up in the same place as "1"

The <u>optimal</u> solution for modified 8-puzzle can <u>never</u> be more expensive than the optimal solution for original 8-puzzle

Relaxation 4: Admissible Heuristic

• We want:

Original 8-puzzle

- A heuristic h for P that is <u>admissible</u>: $\forall n. h(n) \le h^*(n)$
- We know:

Relaxed 8-puzzle

- An optimal solution for P' can <u>never</u> be more expensive than the corresponding optimal solution for P
- $\neg \exists n. h^{*'}(n) > h^{*}(n)$
- $\forall n. h^{*'}(n) \leq h^{*}(n)$: <u>h^{*'}(n) is an admissible heuristic for P</u>

How does this help?

h*'(n) may be much easier to calculate than h*(n)

Relaxation 5: Example

63

- Let's analyze the <u>relaxed 8-puzzle</u>...
 - Each piece has to be moved to the intended row
 - Each piece has to be moved to the intended column
 - These are <u>exactly</u> the required actions given the relaxation!
 - <u>optimal cost</u> for relaxed problem
 = sum of Manhattan distances
 - → <u>admissible heuristic</u> for original problem
 = sum of Manhattan distances

 Can be <u>coded procedurally</u> in a solver – efficient!

 (Though we'd prefer to extract heuristics automatically – later!) Rapid calculation is the *reason* for relaxation

Shorter solutions

are an *unfortunate side effect*: Leads to less informative heuristics

Relaxation 6: Principle

- Relaxation: One general principle for designing admissible heuristics for optimal planning
 - Find a way of transforming planning problems, so that given a problem instance P:
 - **<u>Computing its transformation</u>** P' is easy (polynomial)
 - <u>Calculating the cost</u> of an optimal solution to P' is easier than for P
 - <u>All solutions to P are solutions to P'</u>, but the new problem can have additional solutions as well
 - Then the cost of an optimal solution to P' is an admissible heuristic for the original problem P

<u>Relaxation</u> is not the <u>only</u> method used to derive new heuristics!

Relaxation 7: Balance

- **65**
- Should be easy to calculate but must find a balance!
 - Relax too much → not informative
 - Example: Any piece can teleport into the desired position
 → h(n) = number of pieces left to move

Relaxation 8: Important Issues!

Important:

You <u>cannot</u> "use a relaxed problem as a heuristic". What would that mean? You use the <u>cost</u> of an <u>optimal solution</u> to the relaxed problem as a heuristic.

66

Solving the relaxed problem <u>can</u> result in a more expensive solution → inadmissible!

You have to solve it <u>optimally</u> to get the admissibility guarantee.

You don't just solve the relaxed problem once. **Every time you reach a new state and want to calculate a heuristic**, you have to solve the relaxed problem of getting from <u>that</u> state to the goal.

General Domain-Independent Techniques: Precondition Relaxation, Delete Relaxation

Precondition Relaxation

- What about <u>domain-independent</u> heuristics?
 - Planners don't reason:
 "Suppose that tiles can be moved across each other"...
 - One general technique: <u>Precondition relaxation</u>
 - Remove some preconditions
 - Solve the resulting problem in a standard optimal planner
 - Return the cost of the optimal solution

68

Example: 8-puzzle

...)

(**define** (domain strips-sliding-tile) (:**requirements** :strips) (:predicates (tile ?x) (position ?x) (at ?t ?x ?y) (blank ?x ?y) (inc ?p ?pp) (dec ?p ?pp)) (:**action** move-up :**parameters** (?t ?px ?py ?by) :**precondition** (and (tile ?t) (position ?px) (position ?py) (position ?by) (dec ?by ?py) (blank ?px ?by) (at ?t ?px ?py)) :**effect** (and (not (blank ?px ?by)) (not (at ?t ?px ?py)) (blank ?px ?py) (at ?t ?px ?by)))

Remove this \rightarrow **<u>exactly</u>** the same relaxation that we hand-coded!

Problem 1: How can a planner automatically determine which preconditions to remove/relax?

Problem 2: Need to actually *solve* the resulting planning problem (unlikely that the planner can automatically find an efficient closed-form solution!)

Delete Relaxation (1)

- Second general technique: <u>delete relaxation</u>
 - Assume a pure "old-fashioned" STRIPS problem with:
 - Positive preconditions
 - Positive goals

Then a state where additional facts are true can be better, but never worse! $s \supset s' \rightarrow h^*(s) <= h^*(s')$

- Why?
 - If *adding* a fact to a state makes an action *inapplicable*, this has to be due to a negative precondition
 - If *adding* a fact to a state makes a goal *inachievable*, this has to be due to a negative goal

Delete Relaxation (2)

- 71
- Assume we have both negative and positive effects
 - The relaxation: <u>remove all negative effects</u> (all "delete effects")!
- Example: (unstack ?x ?y)

Before transformation:

:precondition (and (handempty) (clear ?x) (on ?x ?y))

:effect (and (not (handempty)) (holding ?x) (not (clear ?x)) (clear ?y) (not (on ?x ?y))

• <u>After transformation:</u>

:precondition (and (handempty) (clear ?x) (on ?x ?y)) :effect (and (holding ?x) (clear ?y))

• Modifies the state transition system, *moves* existing transitions!

Delete Relaxation (3): Example

Delete Relaxation (4): Heuristic

Analysis:

- "All the same actions applicable and more"
- In fact, given any <u>action sequence</u>:
 - If it is applicable P,
 - If it results in a goal state in P,
 - → This *is* a relaxation!
- Easy to apply mechanically
 - Remove <u>all</u> negative effects
- If <u>only</u> this relaxation is applied:
 - Gives us the <u>optimal delete relaxation heuristic</u>, h+(n)
 - h+(n) = the cost of an <u>optimal solution</u> to a <u>delete-relaxed</u> problem starting in node n

it is applicable in P'

it results in a goal state in P'

Accuracy of h+ in Selected Domains

- **How close** is h+(n) to the true goal distance $h^*(n)$?
 - Asymptotic accuracy as problem size approaches infinity:
 - Blocks world: $1/4 \rightarrow h+(n) \ge 1/4 h^*(n)$

Optimal plans in delete-relaxed Blocks World can be down to 25% of the length of optimal plans in "real" Blocks World

Accuracy of h+ in Selected Domains (2) (75

• <u>How close</u> is h+(*n*) to the true goal distance h*(*n*)?

- **Asymptotic accuracy** as problem size approaches infinity:
 - Blocks world: 1/4 → $h+(n) \ge 1/4$ $h^*(n)$ Gripper domain: 2/3 (single robot moving balls)
 - Logistics domain: 3/4 (move page
 - Miconic-STRIPS: 6/7
 - Miconic-Simple-ADL: 3/4
 - Schedule: 1/4
 - Satellite:

- (move packages using trucks, airplanes)
- 6/7 (elevators)
 - /4 (elevators)
 - (job shop scheduling)
 - 1/2 (satellite observations)

- Details:
 - Malte Helmert and Robert Mattmüller Accuracy of Admissible Heuristic Functions in Selected Planning Domains

Example of Accuracy

- Delete relaxation example
 - <u>Accuracy</u> will depend on the domain and problem instance!
 - <u>Performance</u> also depends on the search strategy
 - How sensitive it is to specific types of inaccuracy

pickup(B); stack(B,C); stack(A,B) → h+ = 3 [h* = 5]
Good action!

unstack(A,C); pickup(B); stack(B,C); stack(A,B) → h+ = 4 [h* = 7]

Calculating h+

Why is h+(n) easier to calculate than the true goal distance?

- Only positive effects remain
 - → The set of <u>true facts</u> increases monotonically
- Only positive preconditions exist
 - → The set of <u>applicable actions</u> increases monotonically
 - \rightarrow If a solution contains actions a1+a2, then the order of addition is irrelevant
- Still <u>difficult</u> to calculate in general!
 - Remains a planning problem
 - NP-equivalent (reduced from PSPACE-equivalent), since you must find <u>optimal</u> solutions to the relaxed problem in order to guarantee admissibility
 - Even a constant-factor approximation is NP-complete to compute!
- Therefore, not <u>directly</u> useful
- But forms the <u>basis</u> of many other heuristics such as h1(n), h2(n)

<u>Delete relaxation does not mean that we "delete the relaxation" (anti-relax)!</u>

Pattern:

Precondition relaxation Delete relaxation

ignores/removes/relaxes some preconditions ignores/removes/relaxes all "delete effects"

Optimal Classical Planning Using Admissible h_m Heuristics

The h_m Heuristics

- For optimal planning, we need a "faster" admissible heuristic than h+ !
 - Idea in <u>HSPr*</u>:
 - Compute the cost of achieving **<u>subsets of the goal</u>**
 - $h_1(s)=\Delta_1(s,g)$: The most expensive atom
 - $h_2(s)=\Delta_2(s,g)$: The most expensive pair of atoms
 - $h_3(s)=\Delta_3(s,g)$: The most expensive triple of atoms
 - ...
 - → A <u>family</u> of <u>admissible</u> heuristics h_m = h₁, h₂, ... for <u>optimal</u> classical planning

The h_m Heuristics: Essential Difference

Basic idea: Try to achieve **individual goals**; sum their costs

h+(n) (optimal delete relaxation): Remove delete effects, find a single long plan

h_m(n): Solve each <u>goal subset</u> of size m Take the <u>maximum</u> of their costs

Much easier, given that search trees tend to be wide

A plan that achieves <u>all goals</u> must be a valid solution for any <u>subset</u> → This is a relaxation

The h₁ Heuristic: Example

82

s₀: clear(A), on(A,C), ontable(C), clear(B), ontable(B), clear(D), ontable(D), handempty

This is why it is fast! No need to consider interactions → <u>no combinatorial explosion</u>

The h₁ Heuristic: Important Property 2 84

<u>unstack(A,C)</u>					
handempty	clear(A)	on(A,C)			
cost 0	cost 0	cost 0			
Cheaper!					

The same action can "occur" twice!

Doesn't affect admissibility, since we take the **maximum** of subcosts, not the **sum**

The h₁ Heuristic: Formal Definition

$h_1(s) = \Delta_1(s, g)$ – the heuristic depends on the goal g

For a goal, a set g of facts to achieve:

- $\Delta_1(s, g) =$ the cost of achieving the **most expensive** proposition in g
 - $\Delta_1(s, g) = o (zero)$
 - $\Delta_1(s, g) = \max \{\Delta_1(s, p) \mid p \in g\}$ otherwise // Part of the goal not achieved

The cost of each atom in goal g

<u>Max</u>: The <u>entire</u> goal must be at least as expensive as the most expensive <u>subgoal</u> Implicitdelete relaxation:Cheapest way of
achieving $p1 \in g$ may actually delete $p2 \in g$

if $g \subseteq s$ // Already achieved entire goal

So how expensive is it to achieve a single proposition?

The h₁ Heuristic: Formal Definition

$h_1(s) = \Delta_1(s, g)$ – the heuristic depends on the goal g

• For a **single proposition** p to be achieved:

- $\Delta_1(s, p) = \text{the cost of } \underline{\text{achieving p from s}}$
 - $\Delta_1(s, p) = o$ if $p \in s$ // Already achieved p
 - $\Delta_1(s, p) = \infty$ if $\forall a \in A. p \notin effects^+(a) // Unachievable$
 - Otherwise:

 $\Delta_{I}(s, p) = \min \{ cost(a) + \Delta_{I}(s, precond(a)) | a \in A \text{ and } p \in effects^{+}(a) \}$

Must <u>execute</u> an action a∈A that achieves p, and before that, *acheive its preconditions*

Min: Choose the action

that lets you achieve the proposition p as cheaply as possible

The h₁ Heuristic: Examples

- In the problem below:
 - g = { ontable(C), ontable(D), clear(A), clear(D), on(A,B), on(B,C) }
- So for any state *s*:
 - $\Delta_1(s, g) = \max \{ \Delta_1(s, ontable(C)), \Delta_1(s, ontable(D)), \Delta_1(s, clear(A)), \Delta_1(s, clear(D)), \Delta_1(s, on(A,B)), \Delta_1(s, on(B,C)) \}$
- With unit action costs:

The h₁ Heuristic: Properties

88

- $h_1(s)$ is:
 - **Easier** to calculate than the optimal delete relaxation heuristic h+
 - <u>Admissible</u> (never overestimates the cost)
 - Somewhat <u>useful</u> for this simple BW problem instance
 - Not sufficiently informative in general

The h₂ Heuristic

$h_{s}(s) = \Delta_{s}(s, g)$: The most expensive **<u>pair</u>** of goal propositions

Go	bal

(1

Goal •
$$\Delta_2(s, g) = 0$$
 if
(set) • $\Delta_2(s, g) = \underline{max} \{ \Delta_2(s, p, q) \mid p, q \in g \}$

if $g \subseteq s$ // Already achieved // Can have p=q! otherwise

	• $\Delta_2(s, p, q) = 0$	if $p,q \in s$ // Already achieved
air of	• $\Delta_2(s, p, q) = \infty$	if ∀a∈A. p∉effects⁺(a)
ropo-		or ∀a∈A. q ∉ effects⁺(a)
itions	• $\Delta_2(s, p, q) = \min \{$	
	min { cost(a) + Δ_2 (s, precond(a))	$a \in A \text{ and } p,q \in effects^+(a) \},$
naybe	min { cost(a) + Δ_2 (s, precond(a)U{q})	a∈A, p ∈ effects⁺(a) <mark>, q ∉ effects⁻(a) }</mark> ,
p=q)	min { cost(a) + Δ_2 (s, precond(a)U{p})	a∈A, q ∈ effects⁺(a), <mark>p ∉ effects⁻(a) }</mark>
	}	

- $h_2(s)$ is more informative than $h_1(s)$, requires non-trivial time
- m > 2 rarely useful

The h₂ Heuristic and Delete Effects

90

- In this definition of h₂:
 - Δ₂(s, p, q) = <u>min</u>{
 cost(a) + min { Δ₂(s, precond(a))
 cost(a) + min { Δ₂(s, precond(a) ∪ {q})
 cost(a) + min { Δ₂(s, precond(a) ∪ {p})
 }
 }

a∈A and p,q ∈ effects⁺(a) }, a∈A, p ∈ effects⁺(a), q ∉ effects⁻(a) }, a∈A, q ∈ effects⁺(a), p ∉ effects⁻(a) }

Takes into account <u>some</u> delete effects So h₂ is <u>not</u> a *delete* relaxation heuristic (but it <u>is</u> admissible)!

Misses other delete effects

• G	oal:	{p, q, r}	
• A	1:	Adds {p,q}	Deletes {r}
• A	2:	Adds {p,r}	Deletes {q}
• A	.3:	Adds {q,r}	Deletes {p}

- $\Delta_2(s, p,q), \Delta_2(s, q,r), \Delta_2(s, p,r) = 1$: Any pair can be achieved with a single action
- $\Delta_2(s, g) = \max(\Delta_2(s, p,q), \Delta_2(s, q,r), \Delta_2(s, p,r)) = \max(1, 1, 1) = 1,$ but the problem is unsolvable!

The h₂ Heuristic and Delete Relaxation

- In the book:
 - $\Delta_2(s, p, q) = \underline{\min} \{$ $1 + \min \{ \Delta_2(s, \operatorname{precond}(a))$ $1 + \min \{ \Delta_2(s, \operatorname{precond}(a) \cup \{q\})$ $1 + \min \{ \Delta_2(s, \operatorname{precond}(a) \cup \{p\})$ $\}$
- $a \in A \text{ and } p,q \in effects^+(a) \},\ a \in A, p \in effects^+(a) \},\ a \in A, q \in effects^+(a) \}$
- This is <u>not</u> how the heuristic is normally presented!
 - Corresponds to applying (full) delete relaxation
 - Fixed action costs (1)

The h_m Heuristics: Calculating

92

- Calculating h_m(s) in practice:
 - Characterized by Bellman equation over a specific search space
 - Solvable using variation of Generalized Bellman-Ford (GBF)

$$h^{m}(s) = \begin{cases} 0 & \text{if } s \subseteq I \\ \min_{s' \in succ(s)} h^{m}(s') + \delta(s, s') & \text{if } |s| \leqslant m \\ \max_{s' \subseteq s, |s'| \leqslant m} h^{m}(s') & \text{Cost of cheapest action} \\ \text{taking you from s to s'} \end{cases}$$

Accuracy of h_m in Selected Domains

- **<u>How close</u>** is $h_m(n)$ to the true goal distance $h^*(n)$?
 - **<u>Asymptotic</u>** accuracy as problem size approaches infinity:
 - Blocks world: $0 \rightarrow h_m(n) \ge 0 h^*(n)$
 - For any constant m!

Accuracy of h_m in Selected Domains (2)

- Consider a constructed <u>family of problem instances</u>:
 - 10*n* blocks, all on the table
 - Goal: *n* specific towers of 10 blocks each
- What is the **true cost** of a solution from the initial state?
 - For each tower, 1 block in place + 9 blocks to move
 - 2 actions per move
 - 9 * 2 * *n* = 18*n* actions
- h₁(initial-state) = 2 regardless of n!
 - All instances of clear, ontable, handempty already achieved
 - Achieving a single on(...) proposition requires two actions
- h₂(initial-state) = 4
 - Achieving two on(...) propositions
- h₃(initial-state) = 6

As problem sizes grow, the number of goals can grow and plan lengths can grow indefinitely

But h_m(*n*) only considers a constant number of goal facts! Each individual *set* of size m does not necessarily become harder to achieve, and we only calculate *max*, not *sum*...

94

Accuracy of h_m in Selected Domains (3)

How close is h_m(n) to the true goal distance h*(n)?

- <u>Asymptotic</u> accuracy as problem size approaches infinity:
 - Blocks world:0
 - Gripper domain: 0
 - Logistics domain:
 - Miconic-STRIPS:
 0
 - Miconic-Simple-ADL:
 - Schedule: 0
 - Satellite: 0
- For any constant m!

→ $h_m(n) \ge 0 h^*(n)$

Still <u>useful</u> – this is a <u>worst-case</u> analysis as <u>sizes approach infinity</u>! + Variations such as additive h_m exist

- Details:
 - Malte Helmert, Robert Mattmüller Accuracy of Admissible Heuristic Functions in Selected Planning Domains

The h₂ Heuristic: Accuracy

Experimental accuracy of h2 in a few classical problems:

96

Instance	Opt.	h(root)	
blocks-9	6	5	Seems to work well
blocks-11	9	7	for the blocks world
blocks-15	14	11	
$\operatorname{eight-1}$	31	15	
${ m eight}$ -2	31	15	
${ m eight}$ -3	20	12	
grid -1	14	14	
gripper-1	3	3	
m gripper-2	9	4	Less mormative for the
m gripper-3	15	4	

Heuristics for <u>Satisficing</u> Forward State Space Planning

Optimal and Satisficing Planning

- Optimal planning often uses admissible heuristics + A*
 - Are there <u>worthwhile alternatives</u>?
 - If we need <u>optimality</u>:
 - <u>Can't</u> use non-admissible heuristics
 - <u>Can't</u> expand fewer nodes than A*
 - But we are <u>not</u> limited to optimal plans!
 - High-quality non-optimal plans can be quite useful as well
 - <u>Satisficing</u> planning
 - Find a plan that is sufficiently good, sufficiently quickly
 - Handles larger problems

Investigate many <u>different points</u> on the efficiency/quality spectrum!

The h_{add} Heuristic Function and HSP (Heuristic Search Planner) Also called h₀

Background

- h_m heuristics are **<u>admissible</u>**, but not very **<u>informative</u>**
 - Only measure the <u>most expensive</u> goal subsets
- For satisficing planning, we do not need admissibility
 - Let's consider a modification:
 Use the <u>sum</u> of individual plan lengths for each atom!
 - Result: h_{add}, also called h₀

The h_{add} Heuristic: Example

s₀: clear(A), on(A,C), ontable(C), clear(B), ontable(B), clear(D), ontable(D), handempty

The h_{add} Heuristic: Formal Definition

$h_{add}(s) = h_0(s) = \Delta_0(s, g)$ – the heuristic depends on the goal g

For a goal, a set g of facts to achieve:

- Δ₀(s, g) = the cost of achieving the <u>most expensive</u> proposition in g
 - $\Delta_0(s, g) = o$ • $\Delta_0(s, g) =$ **sum** { $\Delta_0(s, p) | p \in g$ } The cost of each atom p in goal g

Sum: We assume we have to achieve every subgoal separately if $g \subseteq s$ // Already achieved entire goalotherwise// Part of the goal not achieved

So how expensive is it to achieve a single proposition?

The h_{add} Heuristic: Formal Definition

$h_{add}(s) = h_0(s) = \Delta_0(s, g)$ – the heuristic depends on the goal g

• For a **single proposition** p to be achieved:

- $\Delta_0(s, p) = \text{the cost of } \underline{\text{achieving p from s}}$
 - $\Delta_0(s, p) = 0$ if $p \in s$ // Already achieved p
 - $\Delta_0(s, p) = \infty$ if $\forall a \in A. p \notin effects^+(a) // Unachievable$
 - Otherwise:

 $\Delta_0(s, p) = \min \{ cost(a) + \Delta_1(s, precond(a)) \mid a \in A \text{ and } p \in effects^+(a) \}$

Must <u>execute</u> an action $a \in A$ that achieves p, and before that, *acheive its preconditions*

<u>Min</u>: Choose the action that lets you achieve *p* as cheaply as possible

The h_{add} Heuristic: Example

- $h_{add}(s) = \Delta_0(s, g)$
 - For another example:
 - ontable(E): unstack(E,A), putdown(E) → 2
 - **<u>clear(A)</u>**: unstack(E,A) \rightarrow 1
 - **on(A,B)**: unstack(E,A), unstack(A,C), stack(A,B) → 3
 - **<u>on(B,C)</u>**: unstack(E,A), unstack(A,C), pickup(B), stack(B,C) → 4
 - on(C,D): unstack(E,A), unstack(A,C), pickup(C), stack(C,D) → 4
 - **on(D,E)**: pickup(D), stack(D,E) → 2
 - → sum is 16 [h+ = 10, h* = 12]

Can underestimate but also **<u>overestimate</u>**, not admissible!

The h_{add} Heuristic: Admissibility

- Why not admissible?
 - Does not take into account *interactions between goals*
 - Simple case: Same action used
 - **on(A,B)**: unstack(E,A); unstack(A,C); stack(A,B) \rightarrow 3
 - **on(B,C)**: unstack(E,A); unstack(A,C); pickup(B); stack(B,C) → 4
 - More complicated to detect:
 - Goal: p and q
 - A1: causes p
 - A2: causes q
 - A3: causes p and q
 - No specific action used twice Use A1 To achieve p:
 - To achieve q:

- Still misses interactions Use A2

The h_{add} Heuristic: Using A*

Hill Climbing (1)

- What about <u>Hill Climbing</u>?
 - Greedy algorithm:
 - Searches the local neighborhood around the current solution
 - Makes a <u>locally optimal</u> choice at each step
 - → <u>Climbs the hill</u> towards the top, without exploring as many nodes as A*

Hill Climbing (2)

<u>Be stubborn</u>: Only search among children of this node (like depth first), never mind other open nodes

loop

Plain Hill-climbing

 $n \leftarrow$ initial state

if *n* is a solution then return *n* <u>expand</u> children of *n* <u>calculate</u> *h* for children

if (some <u>child</u> decreases h(n)): $n \leftarrow$ child with minimal h(n)else stop // local minimum end loop

Ignore g(n): prioritize <u>finding a plan quickly</u> over <u>finding a good plan</u>

- Which objective function for planning?
 - -h(s): We want to minimize heuristic value

<u>A* search:</u>

 $n \leftarrow \text{initial state}$ $open \leftarrow \emptyset$

loop

if n is a solution then return n
expand children of n
calculate h for children
add children to open
n ← node in open
minimizing f(n) = g(n) + h(n)

end loop
Heuristics for HC Planning

What is a good heuristic for HC in planning?

Which is best, hA or hB?

Equally good!

HC only cares about the *relative* quality of the children of one node...

For A*, hA is *much* better: Much closer to real costs

Heuristics for HC Planning (2)

What is a good heuristic for HC in planning?

Which is best, hA or hB?

<u>hB is better!</u>

hA prioritizes children in the *opposite* order...

For A*, hA is *much* better: Much closer to real costs

Heuristics for HC Planning (3)

111

What is a good heuristic for HC in planning?

Strictly simplified diagram: All nodes with the same h*(n) don't have the same h(n)!

h(*n*)

A* prefers h(n) near $h^*(n)$ Works well with HC/HSP as well HC may have problems with this heuristic – for A* it is strictly better than the "lower heuristic" HC/HSP works equally well with this: Cares about **<u>relative</u>** values A* would expand many more nodes: Cares about **absolute** values $h^*(n)$

Hill Climbing with h_{add}: Plateaus

No successor <u>improves</u> the heuristic value; some are equal!

We have a **plateau**...

Standard hill climbing: "Can't improve → Jump to a random state"

But the heuristic is not so accurate – maybe some child *is* closer to the goal even though h(n) isn't lower!

→ Let's allow a small number of consecutive <u>moves across plateaus</u>

Plateaus

• A plateau...

Hill Climbing with h_{add}: Local Optima

Local Optima

Impasses and Restarts

- What if there are <u>many</u> impasses?
 - Maybe we are in the wrong part of the search space after all...
 - Misguided by h_{add} at some earlier step
 - → Select another *promising* expanded node where search continues

HSP Example

HSP 1: Heuristic Search Planner

HSP 1.x: h_{add} heuristic + hill climbing + modifications

Works **<u>approximately</u>** like this (some intricacies omitted):

 greed 	<u>y</u> = true; <u>impasses</u> = 0; <u>unexpanded</u> = { ini	tialNode	};	
while	e (not yet reached the goal) {			
children 🗲 expand(node);		// Apply all applicable actions		
add children to unexpanded in order of h(n);		// Keep track of visited nodes for "random" restarts!		
Dead end 🗲	if $(children = 0)$ { // Dead end		end	
restart	node = pop(unexpanded);	// Restart from the next node (fail if none available)		
	} else if (greedy) {			
_	best Child← first(children);	// Child with the lowest heuristic value, hill-climbing-style		
Essentially hill-climbing, but less strict: not all steps have to move "up"	<pre>remove bestChild from unexpanded; if (h(bestChild) >= h(node)) { impasses++; if (impasses == threshold) greedy }</pre>	— false;	Pure HC with limited domain-indep. heuristics → jump around too much! Allow limited downhill/plateau moves → be a bit more persistent, but eventually try another path	
_	} else {			
Too many	node = pop(unexpanded);	// Restart from another node (fail if none available)		
downhill/plateau	qreedy = true;	// Go back to hill-climbing search		

greedy = true;impasses = 0;

moves \rightarrow escape

HSP (2): Heuristic Search Planner

- Late 1990s: "State-space planning too simple to be efficient!"
 - Most planners used very elaborate and complex search methods
- HSP:
 - Simple search space: Forward-chaining
 - Simple search method: Hill-climbing with limited impasses + restarts
 - Simple heuristic:
 Sum of distances to propositions (still spends 85% of its time calculating h_{add}!)
 - → Very clever combination

Planning competition 1998:

- HSP solved more problems than most other planners
- Often required a bit more time, but still competitive
- (Later versions were considerably faster)

An Overview of Pattern Database Heuristics

Introduction

Several heuristics solve **<u>subproblems</u>**, combine their cost

Subproblem for the h2 heuristic:

Pick two **goal literals** Ignore the others Solve the problem optimally Subproblem for Pattern Database Heuristics

Pick some <u>state atoms</u> Ignore the others Solve the problem optimally

Database: Solve for all values of the state atoms Store in a database Look up values quickly during search

Pattern Database Heuristics (1)

122

Pattern Database Heuristics:

• Example problem:

- If you use the classical (predicate) representation:
 - Reduce state space size: Partition atoms into <u>mutually exclusive groups</u>
 - In all states <u>reachable</u> from s0 using available actions, exactly one atom in each group is true!

$$-G_{1} = \{(on c a), (on d a), (on b a), (clear a), (holding a)\},\$$

$$-G_{2} = \{(on a c), (on d c), (on b c), (clear c), (holding c)\},\$$

$$-G_{3} = \{(on a d), (on c d), (on b d), (clear d), (holding d)\},\$$

$$-G_{4} = \{(on a b), (on c b), (on d b), (clear b), (holding b)\},\$$

$$-G_{5} = \{(ontable a), true\},\$$

$$-G_{6} = \{(ontable c), true\},\$$

$$-G_{7} = \{(ontable d), true\},\$$

$$-G_{8} = \{(ontable b), true\},\$$

$$-G_{9} = \{(handempty), true\},\$$

$$+(p) represents that p always holds,\$$

$$\{p, true\} represents that\$$

$$p may or may not hold$$

Pattern Database Heuristics (2)

- Every group can be seen as a single <u>state variable</u>
 - Variable G1 has 5 possible values:
 - v1, v2, v3, v4, v5
 - <u>Equivalent</u> way of viewing the problem!
 - (on c a) \Leftrightarrow G1 = v1 (on d a) \Leftrightarrow G1 = v2
 - (on b a) ⇔ G1 = v3
 - Many modern planners work with this representation internally, even if they don't use PDBs

$$\begin{array}{l} - \ G_1 = \{(\text{on c a}), (\text{on d a}), (\text{on b a}), (\text{clear a}), (\text{holding a})\} \\ - \ G_2 = \{(\text{on a c}), (\text{on d c}), (\text{on b c}), (\text{clear c}), (\text{holding c})\} \\ - \ G_3 = \{(\text{on a d}), (\text{on c d}), (\text{on b d}), (\text{clear d}), (\text{holding d})\} \\ - \ G_4 = \{(\text{on a b}), (\text{on c b}), (\text{on d b}), (\text{clear b}), (\text{holding b})\} \\ - \ G_5 = \{(\text{ontable a}), \text{true}\}, \\ - \ G_6 = \{(\text{ontable c}), \text{true}\}, \\ - \ G_8 = \{(\text{ontable d}), \text{true}\}, \\ - \ G_9 = \{(\text{handempty}), \text{true}\}, \end{array}$$

Pattern Database Heuristics (2)

- Every group can be seen as a single state variable
 - Variable G1 has 5 possible values:
 - on-c-a, on-d-a, on-b-a, clear-a, and holding-a
 - <u>Equivalent</u> way of viewing the problem!
 - (on c a) ⇔ G1 = on-c-a
 - Many modern planners work with this representation internally, even if they don't use PDBs

$$\begin{array}{l} - \ G_1 = \{(\text{on c a}), (\text{on d a}), (\text{on b a}), (\text{clear a}), (\text{holding a})\}, \\ - \ G_2 = \{(\text{on a c}), (\text{on d c}), (\text{on b c}), (\text{clear c}), (\text{holding c})\}, \\ - \ G_3 = \{(\text{on a d}), (\text{on c d}), (\text{on b d}), (\text{clear d}), (\text{holding d})\}, \\ - \ G_4 = \{(\text{on a b}), (\text{on c b}), (\text{on d b}), (\text{clear b}), (\text{holding b})\}, \\ - \ G_5 = \{(\text{ontable a}), \text{true}\}, \\ - \ G_6 = \{(\text{ontable a}), \text{true}\}, \\ - \ G_8 = \{(\text{ontable d}), \text{true}\}, \\ - \ G_9 = \{(\text{handempty}), \text{true}\}, \end{array}$$

Pattern Database Heuristics (3)

125

- Why change the representation like this?
 - Original: 25 atoms, 2^25 = 33554432 states
 - Now: 5^4 * 2^5 = 20000 states
 - Remove a lot of "useless" unreachable states

Not important for <u>search</u>: We would never have reached an unreachable state...

Helps when creating **pattern databases**

$$\begin{array}{l} - \ G_1 = \{(\texttt{on c a}), (\texttt{on d a}), (\texttt{on b a}), (\texttt{clear a}), (\texttt{holding a})\}, \\ - \ G_2 = \{(\texttt{on a c}), (\texttt{on d c}), (\texttt{on b c}), (\texttt{clear c}), (\texttt{holding c})\}, \\ - \ G_3 = \{(\texttt{on a d}), (\texttt{on c d}), (\texttt{on b d}), (\texttt{clear d}), (\texttt{holding d})\}, \\ - \ G_4 = \{(\texttt{on a b}), (\texttt{on c b}), (\texttt{on d b}), (\texttt{clear b}), (\texttt{holding b})\}, \\ - \ G_5 = \{(\texttt{ontable a}), \texttt{true}\}, \\ - \ G_6 = \{(\texttt{ontable a}), \texttt{true}\}, \\ - \ G_7 = \{(\texttt{ontable d}), \texttt{true}\}, \\ - \ G_8 = \{(\texttt{ontable b}), \texttt{true}\}, \\ - \ G_9 = \{(\texttt{handempty}), \texttt{true}\}, \end{array}$$

Pattern Database Heuristics (4)

(clear a) How to find mutually exclusive groups? (on d a)Find **pairwise** mutexes (e.g., using h2) Create a graph: (on c a) One node per atom (holding a) • Edge ($p \leftarrow \rightarrow q$) iff p and q are pairwise mutex Find *maximal cliques* (on b a) Groups where *all* nodes are connected (holding b) Does not give a unique solution: Consider (handempty) { (on a b), (on a c), (on a d), (ontable a), (holding a) } $-G_1 = \{(on \ c \ a), (on \ d \ a), (on \ b \ a), (clear \ a), (holding \ a)\}, \}$ B $-G_2 = \{(on a c), (on d c), (on b c), (clear c), (holding c)\},\$ C $-G_3 = \{(on a d), (on c d), (on b d), (clear d), (holding d)\},\$ A

$$-G_4 = \{(on a b), (on c b), (on d b), (clear b), (holding b)\}, -G_5 = \{(ontable a), true\},$$

 $-G_6 = \{ (\text{ontable c}), \text{true} \},$ $-G_7 = \{(\text{ontable d}), \text{true}\},\$

 $-G_9 = \{(\texttt{handempty}), \texttt{true}\},\$

- $G_8 = \{ (ontable b), true \}, and$

Pattern Database Heuristics (5)

A planning space abstraction "ignores" some groups

- A mapping ϕ from atoms to atoms + {true}, where for each group *G*:
 - Either $\forall f \in G: \varphi(f) = f$ all atoms in the group are preserved
 - Or $\forall f \in G: \varphi(f) = true all atoms in the group are ignored$
 - Results in an exponentially smaller state space
- Suppose φ preserves all even groups
 - Real goal $= \{ (on d c), (on c a), (on a b) \}$
 - Relaxed goal $= \{ (on d c), true, (on a b) \}$
 - pickup(a):
 - No longer requires (ontable a): In group 5
 - No longer causes (holding a):
- The resulting mini-problem is called a <u>pattern</u>
 - Matches many states that we might reach in the complete problem!
- $-G_{1} = \{(\text{on c a}), (\text{on d a}), (\text{on b a}), (\text{clear a}), (\text{holding a})\}, \\
 -G_{2} = \{(\text{on a c}), (\text{on d c}), (\text{on b c}), (\text{clear c}), (\text{holding c})\}, \\
 -G_{3} = \{(\text{on a d}), (\text{on c d}), (\text{on b d}), (\text{clear d}), (\text{holding d})\}, \\
 -G_{4} = \{(\text{on a b}), (\text{on c b}), (\text{on d b}), (\text{clear b}), (\text{holding b})\}, \\
 -G_{5} = \{(\text{ontable a}), \text{true}\}, \\
 -G_{6} = \{(\text{ontable c}), \text{true}\}, \\
 -G_{8} = \{(\text{ontable d}), \text{true}\}, \\
 -G_{9} = \{(\text{handempty}), \text{true}\}, \\$

Pattern Database Heuristics (6)

- Using these abstractions for <u>heuristics</u> general idea:
 - Automatically generate a set of planning space abstractions
 - Set of selections of groups/variables
 - Difficult issue different approaches exist
 - Each abstraction results in a <u>much smaller</u> abstract state space
 - Complete state space: 5^4 * 2^5 = 20000 states
 - Abstraction containing *all even groups*: 5*5*2*2 states = 100 states

$$\begin{array}{l} - \ G_1 = \{(\texttt{on c a}), (\texttt{on d a}), (\texttt{on b a}), (\texttt{clear a}), (\texttt{holding a})\}, \\ - \ G_2 = \{(\texttt{on a c}), (\texttt{on d c}), (\texttt{on b c}), (\texttt{clear c}), (\texttt{holding c})\}, \\ - \ G_3 = \{(\texttt{on a d}), (\texttt{on c d}), (\texttt{on b d}), (\texttt{clear d}), (\texttt{holding d})\}, \\ - \ G_4 = \{(\texttt{on a b}), (\texttt{on c b}), (\texttt{on d b}), (\texttt{clear b}), (\texttt{holding b})\}, \\ - \ G_5 = \{(\texttt{ontable a}), \texttt{true}\}, \\ - \ G_6 = \{(\texttt{ontable a}), \texttt{true}\}, \\ - \ G_7 = \{(\texttt{ontable c}), \texttt{true}\}, \\ - \ G_8 = \{(\texttt{ontable b}), \texttt{true}\}, \\ - \ G_9 = \{(\texttt{handempty}), \texttt{true}\}, \end{array}$$

Pattern Database Heuristics (7)

- 129 j
- For each abstraction, compute a **pattern database**
 - Exhaustive search: Cheapest way of achieving <u>any</u> state in the pattern
 - Assigns a cost to each *abstract state*
 - To be computable in polynomial time:
 - Each individual pattern must have at most *logarithmic size*

To <u>calculate a heuristic</u>:

- From the current state, generate the corresponding abstract state
- Look up its precalculated cost
 - Using perfect hash function: Near constant time lookups
- Each such cost is an admissible heuristic
 - Therefore the <u>maximum</u> over many different abstractions is also an admissible heuristic

Pattern Database Heuristics (8)

• <u>How close</u> to $h^*(n)$ can an admissible PDB-based heuristic be?

- Assuming polynomial computation:
 - Each abstraction can have at most O(log n) variables/groups
 - So h(n) <= cost of reaching the most expensive subgoal of size O(log n)
- Problem size grows much faster than h(n)
 - → For a *single* pattern, asymptotic accuracy is o

Example

- Example:
 - pickup(A) affects holding(A), ontable(A), clear(A), handempty
 - If we use pickup(A) in abstraction 1:
 - It must affect some fact that is part of abstraction 1
 - "Suppose every action affects atoms in at most one of them"
 - So pickup(A) can't affect any atom used in abstraction 2
 - So it isn't used in any optimal plan in abstraction 2

Pattern Database Heuristics (9)

- ➡ Given several abstractions:
 - Suppose every action affects atoms in at most one of them
 - Then optimal solutions from distinct abstractions can't share actions
 - Therefore, the abstractions are *additive*: The <u>sum</u> of the corresponding heuristics is admissible
- If we have several *sets* of additive abstractions:
 - Can calculate an admissible heuristic from each additive set, then take the maximum of the results as a stronger admissible heuristic

Pattern Database Heuristics (10)

For additive PDB heuristics with a single sum,
 <u>Asymptotic accuracy</u> as problem size approaches infinity:

	h+ (too slow!)	h2	Additive PDB
Gripper	2/3	0	2/3
Logistics	3/4	0	1/2
Blocks world	1/4	0	0
Miconic-STRIPS	6/7	0	1/2
Miconic-Simple-ADL	3/4	0	0
Schedule	1/4	0	1/2
Satellite	1/2	0	1/6

• **Assuming** that the planner finds the best combination of abstractions!

An Overview of Landmark Heuristics

Landmark Heuristics (1)

Landmark:

"a geographic feature used by explorers and others to find their way back or through an area"

Landmark Heuristics (2)

Landmarks in planning:

Something you must *pass by/through* in *every solution* to a specific planning problem

<u>Landmark</u>:

A **formula** that must be achieved in *every* solution

clear(A) holding(C)

...

Action Landmark:

An <u>action</u> that must be used in *every* solution

...so their preconds and effects are *landmarks*!

putdown(B) stack(D,C) ...but not putdown(C)! (Why?)

unstack(B,C)

Landmark Heuristics (3)

• One general technique for **<u>discovering landmarks</u>**:

Landmark Heuristics (4)

138

Discover landmarks using (1) <u>means-ends analysis</u>

The goals are (obviously) landmarks: clear(D), on(D,C), on(C,A), on(A,B), ontable(A)

on(D,C) is a landmark, on(D,C) is not true in the current state (s0) → we must *cause* on(D,C) with an action

All actions causing on(D,C) require holding(D) → holding(D) is a landmark!

holding(D) is not true in the current state,
all actions causing holding(D) require handempty
→ handempty is a landmark

Landmark Heuristics (5)

139

- Discover landmarks using (2) <u>domain transition graphs</u>
 - Use <u>state variables</u>, or generate mutually exclusive sets of atoms
 - { ontable(A), holding(A), on(A,B) }
 - Add <u>transitions</u> caused by actions

- → If A is on the table <u>now</u> and must be on B <u>in the goal</u>, then at some point we must be holding A (all paths pass through this node!)
- ...and other methods.
- Can sometimes find or approximate <u>necessary orderings</u>
 - We must achieve holding(A), *then* holding(B)

Using Landmarks as Subgoals

Landmarks as Subgoals (1)

- Use of landmarks:
 - As <u>subgoals</u>: Try to achieve each landmark in succession, using inferred landmark orderings
 - Example from Karpas & Richter: Landmarks – Definitions, Discovery Methods and Uses

Current goal: t-at-B or p-at-C (disjunctive!)

Landmarks as Subgoals (3)

Current goal: o-in-T or p-at-C

Landmarks as Subgoals (4)

Landmarks as Subgoals (5)

- Sometimes very helpful
 - But there are choices to be made
 - Simply achieving each landmark in some permitted order can lead to long plans or even incompleteness...

Landmark Counts and Costs

Landmark Counts and Costs (1)

147

Use of landmarks:

o-at-B

p-at-C

o-at-E

- As a basis for <u>non-admissible heuristic estimates</u>
 - Used by LAMA, the winner of the *sequential satisficing* track of the International Planning Competition in 2008, 2011
- LAMA <u>counts</u> landmarks:
 - Identifies a set of landmarks that still need to be achieved after reaching state *s* through path (action sequence) π

Not admissible: One action may achieve multiple landmarks!

Landmark Counts and Costs (2)

The <u>LAMA planner</u>:

 Won the sequential satisficing track of the International Planning Competition in 2008, 2011

Heuristics combining:

- FF heuristics (discussed later)
- The <u>number</u> of landmarks still to be achieved in a state
- Searches for <u>low-cost plans</u>
 - But we also want to find plans quickly!
 - Heuristics estimate both:
 - Cost of *actions* required to reach the goal
 - Cost of the search effort required to reach the goal

Search strategy:

- First, **greedy best-first** (create a solution as quickly as possible)
- Then, <u>repeated weighted A*</u> search with decreasing weights (iteratively improve the plan – anytime planning)

- Landmark Counts and Costs (3)
 - Use of landmarks:
 - As a basis for <u>admissible heuristic estimates</u>
 - Idea: The cost of each action is *shared* across the landmarks it achieves

Simplified example:

- Suppose there is a <u>goto-and-pickup</u> action of cost 10, that achieves both <u>t-at-B</u> and <u>o-in-t</u>
- Suppose no other action can achieve these landmarks
- One can then let (for example) cost(<u>t-at-B)</u>=3 and cost(<u>o-in-t</u>)=7
- The sum of the cost of remaining landmarks is then an <u>admissible heuristic</u>
 - Must decide how to split costs across landmarks
 - Optimal split *can* be computed polynomially, but is still expensive

Landmarks: Modified Problem

150

- Use of landmarks:
 - As a basis for a modified planning problem
 - For example, add new predicates "achieved-landmark-*n*"
 - Each action achieving a landmark makes the corresponding predicate true
 - The goal requires all such predicates to be true
 - Other heuristics can be applied to the modified problem