
Jonas Kvarnström

Automated Planning Group

Department of Computer and Information Science

Linköping University

 Classical robot example:
Shakey ()

 Available actions:

▪ Moving to another location

▪ Turning light switches on and off

▪ Opening and closing doors

▪ Pushing movable objects around

▪ …

 Used the STRIPS planner

▪ Stanford Research Institute
Problem Solver

▪ One of the first planners

▪

http://www.youtube.com/watch?v=qXdn6ynwpiI
http://www.youtube.com/watch?v=qXdn6ynwpiI

 Modern robot example:
 Autonomous

Unmanned Aerial Vehicles (UAVs)

 Monitor traffic / find possible routes for emergency vehicles

 Patrol large areas searching for forest fires, day after day after day…

 Assist in emergency situations

▪ Deliver packages of food, medicine, water

Photograph buildings – generate realistic 3D models

 First, specify more clearly what problem you want to solve
 We know where we want to take pictures + in which direction

 We know how much fuel is available

 We can fly, aim and take pictures

 Aim: Determine how to take all the pictures within fuel limits!

 We really have a problem type with many instances
 We want a general solver for any instance of this type

The actual positions and directions
the actual fuel level

Problem Instance(s)

Photogrammetry

As specified before:
There are positions

(but we don’t know which ones), …

General Problem

…taking this specific information
as its input at runtime

Write a solver based
on this general information…

 Method : Let’s be stupid


 No planning!

▪ Very fast algorithm

▪ Can be somewhat suboptimal…

 Method : Let’s be greedy


 No planning!

▪ Corresponds to a form of greedy search

▪ Heuristically better, but not optimal

▪ Worse performance for many other problems

Often, not thinking ahead means
you can’t even solve the problem!

(Fly too far  run out of fuel;

crack an egg  can’t uncrack it;
…)

Start here

Run out of fuel here?

 Method : Let’s think ahead – first create a complete plan
▪

First choice: As before (greedy heuristic)
If not feasible: Try the next nearest pos

Backtrack if there is no
feasible continuation

This is (a form of) planning!

Have we already achieved the goal?

Run out of fuel ”in simulation”, not in
reality

 Method : Let’s think ahead – second, execute the plan
▪

Execution is separate!

?

Generate one action (no lookahead)
Execute it

Repeat

Photogrammetry
planner

Execution
system

Photogrammetry Planning

Photogrammetry Without Planning

 So far, we have seen domain-specific planning
 We identify a rather specific type of problem – a planning domain

▪ Photogrammetry planning: given a list of locations, determine how to take pics

 We analyze this problem and build a specialized planner (solver)

▪ A program that can solve all problem instances within the domain

▪ We can use all our knowledge about the domain

▪ Arbitrary code – could even use a Traveling Salesman Problem (TSP) solver

The solver can be very efficient! But there are disadvantages…

 What about more complex problems?
 Efficient solutions are not as straight-forward

as taking an existing TSP solver

 Specialization means less flexibility! What if…
 you want to deliver a couple of crates at the same time?

▪ Need to modify
the code of the planner

 you have two UAVs and a UGV (ground vehicle)?

▪ Different
algorithm:
Multiple TSP

 you want to survey an area (send video feed of the ground)?

 you have dynamic no-fly-zones (”don’t fly there at ”)?

PG +
Delivery
Planner

Multi-
TSP

planner

 We will focus on domain-independent planning systems!
 Create a single general planner

▪ Difficult, but done once

▪ Improvements to the planner  all domains benefit

 Additional input: high-level description of a problem domain

▪ Easier to specify than to write specialized algorithms

▪ Easier to change than a hard-coded optimized implementation

General
Planner

General
Planner

Generate one action (no lookahead)
Execute it

Repeat

Photogrammetry
planner

Execution
system

General
planner

Execution
system

Domain-independent Planning

Domain-specific Planning

Without Planning

 Planning domain specification for photogrammetry
 There exist locations, directions and helicopters

 The helicopter can take off, land, fly between locations

 The helicopter can aim and take pictures

 Problem instance specification defines a problem to solve
 In this particular problem we have:

▪ Locations , , and

▪ Directions , , and

▪ Helicopter

 The goal is to have pictures
at location in direction ,
…

Domain-specific

Can specialize the planner for very high performance
Must write an entire planner

Domain-independent

Provide high-level information
Less efficient

More effort
Higher

performance

How do we create a domain-independent planner?

First, we need to find some common concepts
that would allow us to model a wide variety of domains

Then, we need to define…

A formal model
capturing

those aspects of planning domains,
instances and plans

that we consider essential

A representation language
allowing you to conveniently

describe a model

A planning algorithm
taking a specification in the representation language

and generating a plan satisfying the goals
according to the semantics of the formal model

 One action:
Move topmost disk from x to y

 Preconditions:
The disk must not end up
above a smaller disk

 Effects:
Disk is no longer on x
Disk is now on y

 There are pegs and disks

 A disk can be on a peg

 One disk can be above another

Planning Domain

 Three pegs, 7 disks

 Now: All disks on the second
peg, in order of increasing size

 Goal: All disks on the third
peg, in order of increasing size

Problem Instance

The formal model
must allow us to specify

these facts!

Planning Domain Descr.

Problem Instance Descr.
Planner

Bildbehandling,
reglerteknik, ...

 Move disk 1 from B to A

 Move disk 2 from B to C

 Move disk 1 from A to C

 …

Plan

Perfect information about all relevant facts

A single agent performing actions

A plan is simply an action sequence

…

Towers of Hanoi: Very restricted world!

A simple sequence!

 Tall buildings, multiple elevators
 How to serve people as efficiently as possible?

 Schindler system

 People enter their destination
before they board an elevator

 A plan is generated, determining
which elevator goes to which floor,
and in which order

 Saves time!

 Single agent,
one action at a time

 All actions take approximately
the same amount of time

 Several agents (the elevators),
concurrent actions

 Timing differs
(and is essential for quality):
Going from floor to ,
or from floor to ?

 Xerox: Reconfigurable modular printers
 Prototype: 170 individually controlled modules, 4 print engines

 Goal: Finish each print job as quickly as possible

 Concurrency:

 Useful for performance

 If we miss an opportunity:
Lower quality

 Concurrency:

 Necessary for correctness

 If we miss:
Paper jam, …

 Bending sheet metal
 Goal: Bend a flat sheet to a specific shape

 Constraints: The piece must not collide with anything
 when moved!

 Optimized operation saves a lot of time = money!

 Might use metric values

 Distances, timing

 Need 3D geometry

 Current state

 Preconditions: Will the piece fit
in a certain configuration?

 Effects: Reason about bending, ...

 Competition: autonomous cars drive km off-road

 Requires path planning
 Deciding how to get from one point to another, given:

▪ Speed limits

▪ Constraints on how you can move (turn radius, …)

▪ A map – that may not always be correct

▪

http://www.youtube.com/watch?v=M2AcMnfzpNg

 Competition: 96 km in an urban area (air force base)
 Must follow all traffic regulations, drive around obstacles,

merge with other traffic, …

 SIADEX
 Decision support system for designing forest fire fighting plans

 Needs to consider allocation of limited resources

 Plans must be developed in cooperation with humans – people may die!

 ”Remote Agent” on Deep Space spacecraft
 Experimental online operation for days

 Correctly handled simulated failures

 Rapid response to failures may be crucial to survival!

 Earth Observing- Mission

 Satellite in low earth orbit

▪ Can only communicate minutes/day

▪ Operates for long periods without supervision

 CASPER software:
Continuous Activity Scheduling, Planning, Execution and Replanning

 Dramatically increases science returns

▪ Interesting events are analyzed
(volcanic eruptions, …)

▪ Targets to view are planned
depending on previous observations

▪ Plans downlink activities:
Limited bandwidth

 http://ase.jpl.nasa.gov/

 All goals are given in advance

 Achieve all goals

 New goals may arrive, must
reconsider the plan

 Can’t achieve all goals – must
prioritize

Incomplete information:
We know about some obstacles, might discover others during execution

Must take new facts into account!

Agents involved in other activities / multiple plans:
May already be busy at some times

Self-interested agents:
Must negotiate about actions to be performed

…

Various issues

 Now we see why we want computers to create plans:

 Manual planning can be boring and inefficient

▪ Who wants to spend all day guiding elevators?

 Automated planning may create higher quality plans

▪ Software can systematically optimize,
can investigate millions of alternatives

 Automated planning can be applied where the agent is

▪ Satellites cannot always communicate with ground operators

▪ Spacecraft or robots on other planets
may be hours away by radio

Can we now find…

A single formal model?

A single
representation language?

A single planning algorithm

capable of generating a plan
in any of these domains?

Very difficult to specify a well-defined semantics
for the combination of all of these requirements

Extremely difficult to find an algorithm
that works well in all of these situations

 A planner should also:
 Generate plans as quickly as possible

 Generate plans of the highest quality possible

▪ Fewer actions, lower cost, faster to execute, …

 Support the user as much as possible

▪ Provide useful high-level structures such as actions
that a user can easily specify

Conflicting desires – we need trade-offs!

There are many different tradeoffs
that have proven useful…

No planner is truly “domain-independent”
in the sense that it accepts every planning problem

you can think of

No planner is more expressive than all other planners

Decide what “kind” of domains your planner should be able to accept

Write a planner for this expressivity

Use the restrictions you have to improve performance

Domain-specific

Must write an entire planner
Can specialize the planner for very high performance

“Truly domain-independent”

Does not exist…

Less
coverage

Higher
performance

…

…

…

…

…

…

Temporal planning

…

…

…

MDP
planning

P
ar

ti
al

 o
rd

er
 o

f
ex

p
re

ss
iv

it
y…

Classical planning

 Many early planners were similar in terms of…

 We often call this classical planning
 Quite restricted, but we have to start somewhere…

▪ Forms the basis of most non-classical planners as well

 Some disagreement on exactly how this should be defined

▪ The definition in the book (and here)
shows the essence of what classical planning means

The expressivity of the
formal model

The expressivity of the
representation language

 The associated assumptions about the world

There are many non-classical planners as well!

 In classical planning, the world can be described as having:
 A finite set of states

 A finite set of actions that take you between states

▪ The outcome can depend on the state in which the action was started

A
ss

u
m

p
ti

o
n

 n
u

m
b

er

in
 t

h
e

co
u

rs
e

b
o

o
k

 Note: ”can be described as”
 Towers of Hanoi: Disks can be placed continuously in 3D space

▪ Uncountably infinite number of states, actions

 But for the purpose of planning:

▪ Finite number of interesting states and actions

Real World

Abstraction

Approximation

Simplification

Gives sufficient
information

allowing us to solve
interesting problems

Formal Model

Towers of Hanoi

Classical planning:
A finite set of actions

induce state transitions

The outcome depends
on the current state

(All red arrows could be
the action “move

from to ”)

Towers of Hanoi
Most state spaces

are far less regular…

 In classical planning, we assume:
 Temporal aspects of actions can be ignored

▪ We don’t model or care about time requirements

▪ For the purpose of planning,
the transition between two states has no duration

Towers of Hanoi
3 disks

27 states

The correct solution
does not depend on

the time to move a disk,
the weight of the disk,

…

 Additional assumptions:
 Each action is deterministic

▪ If we know which state we are in and which action we execute,
we know which state we end up in

 The world only changes state when we execute one of these actions

▪ No spontaneous change

▪ No other agents running around
and making changes

 Formally: a restricted state transition system  

 Finite set of world states

 Finite set of actions

   State transition function, where 

▪ If 
then whenever you are in state s,
you can execute action a
and you end up in state

▪ If  ∅ (the empty set),
then a cannot be executed in s

 



 ∅

 Assumptions:
 We always know the current state of the world

 The world does not change while we’re generating plans

▪ So if we check which state we’re in now,
then we generate a plan,
we will still be in that state when we start executing the plan

▪ We know the initial state!

initial

 Assumptions:
 Our objective is to transform the world

so that we end up in any of a set of goal states

▪ How we reach one of these states is irrelevant

initial

goal

goal

goal

In non-classical planning, our objective could include:
Achieving a goal in a certain amount of time,
Visiting interesting states along the way / not visiting dangerous states,
…

 Assumptions:
 A plan is simply a sequence of actions

▪ Actions cannot be executed in parallel

▪ Deterministic, no exogenous actions 
no need for if-then conditions

 We can now formally define the classical planning problem
 Let   be a state transition system

 satisfying the assumptions to
 (called a restricted state transition system in the book)

 Let ∈ be the initial state

 Let ⊆ be the set of goal states

 Then, find a sequence of transitions
labeled with actions
that can be applied starting at
resulting in a sequence of states
such that ∈

start

goal

goal

goal

Towers of Hanoi
3 disks

27 states
Known initial state

Single goal state

Real World

Formal Model:
Restricted State Transition System

 = (S,A,)

Abstraction

Approximation

Simplification

Planning Problem
P = (, s0, Sg)

Real World
+ current
problem

Abstraction

Approximation

Simplification

Tells us: How the world works
(Only those aspects

that we need in our model
in order to solve

interesting problems!)

Tells us:
Which specific problem to solve

  



  ∪ 

▪ 

▪  ∅

▪ 

 More expressive

 Requires different
problem definitions,
different algorithms!

Multiple outcomes:
 may drop the disk!

Possible exogenous event:
Someone else may move a disk!

Now we have…

Quite simple in some respects, but still useful
Many concepts developed here remain valid

in more expressive forms of planning

Can be used to learn about problem structure,
what is difficult and what is easy, etc.

Other types of planning will be considered later!

A formal model
Capturing the essential aspects
of classical planning domains,

instances and plans:
Restricted State Transition System

We still need to define…

(A formal model)
A representation language

allowing you to conveniently
describe a model

One or more planners
taking a specification in the representation language

and generating a plan satisfying the goals
according to the semantics of the formal model

