
jonas.kvarnstrom@liu.se – 2019

Automated Planning

Classical Planning Problems:
Representation Languages

Jonas Kvarnström

Department of Computer and Information Science

Linköping University

3

jo
nk

v@
id

a
jo

nk
v@

id
a

3History: 1959
 The language of Artificial Intelligence was/is logic

 First-order, second-order, modal, …

 1959: General Problem Solver (Newell, Shaw, Simon)

4

jo
nk

v@
id

a
jo

nk
v@

id
a

4History: 1969
 1969: Planner explicitly built on Theorem Proving (Green)

5

jo
nk

v@
id

a
jo

nk
v@

id
a

5Basis in Logic
 Full theorem proving generally proved impractical for planning

 Different techniques were found

 Foundations in logical languages remained!

▪ Languages use predicates, atoms, literals, formulas

▪ We define states, actions, … relative to these

▪ Allows us to specify an STS at a higher level!

Formal representation using a first-order language:

"Classical Representation" (from the book)

"The simplest representation that is (more or less) reasonable to use for modeling"

6

jo
nk

v@
id

a
jo

nk
v@

id
a

6Running Example
 Running example (from the book): Dock Worker Robots

Containers shipped

in and out of a harbor

Cranes move containers

between ”piles” and robotic trucks

8

jo
nk

v@
id

a
jo

nk
v@

id
a

8Objects 1: Intro
 We are interested in objects in the world

 Buildings, cards, aircraft, people, trucks, pieces of sheet metal, …

 Classical must be a finite set!

Modeling: Which objects exist and are relevant for the problem and objective?

9

jo
nk

v@
id

a
jo

nk
v@

id
a

9Objects 2: Dock Worker Robots
 Dock Worker Robots

p1
c1

c3 p2
c2

loc1
r1

loc2

A pile is a stack of containers –
at the bottom, there is a pallet

A crane moves containers
between piles and robots

A robot is an automated

truck moving containers
between locations

A container can be

stacked, picked up,
loaded onto robots

A location is an area that can
be reached by a single crane

Can contain several piles,
at most one robot.

We can skip:

Hooks

Wheels

Rotation angles

Drivers

– not relevant for

this problem!

10

jo
nk

v@
id

a
jo

nk
v@

id
a

10Objects 3: Classical Representation
 Classical representation:

 We are constructing a first-order language 𝐿 (as in logic)

 Every object is modeled as a constant

 Add a constant symbol ("object name") for each object:
𝐿 contains

p1
c1

c3 p2
c2

loc1
r1

loc2

12

jo
nk

v@
id

a
jo

nk
v@

id
a

12Internal Structure?
 An STS only assumes there are states

 What is a state? The STS doesn’t care!

 Its definitions don’t depend on what 𝑠 “represents” or “means”

▪ Can execute 𝑎 in 𝑠 if 𝛾 𝑠, 𝑎 = 𝑠′

 We (and planners) need more structure!

 "state 𝑠23862497124985"

"

"

13

jo
nk

v@
id

a
jo

nk
v@

id
a

13Predicates
 First-order language: Start with a set of predicates

 Properties of the world

▪

 Properties of single objects

▪

 Relations between objects

▪

 Relations between >2 objects

▪

 Non-boolean properties are "relations between constants"

▪

Essential: Determine what is relevant for the problem and objective!

Modeling:
Color values must be constants ()

-- so that they can be handled the same way as real objects

14

jo
nk

v@
id

a
jo

nk
v@

id
a

14Predicates for DWR
 Reference: All predicates for DWR, and their intended meaning:

▪"Fixed/Rigid"

(can't

change)

"Dynamic"

(modified by

actions)

15

jo
nk

v@
id

a
jo

nk
v@

id
a

15Predicates, Terms, Atoms, Ground Atoms
 Terminology:

 Term: Constant symbol or variable

▪

▪

 Atom: Predicate symbol applied to the intended number of terms

▪

▪

▪

 Ground atom: Atom without variables (only constants) – a fact

▪

 Plain first-order logic has no distinct types for objects!

 Some “strange” atoms are perfectly valid:

▪

▪

▪

16

jo
nk

v@
id

a
jo

nk
v@

id
a

16States 1: Internally Structured
 A state (of the world) should specify exactly

which facts (ground atoms) are true/false in the world

at a given time

We know all predicates that exist:

We know which objects exist

We can calculate all ground atoms

Every assignment of true/false to the ground atoms is a distinct state

Number of states: – enormous, but finite (for classical planning!)

We can find all possible states!

These are the facts to keep track of!

Ground =

without

variables

17

jo
nk

v@
id

a
jo

nk
v@

id
a

17States 2: Structure, Differences
 Then we can compute differences between states

Structure is essential!

We will see later how

planners make use of

structured states…

18

jo
nk

v@
id

a
jo

nk
v@

id
a

18States 3: First-order Representation
 Efficient specification / storage of a single state:

 Specify which facts are true

▪ All other facts have to be false – what else would they be?

 A classical state is a set of all ground atoms that are true

▪

∈

∉

2
1

3

Why not store all ground atoms

that are false instead?

19

jo
nk

v@
id

a
jo

nk
v@

id
a

19States 4: Initial State
 Initial states in classical STRIPS planning:

 We assume complete information about the

initial state 𝑠0 (before any action)

 State = set of true facts…

 𝑠0 = attached p1,loc1 , in c1,p1 , on c1,pallet , on c3,c1 , …

p1
c1
c3 p2

c2

loc1
r1

loc2

Complete relative to the model:

We must know everything

about those predicates and objects

we have specified...

20

jo
nk

v@
id

a
jo

nk
v@

id
a

20States 5: Goal States, Positive Goals
 One way of efficiently defining a set of goal states:

 A goal 𝑔 is a set of ground atoms

▪ Example: 𝑔

▪ In the final state, containers 1 and 3 should be in pile 2,

and we don't care about any other facts

 Then 𝑆𝑔 = 𝑠 ∈ 𝑆 | 𝑔 ⊆ 𝑠

▪ 𝑆𝑔

p1
c1
c3 p2

c2

loc1
r1

loc2

21

jo
nk

v@
id

a
jo

nk
v@

id
a

21States 6: Goal States, Literal Goals
 To increase expressivity:

 A goal 𝑔 is a set of ground literals

▪ A literal is an atom or a negated atom: ¬

▪ Container 1 should be in pile 2

▪ ¬ Container 2 should not be in pile 3

 Then 𝑆𝑔 = 𝑠 ∈ 𝑆 | 𝑠 satisfies 𝑔

▪ Positive atoms in 𝑔 are also in 𝑠

▪ Negated atoms in 𝑔 are not in 𝑠

p1
c1
c3 p2

c2

loc1
r1

loc2

More expressive than positive goals

Still not as expressive as the STS:

”arbitrary set of states”

Many classical planners use one

of these two alternatives (atoms/lits);

some are more expressive

22

jo
nk

v@
id

a
jo

nk
v@

id
a

22Abstraction
 We have abstracted the real world!

 Motion is really continuous in 3D space

▪ Uncountably infinite number of positions for a crane

 But for the purpose of planning:

▪ We model a finite number of interesting positions

▪ On a specific robot

▪ In a specific pile

▪ Held by a specific crane

Real World

Abstraction

Approximation

Simplification

Gives sufficient information

for us to solve

interesting problems

Formal Model

24

jo
nk

v@
id

a
jo

nk
v@

id
a

24Actions with Structure
 If states have internal structure:

 Makes sense for actions to have internal structure

▪ ”𝛾 𝑠291823, 𝑎120938 = ∅”

“action move(diskA, peg1, peg3) requires a state where on(diskA,peg1)”

▪ ”𝛾 𝑠975712397, 𝑎120938 = 𝑠12578942 ”

“action move(diskA, peg1, peg3) makes on(diskA,peg3) true, and …”

25

jo
nk

v@
id

a
jo

nk
v@

id
a

25Operators
 In the classical representation: Don't define actions directly

 Define a set 𝑂 of operators

 Each operator is parameterized, defines many actions

▪

 Has a precondition

▪ precond(o): set of literals that must hold before execution

▪ precond(take) =

 Has effects

▪ effects(o): set of literals that will be made to hold after execution

▪ effects(take) =

p1
c1
c3 p2

c2

loc1
r1

loc2

26

jo
nk

v@
id

a
jo

nk
v@

id
a

26Actions
 In the classical representation:

 Every ground instantiation of an operator is an action

▪ 𝑎1

 Also has (instantiated) precondition, effects

▪ precond(𝑎1) =

▪ effects(𝑎1) =

p1
c1
c3 p2

c2

loc1
r1

loc2𝐴 = 𝑎
𝑎 is an instantiation
of an operator in 𝑂
using constants in 𝐿

27

jo
nk

v@
id

a
jo

nk
v@

id
a

27Untyped Actions and Applicability
 If every ground instantiation of an operator is an action…

 …then so is this:

▪

 But when will this action be applicable?

▪

▪

For these preconditions to be true,

something must already have gone wrong!

28

jo
nk

v@
id

a
jo

nk
v@

id
a

28Untyped Actions and Applicability (2)
 More common solution: Separate type predicates

 Ordinary predicates that happen to represent types:

▪

 Used as part of preconditions:

▪

 DWR example was "optimized" somewhat

▪ belong(k,l) is only true for crane+location, replaces two type predicates

 So:

▪ is an action

▪ Its preconditions can never be satisfied in reachable states!

▪ Type predicates are fixed, rigid, never modified

 such actions can be filtered out before planning even starts

29

jo
nk

v@
id

a
jo

nk
v@

id
a

29Useful Properties
 Some useful properties:

 If a is an operator or action…

▪ = { atoms that appear positively in a’s preconditions }

▪ = { atoms that appear negated in a’s preconditions }

▪ = { atoms that appear positively in a’s effects }

▪ = { atoms that appear negated in a’s effects }

 Example:

▪

▪

▪

Negation

disappears!

30

jo
nk

v@
id

a
jo

nk
v@

id
a

30Applicable (Executable) Actions
 An action a is applicable in a state s…

 … if precond+(a) s and precond–(a) s =

 Example:

p1
c1
c3 p2

c2

loc1
r1

loc2

Action ground

 preconds are

ground atoms

Simple representation (sets)

 simple definitions!

31

jo
nk

v@
id

a
jo

nk
v@

id
a

31Result of Performing an Action
 Applying will add positive effects, delete negative effects

 If is applicable in , then

the new state is

p1
c1
c3 p2

c2

loc1
r1

loc2

p1
c1

c3

p2
c2

loc1
r1

loc2

32

jo
nk

v@
id

a
jo

nk
v@

id
a

32Defining 𝜸
 From actions to 𝛾:

 𝛾 𝑠, 𝑎 =

൞

∅ if precond+ 𝑎 ⊈ 𝑠 or precond– 𝑎 ∩ 𝑠 ≠ ∅

𝑠 − effects− 𝑎 ∪ effects+(𝑎) otherwise

Positive

preconditions

missing from state

Negated

preconditions

present in state

From the classical representation language,

we know how to define Σ = (𝑆, 𝐴, 𝛾)
and a problem (Σ, 𝑠0, 𝑆𝑔)

33

jo
nk

v@
id

a
jo

nk
v@

id
a

33Modeling: What Is a Precondition?
 Usual assumption in domain-independent planning:

 Preconditions should have to do with executability, not suitability

▪ Weakest constraints under which the action can be executed

 The planner chooses which actions are suitable, using heuristics (etc.)

 Add explicit “suitability preconditions” domain-configurable planning

▪ ”Only pick up a container if there is a truck on which the crane can put it”

▪ ”Only pick up a container if it needs to be moved according to the goal”

These are physical

requirements for taking a

container!

35

jo
nk

v@
id

a
jo

nk
v@

id
a

35Domain-Independent Planning

Domain-independent Classical Planner

Objects, Predicates

Operators

Initial state, Goal

High Level Problem Descr.

Written for generic planning problems

Difficult to create (but done once)

Improvements all domains benefit

Solution (Plan)

36

jo
nk

v@
id

a
jo

nk
v@

id
a

36Domain vs Instance
 Makes sense to split the information

Objects

Initial state

Goal

Instance Description:

Our current problem

Domain-independent Planner

Predicates

Operators

Domain Description:

“The world in general”

37

jo
nk

v@
id

a
jo

nk
v@

id
a

37Domain-Independent Planning
 To solve problems in other domains:

 Keep the planning algorithm

 Write a new high-level description of the problem domain

Satellite

Domain

Domain-

indep.

Planner

Satellite

problem instance

Plan

Mars

Rover

Domain

Domain-

indep.

Planner

Mars Rover

problem instance

Plan

39

jo
nk

v@
id

a
jo

nk
v@

id
a

39Terminology
 Get the terminology right, or your exam answers will be nonsense!

 ”Every letter must begin with a capital”?

▪ No, every sentence must begin with a capital.

 ”A multiplication consists of one or more digits”?

▪ No, a number consists of one or more digits.

 ”A precondition tells you which states must be true”?

▪ No, a state (of the world) can’t be ”true”; this is meaningless!

Preconditions refer to atoms (atomic facts).

 The words are vaguely associated with each other,

but that isn’t enough…

Underlying formal model

Concepts as simple as possible:

States, actions, transition function

Good for analysis, correctness proofs,

understanding what planning is

Now: Extensible

representation language

Classical Representation is simple,

but not easily extended with

complex preconditions, effects,

timing, action costs, concurrency, …

Formal

representation language

Closer to how we think

Provides more structural information,

very useful for planning algorithms

States

Actions – no structure!

Transition defining the result of an action,
function

Goals – set of end states

Misc. Separation: Domain / instance

Misc. PDDL object types

Preconditions Formulas: Disjunctions, …

Effects Conditional effects, …

Extensions Timing, action costs, …

Objects

Fact atoms

State Set of true atoms

Operators

Preconditions

Effects

This indirectly defines

C
o
v
e
re

d
in

 t
h

e
 b

o
o

k

42

jo
nk

v@
id

a
jo

nk
v@

id
a

42PDDL
 PDDL: Planning Domain Definition Language

 Origins: First International Planning Competition, 1998

 Most used language today

 General; many expressivity levels

 Lowest level of expressivity: Called STRIPS
 After the planner used by Shakey,

STRIPS: Stanford Research Institute Problem Solver

 One specific predicate-based ("logic-based")

syntax/semantics for classical planning domains/instances

43

jo
nk

v@
id

a
jo

nk
v@

id
a

43PDDL: Domain and Problem Definition

 PDDL separates domains and problem instances

Problem instance fileDomain file

Colon before many keywords,

to avoid collisions

when new keywords are added

Named Named

Associated with

a domain

44

jo
nk

v@
id

a
jo

nk
v@

id
a

44PDDL: Domain and Problem Definition

 Domains declare their expressivity requirements
▪

Warning:

Many planners’ parsers ignore expressivity specifications

We will see some

other levels as well…

46

jo
nk

v@
id

a
jo

nk
v@

id
a

46PDDL Objects 1: Types
 In PDDL and most planners:

 Constants have types, defined in the domain

▪

p1
c1
c3 p2

c2

loc1
r1

loc2

Tell the planner

which features you need…

47

jo
nk

v@
id

a
jo

nk
v@

id
a

47PDDL Objects 2: Type Hierarchies
 Many planners support type hierarchies

 Convenient, but often not used in domain examples

▪

 Predefined ”topmost supertype”:

p1
c1
c3 p2

c2

loc1
r1

loc2

48

jo
nk

v@
id

a
jo

nk
v@

id
a

48PDDL Objects 3: Object Definitions
 Instance-specific constants are called objects

p1
c1
c3 p2

c2

loc1
r1

loc2

49

jo
nk

v@
id

a
jo

nk
v@

id
a

49PDDL Objects 4: PDDL Constants
 Some constants should exist in all instances

Define once –

use in all

problem

instances

 Can use in the

domain

definition

as well!

51

jo
nk

v@
id

a
jo

nk
v@

id
a

51Predicates in PDDL
 In PDDL: Lisp-like syntax for predicates, atoms, …

▪
Variables are

prefixed with “?”

52

jo
nk

v@
id

a
jo

nk
v@

id
a

52Modeling: Different predicates per type?
 Modeling Issues: Single or multiple predicates?

▪

 Could use type hierarchies instead – in most planners

▪

3 predicates

with similar

meaning

53

jo
nk

v@
id

a
jo

nk
v@

id
a

53Modeling: Duplicate information
 Models often provide duplicate information

 A location is occupied there is some robot at the location

▪

 Strictly speaking, is redundant

▪ Still necessary in many planners

▪ No support for quantification: (exists ?r (at ?r ?l))

▪ Have to write (occupied ?l) instead

▪ Have to provide this information + update it in actions!

55

jo
nk

v@
id

a
jo

nk
v@

id
a

55States 1: Initial State in PDDL
 Initial states in PDDL:

 Set (list) of true atoms

▪

p1
c1
c3 p2

c2

loc1
r1

loc2

Lisp-like notation again:
, not

56

jo
nk

v@
id

a
jo

nk
v@

id
a

56States 2: Goal States
 The :strips level supports positive conjunctive goals

 Example: Containers 1 and 3 should be in pile 2

▪ We don't care about their order, or any other fact

▪

p1
c1
c3 p2

c2

loc1
r1

loc2

Write as a formula (and …), not a set:

Other levels support "or", "forall", "exists", …

57

jo
nk

v@
id

a
jo

nk
v@

id
a

57States 3: Goal States
 Some planners: Conjunctions of positive / negative literals

 Example:

▪ Containers 1 and 3 should be in pile 2

▪ Container 2 should not be in pile 4

▪

▪

 Buggy support in some planners

▪ Can be worked around

▪ Define outside predicate = inverse of in

▪ Make sure actions update this

▪

p1
c1
c3 p2

c2

loc1
r1

loc2

59

jo
nk

v@
id

a
jo

nk
v@

id
a

59Operators in PDDL
 PDDL: Operators are called actions, for some reason…

▪

Again, written as logical conjunctions,

instead of sets!

Typed params

 can only instantiate

with the intended objects

60

jo
nk

v@
id

a
jo

nk
v@

id
a

60Transformation: PDDL/strips STS

Input : Planning domain

Input : Problem instance

Object Types: There are UAVs, boxes …

Predicates: Every UAV has a , …

Operators: Definition of , , …

Defines

transitions

between

states

in the

formal

model

(STS)

Defines

initial and

goal

states

Objects: Current UAVs are { }

Defines

the set of

states

in the

formal

model

(STS)

Initial State: Box locations, …

Goal: Box at location , …

62

jo
nk

v@
id

a
jo

nk
v@

id
a

62Properties of Objects 1
 Modeling properties in a first-order predicate representation:

Each atom is ”separate”

Good: Can easily model 0 colors

Good: Can easily model multiple

colors

Any problems?

63

jo
nk

v@
id

a
jo

nk
v@

id
a

63Properties of Objects 2
 Let's model a "drive" operator for a truck

 ”Natural” parameters: The truck and the destination

▪

 ”Natural” precondition:

▪ There must exist a path between the current location and the destination

▪ Assume we have a predicate

 How do we continue?

▪

▪ Can’t talk about the location of the truck – could have 0 or many locations

▪ Can only test whether a truck is at some specific location:

64

jo
nk

v@
id

a
jo

nk
v@

id
a

64Properties of Objects 3
 General technique: Iterate-and-test

But many planners don’t support forall, implies…

65

jo
nk

v@
id

a
jo

nk
v@

id
a

65Properties of Objects 4
 Trick:

 Add a parameter to the operator

▪

 Constrain that variable in the precondition

▪

▪ Can only apply those instances of the operator

where is the current location of the truck

66

jo
nk

v@
id

a
jo

nk
v@

id
a

66Properties of Objects 5
 Example:

 Initially:

▪

 Action:

▪

 Which actions are executable?

▪ – no, precond false: not (at truck5 work)

▪ – no, precond false

▪ – no, precond false

▪ – precond true, can be applied!

With quantification, we could have changed the precondition:

No need for a new parameter – in this case…

These parameters are "extraneous"

in the sense that they do not add choice:

We can choose truck and dest (given some constraints);

from is uniquely determined by state + other params!

67

jo
nk

v@
id

a
jo

nk
v@

id
a

67Properties of Objects 6
 What about effects?

 Same ”natural” parameters: The truck and the destination

▪

 ”Natural” effects:

▪ The truck ends up at the destination:

▪ The truck is no longer where it started:

 How do you find out where the truck was before the action?

▪ Using an additional parameter still works:

▪ The value of ?from is constrained in the precondition – before

▪ The value is used in the effect state

69

jo
nk

v@
id

a
jo

nk
v@

id
a

69Alternative Representations

Propositional

(boolean propositions)

Language: PDDL :strips

(if you avoid objects),

…

First-order

(boolean predicates)

Language: PDDL :strips,

ADL, …

State-variable-based

(non-boolean functions)

Three wide classes of logic-based representations

(general classes, containing many languages!)

Read chapter 2 of the book for another

perspective on representations…

70

jo
nk

v@
id

a
jo

nk
v@

id
a

70Classical and State-Var Representation
 Classical planning with classical representation

 A state defines the values of logical atoms (boolean)

▪

▪

p1
c1
c3 p2

c2

loc1
r1

loc2

 Alternative: Classical with state-variable representation

 A state defines the values of arbitrary state variables

▪

▪

Can be convenient,

space-efficient

 often used internally!

Seems more powerful,

but is equivalent!

Flexible

(earlier color example)

May be wasteful:

A container can never be

on many robots, which

never happens

71

jo
nk

v@
id

a
jo

nk
v@

id
a

71Classical and State-Var Representation
 Alternative: Classical with state-variable representation

 A state defines the values of arbitrary state variables

▪

▪

No… What if a robot is

not carrying a container?

 Must define a new type:

▪

▪

72

jo
nk

v@
id

a
jo

nk
v@

id
a

72Properties of Objects, Revisited
 Back to the "drive" operator…

 ”Natural” parameters: The truck and the destination

▪

 ”Natural” precondition:

▪ There must exist a path between the current location and the destination

▪ Should use the predicate

▪ State variable representation can express the location of the truck:

▪ No STS changes are required!

73

jo
nk

v@
id

a
jo

nk
v@

id
a

73State Variable Input?
 Most planners don’t support state variable input

 Partly due to PDDL influence

74

jo
nk

v@
id

a
jo

nk
v@

id
a

74

3 variables, 2^3 values

1 variable, 3 values

State Variables Internally
 Many convert to state variables internally

 Basic idea:

▪ Make a graph where each ground atom is a node

▪ Find out (somehow!) that certain pairs of ground atoms

cannot occur in the same state (mutually exclusive) – add edges

▪ Each clique (all nodes connected in pairs) can become a new state variable

(why?)

76

jo
nk

v@
id

a
jo

nk
v@

id
a

76Extended Example
 Let’s extend the previous robot example…

 Assume there are only roads between some locations:

 And you can take off anywhere, but only land at A

77

jo
nk

v@
id

a
jo

nk
v@

id
a

77Domain Transition Graphs
 With state variables: domain transition graphs

 For each state variable:

▪ Add a node for each value

▪ Add an edge for each action changing the value

Useful form of domain analysis (as we will see later)

