

The formal model is ”as simple as possible”

Few concepts involved: unstructured states & actions + transition function

Sufficient for any classical planning problem

No additional concepts are required!

Easier to understand
Easier to analyze

 We can analyze algorithms

relative to the model,
prove them correct,

and be certain of our conclusions

Inconvenient
for actual problem specifications!

Without additional structure,
each transition

[state, action]  state
has to be defined separately!

 Instead of this…

The STS really contains this:

No information
about what
”means” in the

real world!

 If all red arrows should be
“move from to ”…

You have to specify this:






We want structure – for convenience (now), and for problem analysis (later)!

Three variations in the book

”Mathematical” notation ”Practical” notation

Classical representation
 for classical problems:

Builds on first-order logical predicates,
more convenient for problem specs

State variable representation
 for classical problems:

Adds non-boolean functions,
same actual expressivity

Set-theoretic representation
for classical problems:

Builds on propositions and set theory,
easy to define/analyze

 PDDL: Planning Domain
Definition Language

 Most common language today

 General; many expressivity levels

 Lowest level of expressivity:
STRIPS (from the planner)

 Quite restrictive input language

 Pioneered some concepts
that we today associate with
classical planning

 In general, “STRIPS planning” ≈

“classical planning”

 Running example (from the book): Dock Worker Robots

Containers shipped
in and out of a harbor

Cranes move containers
between ”piles” and robotic trucks

Planning Domain Definition Language

 PDDL uses a Lisp-like syntax
 Domains are named, associated with expressivity requirements

▪

 Problem instances are also named, associated with a specific domain

▪

Colon before many keywords,
to avoid collisions

when new keywords are added

Warning:
Many planners’ parsers

ignore expressivity
specifications

 In the classical representation of planning problems:
 The world contains a finite number of objects

 Buildings, cards, aircraft, people, trucks, pieces of sheet metal, …

 Dock Worker Robots

A pile is a stack of containers –
at the bottom, there is a pallet

A crane moves containers
between piles and robots

A robot is an automated
truck moving containers
between locations

A container can be
stacked, picked up,
loaded onto robots

A location is an area that can
be reached by a single crane
Can contain several piles,
at most one robot.

 Most planners (but not all) support distinct object types
 Part of the domain – identical for all problem instances

▪

 Subtypes can be defined

▪

Predefined ”topmost supertype”: object

 Objects are generally specified in the problem instance
▪

 But PDDL also supports ”constants” declared in the domain

Define once –
use in all

problem instances

Use in the
domain definition

as well!

 We are often interested in properties of objects
 Location of a card, whether we have a picture of a building or not, …

 The classical representation uses boolean predicates
 Any fact is represented as a (logical) atom: Predicate + arguments

 Example: Some fixed predicates (cannot be changed by actions)

▪

▪

▪

 Dynamic predicates can change (through actions)
▪

▪

▪

▪

▪

▪

▪

▪

▪

▪

Atom: predicate symbol + args,

Literal: atom or ¬atom

Ground expression: No variables

Unground expression: Has variables

 PDDL: classical (predicate) representation, Lisp-like syntax
▪ Variables are

prefixed with “?”

Now:

Before:

 Note the many predicates with similar meaning!
 Due to the example’s flat type structure

 Could also use type hierarchies – in most planners

▪

We know all predicates that exist,
and their argument types:

We know a set of objects
for each type,

specified in the domain + problem

We assume the objects are unique:
,

since their names are different

We assume domain closure:
No other objects exist

than the ones specified
in the domain + problem instance

We can calculate all ground atoms

A classical state should define
which ground atoms are true

 A state is an assignment
of true/false to all ground atoms!

Number of states:

We can infer all (relevant) states!

These are the facts to keep track of!

 So: Classical states have internal structure!
 Instead of knowing only ”this is state ”,

we know ”this is a state where is true, is false, …”

Structure is essential!

We will see later how
planners make use of

structured states…

We can see
the difference

between two states

 Efficient representation for a single state:
 Specify which atoms are true

▪ All other atoms have to be false – what else would they be?

  A classical state is a set of all variable-free atoms that are true

▪

∈ 

∉ 

Why not store all ground atoms
that are false instead?

 Classical planning  complete information:
only one possible initial state

 Initial state specification in PDDL:

▪ Again, only specify atoms that are true

▪
Lisp-like notation again:

, not

Complete within the model:
We know everything about

those predicates and objects
we have specified...

 Classical planning 
many possible goal states
 Ex: We want containers in pile , but don’t care about the order

Formal model:

Arbitrary set of goal states ⊆
Must end up in one of these states

Classical representation:

Arbitrary set of ground goal literals:
Must end up a state satisfying these

(adds structure to goals)

Not identical in expressivity!

A set of goal literals cannot express arbitrary disjunctions:
All states where is true

 PDDL uses a goal formula
 Some planners: Conjunctions of positive literals of atoms

 Some planners: Conjunctions of positive and negative literals

 Some planners: More expressive (allow disjunctions, etc.)



▪ Even with only conjunctions, we can easily “ignore” particular facts:
We don’t care where is

A non-classical goal could include:
 Achieving a goal in a certain amount of

time
 Visiting interesting states along the way

/ not visiting dangerous states
 …

How do we represent
actions

to avoid specifying
every action separately?

Clue: Red arrows mean
“move

from to

 A parameterized operator o represents a set of actions!
  Defines many state transitions

▪

name(o): Operator
symbol + parameters

precond(o): set of literals (negated or positive atoms)
that must hold in the state where the action is started

effects(o): set of literals (negated or positive atoms)
that will be made to hold by the action

 Notation:
 If a is an operator or action…

▪ = { atoms that appear positively in a’s preconditions }

▪ = { atoms that appear negatively in a’s preconditions }

▪ = { atoms that appear positively in a’s effects }

▪ = { atoms that appear negatively in a’s effects }

 Example:

▪

▪

▪

Negation
disappears!

 An action a is applicable in a state s…

 … if precond+(a)  s and precond–(a)  s = 

 Example:





 Applying will add positive effects, delete negative effects
 If a is applicable in s, then

the new state is (s – effects–(a))  effects+(a)

 This indirectly specifies the transition relation!



 Operators are called actions in PDDL, for some reason…
▪

Written as logical conjunctions
instead of sets! PDDL supports

more expressive preconds and effects
than the pure classical representation

(but not all planners do).

With STRIPS expressivity, you must
use a simple conjunctive precondition.

 Warning: Repeating Arguments
 Some planners refuse to use the same argument twice in an action

 Avoids trying pointless actions such as

▪ No point in moving to the same location

 But there are also cases where you want the same argument

▪ Represent coordinates in a grid as

▪ Why does the planner never do in my -dimensional grid???

 Possible solution: Duplicating objects

▪

 Usual assumption in domain-independent planning:
 Preconditions should have to do with executability, not suitability

▪ Weakest constraints under which the action can be executed

 The planner chooses which actions are suitable, using heuristics (etc.)

 If you add explicit “suitability preconditions”,
you are in the realm of domain-configurable planning

▪ ”Only pick up a container if there is a truck on which the crane can put it”

▪ ”Only pick up a container if it needs to be moved according to the goal”

These are physical
requirements for taking a

container!

 Assumption : Sequential plans

 No concurrency

 No if-then conditions

 …

Bildbehandling,
reglerteknik, ...

 Move disk 1 from B to A

 Move disk 2 from B to C

 Move disk 1 from A to C

 …

Plan

A simple sequence!

 There are some disagreements about terminology…
 In the book: Any sequence of actions    is a plan

▪ Does not have to be executable

 If it is executable, it is called… an executable plan!

▪ There exist states such that

▪ 

▪ 

▪

▪ 

▪ Some others only consider executable plans to be plans

 A plan is a solution if it is executable
and ends in a state satisfying the goal

In the exam, we will make clear which variation we mean!

 First-order vs. propositional representations:
 ”First-order” = we explicitly model objects

▪ Compare:
Propositional logic: facts are propositions,
First-order logic: facts are atoms,

 The set-theoretic representation is propositional

▪ Useful for analysis, less important for practical planners

 The classical and state-variable representations are first-order

 Classical planning with classical representation
 A state defines the values of logical atoms (boolean)

▪

▪

 Classical planning with state-variable representation
 A state defines the values of arbitrary state variables

▪

▪

Can be convenient,
space-efficient

 often used internally!

Seems more powerful,
but is equivalent:

This slide exemplifies
how to translate
back and forth…

Can be wasteful:
Can represent a pile

being in many locations,
which never happens

We will continue
using classical rep!

Input : Planning domain

Input : Problem instance

Object Types: There are UAVs, boxes …

Predicates: Every UAV has a , …

Operators: Definition of , , …

Defines
transitions
between

states
in the
formal
model

Defines
initial and
goal states

Objects: Current UAVs are { }

Defines
the set of

states
in the
formal
model

Initial State: Box locations, …

Goal: Box at location , …

Language L defined by
predicates, objects

Real World

States have no internal structure

Actions are unstructured symbols

State transitions are unstructured
( specified by state / action symbols)

Formally, the classical representation uses a first-order language L

States are sets of atoms, induced
by the predicates and objects in L

Operators are structured, have
preconditions and effects

Each operator specifies part of ,
through its preconds and effects

State Trans Syst
 = (S,A,)

Operators
O Equivalence

Abstraction

Approximation

Language L defined by
predicates, objects

Real World
+ current
problem

Planning
Problem

P 

Abstraction

Approximation

Specifies the ID of the initial state:

Specifies a set of possible goal states:

A planning problem also requires an initial state and a goal

Specifies the true atoms in the init state:

Specifies a set of literals that must hold:

Often seen as a conjunctive goal formula

Problem
Statement

Equivalence

Language L defined by
predicates, objects

Real World
+ current
problem

Planning
Problem

P 

Abstraction

Approximation

Trillions of states in  = (S,A,)
would be a rather small

planning problem

Trillions of state transitions in 
would also correspond to a small

planning problem

Difference in size!

Thousands of constants and predicates
in L would be a rather large

classical planning problem statement

Hundreds of operators
would correspond to a very large

classical planning problem statement

Problem
Statement

Equivalence

Real World
+ current
problem

Planning
Problem

P = 

Abstraction

Approximation

Planning algorithms work with the problem statement!

Language L

Problem
Statement

Planner

Plan
 

Working with the problem statement
gives direct access to

structured states, structured operators, …

 Allows the problem to be analyzed
and treated at a higher level

Equivalence

 Some planners lack support for explicit types
 Constants are untyped, operators have untyped parameters, …

 Consider an untyped operator in the DWR domain:

▪

 This is a valid instance of that action:

▪

So how do we ensure an untyped planner never uses that action?

 Standard solution: Preconditions use type predicates
 Ordinary predicates that happen to represent types:

▪

 Initialized in the problem instance:

▪

 Used as part of preconditions:

▪

 Since we don’t have ”real” types:

▪ is still a valid action

▪ But that doesn’t matter: Its preconditions can never be satisfied!

 But the DWR example didn’t have type predicates!
▪

 What’s important: given args of the wrong type, the precondition is false!

▪ The precondition requires

▪ This atom is only true if is a crane

▪ This is the case in the initial state (unless we get a “bad” problem instance…)

▪ And no action modifies

 Consider modeling a ”drive” operator for a truck
 ”Natural” parameters: The truck and the destination

▪

 ”Natural” effects:

▪ The truck ends up at the destination:

▪ The truck is no longer where it started:

 How do you find out where the truck is before the action?

▪ We can test whether a truck is at some specific location:

▪ But there’s no term referring to ”the place where the truck started”:
does not exist

 Standard solution:
 Use another parameter to the operator

▪

 Bind that variable in the precondition

▪

▪

 Now we can define the effects

▪ The truck ends up at the destination:

▪ The truck is no longer where it started:

 We often need at least some ”primitive” support for counting
 Elevator domain:

▪ Which floor is an elevator at?

▪ Which is the next floor?

▪ Which is the previous floor?

 Few planners support general numeric state variables

 Standard solution:
 Create a type of ”pseudo-numbers”

▪

 Define a set of value objects

▪

 Define the operations you need – for example, find the next number

▪

▪

 Use the value objects as if they were numbers

▪

There is no ”next” for

 Won’t be able to move up
from the top floor

Language L defined by
predicates, objects

Real World
+ current
problem

Planning
Problem

P 

Conceptually simple,
but inconvenient to specify
and lacks detailed structure

The language can be made even more convenient
without extending the formal model!

More convenient and structured,
through the addition of new concepts:

Objects, predicates, operators,
precondition formulas, …

Problem
Statement

 Extending the language itself is comparatively simple
 But planners use the representation format directly!

 Many planners do implement such extensions

▪ But in others, one needs workarounds
to stay within standard STRIPS expressivity

Extend the language
(easy)

Extend the planning algorithm,
heuristics, … (hard)

 Suppose we have a number of ground robots
 Can drive between ?from and ?to if there is a road,

or the robot has all-wheel-drive

 Disjunctive representation:

▪

 The precondition is no longer a set of literals that must hold!

 Disjunctive preconditions:
 Convenient

 Easily supported by the formal model

▪ Simply an easier way of specifying
the state transition function

 Not always supported by planners

▪ Some algorithms are very efficient, but cannot handle disjunctions

▪ Some heuristics are very informative, but cannot handle disjunctions

▪ …

▪ Tradeoff between convenience and efficiency!

 Workaround : Rewrite the disjunction
using two distinct operators

▪

▪

 Any problems?

What about the condition (a ∨ b ∨ c ∨ d) ∧ (e ∨ f ∨ g ∨ h)?

Why should we
have this?

 Workaround : use a different domain model
 Add a predicate:

▪ Specify its value explicitly in the initial state

▪ Redundant – but planners can use it efficiently!

 Planners could:
 Directly and efficiently support disjunctions

▪ Possible for some algorithms, some heuristics

 Automatically rewrite into multiple operators

▪ Could lead to inefficient planning,
without any indication of which constructs are inefficient

 Disallow disjunctions

▪ Encourages writing another domain model – might be more efficient

▪ Can still use external rewriting tools

 Quantifiers in preconditions can be convenient
 To drive a car, all doors must be closed

▪

 Can be transformed to a conjunction by expanding the quantifier

▪ Suppose we have doors:

▪

▪ Must know which doors we have (instance-specific!)

▪ Suppose we have cars, doors…

 Existential quantifiers are also convenient
 To drive a car, I must have some matching key

▪

 Can be transformed to a disjunction by expanding the quantifier

▪ Suppose we have 4 keys:

▪

▪ Could then transform this disjunction into multiple operators…

▪ Again, the domain can be modeled differently:

 Alternative workarounds exist
 Introduce redundant predicates

▪ Dock Worker Robots:

▪ Where is the same as !

 Update redundant predicates when necessary

▪

 If you drive a truck, all items in the truck should follow it
 Example:

▪

 In this model, if an object is initially at locationA:

▪ remains true when the object is loaded into the truck

▪ becomes false only when the truck drives away

 If a planner does not support this:
 Quantifiers can be expanded for a specific problem instance, as before

▪ 

 Conditional effects can be expanded into multiple operators

▪ One with precond

▪ One with precond
and so on

Works – but can be inefficient!

 Sometimes you can use workarounds
 Alternative model: A package in a truck is not at any location at all!

▪ removed by load-package action, before driving

▪ added instead

 Driving a truck only moves the truck

▪ Packages are still in the same truck,
at no location at all

▪ No need for quantified conditional effects here

 Unloading a package:

▪ removed

▪ added

 Quantified goals:
 Universal goals (all crates should be at their destinations) are simple

▪ Expand into a conjunction

 Existential goals seem more difficult

▪ We defined a goal as a set of literals, all of which must be true

 How can we indirectly implement existential goals
when only conjunctive goals are explicitly supported?

 Through new actions and predicates!

▪ Suppose we have a goal:

▪ Add a new predicate “ ”, which replaces the goal

▪ Make the predicate false in the initial state

▪ Add an operator:

 What is plan quality?
 Could aim for shorter plans (fewer actions)

▪ Reasonable in Towers of Hanoi

▪ How to make sure your car is clean?

 Most current planners support action costs
 Each action ∈ associated with a cost c(a)

 Plan quality measured in terms of total cost

 Simple extension to the restricted state transition system!

wash car

shortest plan is best? go to car dealer

go to car wash

buy new car

get supplies

Built-in type
supported by
cost-based
planners

 PDDL: Specify requirements

▪

 Specify a numeric state variable for the total plan cost

▪ And possibly numeric state variables to calculate action costs

▪

 Specify the initial state

▪

 Use special increase effects to increase total cost

▪

 Fundamental fact:
We cannot provide all information about the world!
 Define planning domains in terms of

physical laws, quantum mechanics, …?

 Real World

Formal World Model
for Planning

Fundamental, inevitable

need for abstraction

and approximation!

 So how much must the planner know?
 That a helicopter can take off?

 That a helicopter can take off by:

▪ Turning on the engine,

▪ Lifting,

▪ Going to stable hover mode?

 Or maybe that it must:

▪ Open main fuel valve

▪ Turn on fuel pump

▪ Open throttle

▪ Activate ignition

▪ Signal the starter motor,
waiting for confirmation
that the engine has successfully started

▪ …

A
p

p
ro

xi
m

at
io

n
 /

 a
b

st
ra

ct
io

n

Different granularity
in actions

 So how much must the planner know?
 The helicopter’s…

▪ Altitude and position?

 The helicopter’s…

▪ Altitude and a position,

▪ Velocity, and

▪ Current camera angle?

 Or maybe also…

▪ Its engine speed in RPM

▪ Its battery voltage

▪ Its fuel level

▪ The pressure in the fuel line

▪ The time since it was last serviced

▪ Its color

▪ …

A
p

p
ro

xi
m

at
io

n
 /

 a
b

st
ra

ct
io

n

Different aspects of the world
modeled in the problem

(initial state, action effects, goals)

 So how much must the planner know?
 When we turn on the fuel pump:

▪ Eventually, the engine will be running

 Or maybe:

▪ Within to seconds,
the engine will be running

 Or maybe:

▪ Over the first seconds,
there will be a linear increase
in fuel pressure

▪ In the next step in the same action,
fuel will have been injected

▪ …

 A
p

p
ro

xi
m

at
io

n
 /

 a
b

st
ra

ct
io

n

Different temporal information,
different model of

changes in the world

Different requirements for different domains!

A trade-off…

Where is the “right” level of abstraction?

 Precision may be required:
 To ensure correctness

▪ Without modeling fuel usage,
you may create infeasible plans

 To determine which plan is
better / worse

▪ A model of time is required
 to determine which plan
takes less time to execute

 …and so on

 Decreasing precision has
advantages as well!
 Less information to specify
 easier to create a model

 More restrictions
 faster but less general
algorithms can be used

▪ Discrete change instead of
continuous
 less information to keep
track of, simpler calculations
 faster

 The proper trade-off depends on the application!
 Model those aspects of the world that are important

for planning and plan quality for your current purposes!

