Automated Planning

Path Planning and Motion Planning: An Overview

Jonas Kvarnström
Department of Computer and Information Science Linköping University

Path/Motion Planning (1)

- Perhaps the easiest form of path planning / motion planning:
- A robot should move in two dimensions between start and goal
- Avoiding known obstacles - or it would be too easy...

Path/Motion Planning (2)

- Problem: Generating an optimal continuous path is hard!
- First step (often): Discretize
- Choose a finite number of potential waypoints in the map
- Create a graph:Waypoints are nodes, short obstacle-free paths are edges
- Use discrete search algorithms to decide which waypoints to use

To do: create nodes / potential waypoints, generate appropriate edges, find a path in the resulting graph

Choosing Potential Waypoints: Grid-Based Methods

Regular 2D Grid

- The simplest type of discretization:A regular grid
- Robots only move north, east, south or west
- Assumption: Can deal with details (geometry / terrain) later...

Grid = rutnät, the whole thing
Cell = ruta, a single rectangle

Regular 2D Grid: Real Obstacles

Partially covered - can't be used

Obstacle

Regular 2D Grid: Nodes

- Each cell is associated with a single node
- Corresponding to 2D point
- Could be the center of the 2D cell

Regular 2D Grid: Edges

- Which nodes are connected in the discrete graph?
- Let's simplify in the beginning
- Straight lines in 2D space
- Through free cells (completely grid-based, no complex geometry!)
- 4-connectivity (north, south, west, east)...

Regular 2D Grid: More Edges

- ...or 8-connectivity

Finding a Solution

Discrete Graph Search

- Connect start/goal configurations to the nodes in their cells - Results in a discrete graph search problem

A*, Heuristics

- Finding a path:Any graph search algorithm
- For example: A*
- Heuristics in simple geometric paths: Manhattan distance (4 directions), Chebyshev distance (moving in 8 directions), Euclidean distance (in general), ...

But there is no solution for this discretization!

Grid Density

- Grid density matters!
- Here: 4 times as many cells
- Better approximation of the true obstacles, but many more nodes to search

-	\longrightarrow	\longrightarrow	\longrightarrow	\longrightarrow	\longrightarrow		\longrightarrow			-	
									\rightarrow	\longrightarrow	

Solutions

- Solutions are correct under certain assumptions
- The robot can turn 90° in place, or all free grid cells provide terrain where we can actually follow curves

Irregular Node Placement

Non-Regular Grids

- Alternative to high regular density: Non-regular grids
- For example, denser cells around obstacles

\square											
	\square										
\square	\square				\square	\square	\square	\square			
	\square										
\square	\square				\square				\square		
	\square	\square	\square	\square					\square		
\square	\square		\square		\square				\square		
			\square	\square		\square	\square				
\square	\square				\square		\square	\square		\square	

Grid Representations

- Space-efficient data structure: quadtree
- Each node keeps track of:
- Whether it is completely covered, partially covered or non-covered
- Each non-leaf node has exactly four children

Grid Representations

- Can be generalized to 3D (octree), ...

Choosing Potential Waypoints: Geometry-Based Methods

Non-Grid Placement

- Grid-based methods can result in many nodes
- Even with efficient representation, searching the graph takes time
- Alternative idea: Place nodes depending on obstacles
- Simple case: Known road map
- Model all non-road areas as obstacles, then add a dense grid?

- Or place a node in each intersection?

If we only know the obstacles (no roads), where to place the nodes?

Visibility Graphs

man

- Visibility graphs
- Applicable to simple polygons - straight sides without intersections
- Nodes at all polygon corners
- Edges wherever a pair of nodes can be connected using the local planner
- Mainly interesting in 2D
- Optimal in 2D, not in 3D

Voronoi Diagrams

- Voronoi diagrams
- Find all points that have the same distance to two or more obstacles
- Maximizes clearance (free distance to the nearest obstacle)
- Creates unnecessary detours
- Mainly interesting in 2D does not scale well

Motion Constraints and
 Complex Motion Planning Problems

Motion Constraints (1)

- So far, we implicitly assumed:
- If we can draw a line between two waypoints, the robot can move between the waypoints

Motion Constraints (2): Holonomic

- May work if the robot is holonomic
- Informally: Can move in any direction (possibly by first rotating, then moving)

Motion Constraints (3): Non-Holonomic

- But: Can an airplane fly this path?
- How do we know? What are the constraints?

We need some new concepts...

Workspace and Configuration Space

Workspace (1)

- The workspace is (1) the physical space in which we work...
- 3 physical dimensions, 3-dimensional coordinates, 3-dimensional obstacles
- Need full 3D geometry to determine how the helicopter can move

Workpace (2)

... or (2) a 2D projection, in case this is sufficient

- For a car:
- Can describe position, rotation in 2D (except tunnels, bridges, ...)
- Can describe obstacles in 2D
- \rightarrow Workspace can be 2D
- Still represents physical locations

Configuration Space

- Even a car has 3 physical degrees of freedom (DOF)!
- The configuration space of the car
- Location in the plane (x / y),
- Angle (θ)
- Each DOF is essential!
- As part of the goal - park at the correct angle
- As part of the solution - must turn the car to get through narrow passages

Motion planning takes place in configuration space: How do I get from $\left(200,200,12^{\circ}\right)$ to $\left(800,400,90^{\circ}\right)$?

The Ladder Problem

- The ladder problem is similar
- Move a ladder in a 2D workspace, with 3 physical DOF
- Configuration:
- Location in the plane (x / y),
- Angle (θ)
- Again, each DOF is essential:
- As part of the goal
- We want the ladder to end up at a specific angle
- As part of the solution
- We need to turn the ladder to get it past the obstacles

The Ladder Problem: Controllable DOF

- For ladders, each physical DOF is directly controllable!
- You can:
- Change \times (translate sideways)
- Change y (translate up/down)
- Change angle (rotate in place)
- Therefore:
- If you want to get from (200, 200, 12°) to ($800,400,90^{\circ}$), any path connecting these 3D points and going through free configuration space is sufficient
- The ladder is holonomic!
- Controllable DOF >= physical DOF

Controllable Degrees of Freedom

- Cars have 3 degrees of freedom
- But only move back and forward, along curves with constrained turning radius
$-\quad \rightarrow$ constrained curves in configuration space

Not OK

Controllable Degrees of Freedom (2)

$\}$

- In this parallel parking example:
- There is free space between current and desired configurations
- But we can't slide in sideways!
- Fewer controllable DOF than physical DOF!
- \rightarrow non-holonomic
- Limits possible curves in 3D configuration space!

Work Space, Configuration Space

- Summary of important concepts:
- Work space:The physical space in which you move
- 3-dimensional for this robot arm
- Configuration space:

The set of possible configurations of the robot

- Usually continuous
- Often many-dimensional (one dimension per physical DOF)
- Will often be visualized in 2D for clarity
- We have to search in the configuration space!
- Connect configurations, not waypoints

Local and Global Planners:

Divide and Conquer in Configuration Space

Searching the Configuration Space

- Divide and Conquer!
- Local path planner
- Determines whether two configurations can be connected with a path in configuration space, and how
- Considers vehicle-specific constraints

5 configurations...

Searching the Configuration Space

- Divide and Conquer!
- High-level path planner
- Generates a finite set of configurations
- Calls local planner to determine which configurations can be connected
- Uses discrete search to determine a sequence of configurations to "pass through"

5 configurations...

Low-Dimensional Problems

- In low-dimensional problems:
- The high-level planner could select configurations in a grid ("equal distance")
- Car:3-dim configuration space
- Example: 6 locations, 4 angles considered per spatial location, 24 configurations

$\left(0,0,0^{\circ}\right)$
$\left(0,0,90^{\circ}\right)$
$\left(0,0,180^{\circ}\right)$
$\left(0,0,270^{\circ}\right)$

$\left(1,0,0^{\circ}\right)$
$\left(1,0,90^{\circ}\right)$
$\left(1,0,180^{\circ}\right)$
$\left(1,0,270^{\circ}\right)$

$\left(2,0,0^{\circ}\right)$
$\left(2,0,90^{\circ}\right)$
$\left(2,0,180^{\circ}\right)$
$\left(2,0,270^{\circ}\right)$
$\left(0, I, 0^{\circ}\right)$
$\left(0, I, 90^{\circ}\right)$
$\left(0, I, I 80^{\circ}\right)$
$\left(0, I, 270^{\circ}\right)$
($1,1,0^{\circ}$)
(I, I, 90°)
($1, I, 180^{\circ}$)
(I, I, 270 ${ }^{\circ}$)
($2, I, 0^{\circ}$)
(2, I, 90°)
($2, I, 180^{\circ}$)
(2, I, 270 ${ }^{\circ}$)

Low-Dimensional Problems (2)

- Let's illustrate this more graphically...
$\left(0,0,0^{\circ}\right)$
$\left(0,0,90^{\circ}\right)$
$\left(0,0,180^{\circ}\right)$
$\left(0,0,270^{\circ}\right)$
$\left(1,0,0^{\circ}\right)$
$\left(1,0,90^{\circ}\right)$
$\left(1,0,180^{\circ}\right)$
$\left(1,0,270^{\circ}\right)$

Local Planner (1)

- Ask local planner: "Can I connect these configurations"?

Configurations, not locations or points!

Can I go from here in this direction to there in that direction? Can I go from these arm joint angles to those arm joint angles?

Local Planner (2)

- Ask local planner: "Can I connect these configurations"?

Try to connect red arrows

The local planner might say
"Sorry, too complex"

Local Planner (3): Local vs Global

43

- Other paths may be possible

Why not make the local planner smarter?

Divide and conquer:
Local planner should be fast, the rest is handled through the high-level planner

Local Planner (4)

- Local planner also considers obstacles

High-Dimensional Problems

High-Dimensional Problems

- For an aircraft, a configuration could consist of:
- location in 3D space $(x / y / z)$
- pitch angle
- yaw angle
- roll angle
- A path is:

- a continuous curve in 6-dimensional configuration space avoiding obstacles
and obeying constraints on how the aircraft can turn
- Can make tighter turns at low speed
- Can't fly at arbitrary pitch angles
- ...

High-Dimensional Problems (2)

- For a robot arm, a configuration could consist of:
- The position / angle of each joint
- A path is a continuous curve in n-dimensional configuration space (all joints move continuously to new positions, without "jumping"), avoiding obstacles and obeying constraints on joint endpoints etc.
- Typical goal: Reach inside the car you are painting / welding, without colliding with the car itself

High-Dimensional Problems (3)

4

- Moving in tight spaces, again...

High-Dimensional Problems (4)

- For a humanoid robot, a configuration could consist of:
- Position in x / y space
- The position of each joint
- The Nao robot:
- 14,21 or 25 degrees of freedom depending on model
- Up to 25-dimensional motion planning!
- Grid methods generally do not scale
- 25-dimensional configuration space, with 1000 cells in each direction: 10^{75} cells...

High-Dimensional Problems (5)

- Honda Asimo: 57 DOF

We can often omit some DOF from planning...

But then we don't use the robot's full capabilities!

Alpha Puzzle: Narrow Passages

(c).2001.James.Kuffiner

Choosing Potential Configurations: Probabilistic Methods

Preliminaries: Coverage Domain

- Given a configuration q in the free config space:
- A particular local planner can connect it to a set of other configs
- Called the coverage domain $D(q)$ - generally an infinite set

Example: Simple 2D planning, local planner uses straight lines...

Can connect q to any config in the green area

Can't connect q to any other points
$D(q)$
q
Obstacle

Obstacle

Preliminaries: Preprocessing

- Preprocessing: Suppose we can select configurations so that:
- Their domains cover the entire config space
- The configs can be connected

(Imagine many obstacles, hundreds or thousands of configurations, many dimensions...)

Preliminaries: Solving

- Solving:We get...
- Start configuration $q_{\text {start }}$
- Connect to another configuration
- Must be possible:

The domains of the existing configurations covered the entire space

- Goal configuration $q_{\text {goal }}$
- Connect...
- Find a path through the graph!

Preliminaries: Coverage Domains are Implicit/56

- Problem:We can't calculate the coverage domain $D(q)$
- Local planner answers "can you connect q_{1} with the specific config q_{2} ?
- Computing "all the configurations you can connect q_{1} to":
- High-dimensional spaces (57D???)
- Complex motion constraints, not just physical obstacles
- Too computationally complex, even if finite
- Usually infinitely many possibilities

Preliminaries: Probabilistic Methods

- Solution: Probabilistic methods
- Given a set of configurations $Q=\left\{q_{1}, \ldots, q_{n}\right\}$:
- Don't compute

$$
\bigcup_{q \in Q} D(q)
$$

- Directly compute probability:

$$
P\left(\bigcup_{q \in Q} D(q) \text { covers entire free configuration space }\right)
$$

- Or:
$P\left(\right.$ if you pick a random free config, it belongs to $\left.\bigcup_{q \in Q} D(q)\right)$
- Add configurations until probability is sufficiently high

Probabilistic Roadmaps

(Lydia Kavraki et al, 1996)

Probabilistic Roadmaps

- Probabilistic Roadmaps (PRM): Construction Phase
- $\mathrm{M} \leftarrow$ empty roadmap
- do \{
randomly generate configuration q in free config space
if (q was previously unreachable, so it would extend coverage) \{
add q and associated edges to M
\} else if (q was reachable, but now connects
A new config here two previously unconnected configs) \{ would not be added! add q and associated edges to M
\}
\} until (sufficient coverage)

Tweaks:
Only consider points within a maximum distance; only consider up to N neighbors;

PRM: Sufficient Coverage

- When do you have sufficient coverage?
- Suppose you have tested n configurations in a row without being able to add one to the road map
- Then the roadmap covers the free config space
with probability $1-\frac{1}{n}$
- Example: $n=1000 \rightarrow$ likely that 99.9% of the free config space is covered
- Why generate randomly? Why don't we select a non-covered config?
- How? Many dimensions, complex connectivity, ...
- Random \rightarrow no need to explicitly calculate coverage domains!
- Construction phase done in advance
- In a sense, a learning phase
- Road map reused for many queries

Obstacle

PRM: Construction in Advance

- Construction phase typically done in advance
- In a sense, a learning phase
- Road map reused for many queries
- But we can improve the road map later!
- No solution? Add more nodes.
- Detect new obstacles? Remove edges.
- ...

PRM: Node Placement

- Node placement is random but not always uniform
- Can be biased towards difficult areas

The "obstacles" above are "obstacles" in configuration space!

PRM: Protein Folding

- (Second example was from a protein folding application...)

PRM: Query Phase

- Query Phase:

Add and connect start and goal configs to the roadmap (should be possible, as we have good coverage)

PRM:Result

Visualized i 2D
Could be 25D Even in 2D, we have no closed form description of the shape - must sample!

Limit permitted edge length \rightarrow denser map

PRM: Properties

Properties:

- Scales better to higher dimensions
- Deterministically incomplete, probabilistically complete
- The more configurations you create, the greater the probability that a path can be found if one exists (approaching I.0)

Graph Search

Adapting to New Obstacles

- Suppose new obstacles are detected during execution
- A*: Update map and replan from scratch
- Inefficient
- D* (Dynamic A*): Informed incremental search
- First, find a path using information about known obstacles
- When new obstacles are detected:
- Affected nodes are returned to the OPEN list, marked as RAISE: More expensive than before
- Incrementally updates only those nodes whose cost change due to the new obstacles
- Focused D*:
- Focuses propagation towards the robot - additional speedup

Anytime Search

- Anytime algorithms:
- Be able to answer whenever I interrupt you!
- In practice: Create some path quickly, then incrementally improve it
- "Repeated weighted A*" (standard technique)
- Run A^{*} with $f(n)=g(n)+\boldsymbol{W} \cdot h(n)$, where $W>1$: Faster but suboptimal

$$
w=1
$$

Standard A*

Anytime Search (2)

- Anytime algorithms:
- Anytime Repairing A*
" Like "repeated weighted A*", but reuses search results from earlier iterations
- Anytime Dynamic A* (AD*)
- Both replanning when problems change and anytime planning

Post-Processing:
 Path Smoothing

Suboptimal Paths

- Paths are often suboptimal in the continuous space
- Only the chosen points in the cells are used
- In this example:The midpoints

Smoothing

- Paths can be improved through smoothing after generation
- Still generally does not lead to optimal paths
- This is just a simple example, where smoothing is easy

Open Motion Planning Library

- Want to experiment?
- Open Motion Planning Library
- http://ompl.kavrakilab.org/index.html

