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3History: 1959
 The language of Artificial Intelligence was/is logic

 First-order, second-order, modal, …

 1959: General Problem Solver (Newell, Shaw, Simon)
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4History: 1969
 1969: Planner explicitly built on Theorem Proving (Green)
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5Basis in Logic
 Full theorem proving generally proved impractical for planning

 Different techniques were found

 Foundations in logical languages remained!

▪ Languages use predicates, atoms, literals, formulas

▪ We define states, actions, … relative to these

▪ Allows us to specify an STS at a higher level!

Formal representation using a first-order language:

"Classical Representation" (from the book)

"The simplest representation that is (more or less) reasonable to use for modeling"
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6Running Example
 Running example (from the book): Dock Worker Robots

Containers shipped

in and out of a harbor

Cranes move containers

between ”piles” and robotic trucks
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8Objects 1: Intro
 We are interested in objects in the world

 Buildings, cards, aircraft, people, trucks, pieces of sheet metal, …

 Classical  must be a finite set!

Modeling: Which objects exist and are relevant for the problem and objective?
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9Objects 2: Dock Worker Robots
 Dock Worker Robots

p1
c1

c3 p2
c2

loc1
r1

loc2

A pile is a stack of containers –
at the bottom, there is a pallet

A crane moves containers 
between piles and robots

A robot is an automated 

truck moving containers 
between locations

A container can be 

stacked, picked up, 
loaded onto robots

A location is an area that can 
be reached by a single crane

Can contain several piles,
at most one robot.

We can skip:

Hooks

Wheels

Rotation angles

Drivers

– not relevant for 

this problem!
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10Objects 3: Classical Representation
 Classical representation:

 We are constructing a first-order language 𝐿 (as in logic)

 Every object is modeled as a constant

 Add a constant symbol ("object name") for each object:
𝐿 contains 

p1
c1

c3 p2
c2

loc1
r1

loc2
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12Internal Structure?
 An STS only assumes there are states

 What is a state?  The STS doesn’t care!

 Its definitions don’t depend on what 𝑠 “represents” or “means”

▪ Can execute 𝑎 in 𝑠 if 𝛾 𝑠, 𝑎 = 𝑠′

 We (and planners) need more structure!

 "state 𝑠23862497124985" 

"

"
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13Predicates
 First-order language:  Start with a set of predicates

 Properties of the world

▪

 Properties of single objects

▪

 Relations between objects

▪

 Relations between >2 objects

▪

 Non-boolean properties are "relations between constants"

▪

Essential: Determine what is relevant for the problem and objective!

Modeling:
Color values must be constants ( )

-- so that they can be handled the same way as real objects
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14Predicates for DWR
 Reference: All predicates for DWR, and their intended meaning:

▪"Fixed/Rigid"

(can't

change)

"Dynamic"

(modified by 

actions)
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15Predicates, Terms, Atoms, Ground Atoms
 Terminology:

 Term:  Constant symbol or variable

▪

▪

 Atom:  Predicate symbol applied to the intended number of terms

▪

▪

▪

 Ground atom: Atom without variables (only constants) – a fact

▪

 Plain first-order logic has no distinct types for objects!

  Some “strange” atoms are perfectly valid:

▪

▪

▪
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16States 1: Internally Structured
 A state (of the world) should specify exactly

which facts (ground atoms) are true/false in the world

at a given time

We know all predicates that exist:

We know which objects exist

We can calculate all ground atoms

Every assignment of true/false to the ground atoms is a distinct state

Number of states: – enormous, but finite (for classical planning!)

We can find all possible states!

These are the facts to keep track of!

Ground = 

without

variables
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17States 2: Structure, Differences
 Then we can compute differences between states

Structure is essential!

We will see later how 

planners make use of 

structured states…
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18States 3: First-order Representation
 Efficient specification / storage of a single state:

 Specify which facts are true

▪ All other facts have to be false – what else would they be?

 A classical state is a set of all ground atoms that are true

▪

∈ 

∉ 

2
1

3

Why not store all ground atoms

that are false instead?
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19States 4: Initial State
 Initial states in classical STRIPS planning:

 We assume complete information about the

initial state 𝑠0 (before any action)

 State = set of true facts…

 𝑠0 = attached p1,loc1 , in c1,p1 , on c1,pallet , on c3,c1 , …

p1
c1
c3 p2

c2

loc1
r1

loc2

Complete relative to the model: 

We must know everything

about those predicates and objects

we have specified...



20

jo
nk

v@
id

a
jo

nk
v@

id
a

20States 5: Goal States, Positive Goals
 One way of efficiently defining a set of goal states:

 A goal 𝑔 is a set of ground atoms

▪ Example:  𝑔

▪ In the final state, containers 1 and 3 should be in pile 2,

and we don't care about any other facts

 Then 𝑆𝑔 = 𝑠 ∈ 𝑆 | 𝑔 ⊆ 𝑠

▪ 𝑆𝑔

p1
c1
c3 p2

c2

loc1
r1

loc2



21

jo
nk

v@
id

a
jo

nk
v@

id
a

21States 6: Goal States, Literal Goals
 To increase expressivity:

 A goal 𝑔 is a set of ground literals

▪ A literal is an atom or a negated atom:  ¬

▪ Container 1 should be in pile 2

▪ ¬ Container 2 should not be in pile 3

 Then 𝑆𝑔 = 𝑠 ∈ 𝑆 | 𝑠 satisfies 𝑔

▪ Positive atoms in 𝑔 are also in 𝑠

▪ Negated atoms in 𝑔 are not in 𝑠

p1
c1
c3 p2

c2

loc1
r1

loc2

More expressive than positive goals

Still not as expressive as the STS:

”arbitrary set of states”

Many classical planners use one

of these two alternatives (atoms/lits);

some are more expressive
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22Abstraction
 We have abstracted the real world!

 Motion is really continuous in 3D space

▪ Uncountably infinite number of positions for a crane

 But for the purpose of planning:

▪ We model a finite number of interesting positions

▪ On a specific robot

▪ In a specific pile

▪ Held by a specific crane

Real World

Abstraction

Approximation

Simplification

Gives sufficient information

for us to solve

interesting problems

Formal Model
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24Actions with Structure
 If states have internal structure:

 Makes sense for actions to have internal structure

▪ ”𝛾 𝑠291823, 𝑎120938 = ∅” 

“action move(diskA, peg1, peg3) requires a state where on(diskA,peg1)”

▪ ”𝛾 𝑠975712397, 𝑎120938 = 𝑠12578942 ” 

“action move(diskA, peg1, peg3) makes on(diskA,peg3) true, and …”



25

jo
nk

v@
id

a
jo

nk
v@

id
a

25Operators
 In the classical representation:  Don't define actions directly

 Define a set 𝑂 of operators

 Each operator is parameterized, defines many actions

▪

 Has a precondition

▪ precond(o): set of literals that must hold before execution

▪ precond(take) = 

 Has effects

▪ effects(o): set of literals that will be made to hold after execution

▪ effects(take) = 

p1
c1
c3 p2

c2

loc1
r1

loc2
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26Actions
 In the classical representation:

 Every ground instantiation of an operator is an action

▪ 𝑎1

 Also has (instantiated) precondition, effects

▪ precond(𝑎1) =

▪ effects(𝑎1) =

p1
c1
c3 p2

c2

loc1
r1

loc2𝐴 = 𝑎
𝑎 is an instantiation
of an operator in 𝑂
using constants in 𝐿
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27Untyped Actions and Applicability
 If every ground instantiation of an operator is an action…

 …then so is this:

▪

 But when will this action be applicable?

▪

▪

For these preconditions to be true,

something must already have gone wrong!
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28Untyped Actions and Applicability (2)
 More common solution: Separate type predicates

 Ordinary predicates that happen to represent types:

▪

 Used as part of preconditions:

▪

 DWR example was "optimized" somewhat

▪ belong(k,l) is only true for crane+location, replaces two type predicates

 So:

▪ is an action

▪ Its preconditions can never be satisfied in reachable states!

▪ Type predicates are fixed, rigid, never modified

 such actions can be filtered out before planning even starts
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29Useful Properties
 Some useful properties:

 If a is an operator or action…

▪ = { atoms that appear positively in a’s preconditions }

▪ = { atoms that appear negated in a’s preconditions }

▪ = { atoms that appear positively in a’s effects }

▪ = { atoms that appear negated in a’s effects }

 Example:

▪

▪

▪

Negation

disappears!
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30Applicable (Executable) Actions
 An action a is applicable in a state s…

 … if precond+(a)  s  and  precond–(a)  s = 

 Example:





p1
c1
c3 p2

c2

loc1
r1

loc2

Action  ground

 preconds are

ground atoms

Simple representation (sets)

 simple definitions!
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31Result of Performing an Action
 Applying will add positive effects, delete negative effects

 If is applicable in , then

the new state is 



p1
c1
c3 p2

c2

loc1
r1

loc2

p1
c1

c3

p2
c2

loc1
r1

loc2
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32Defining 𝜸
 From actions to 𝛾:

 𝛾 𝑠, 𝑎 =

൞

∅ if precond+ 𝑎 ⊈ 𝑠 or precond– 𝑎 ∩ 𝑠 ≠ ∅

𝑠 − effects− 𝑎 ∪ effects+(𝑎) otherwise

Positive 

preconditions

missing from state

Negated

preconditions

present in state

From the classical representation language,

we know how to define Σ = (𝑆, 𝐴, 𝛾)
and a problem (Σ, 𝑠0, 𝑆𝑔)
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33Modeling: What Is a Precondition?
 Usual assumption in domain-independent planning:

 Preconditions should have to do with executability, not suitability

▪ Weakest constraints under which the action can be executed

 The planner chooses which actions are suitable, using heuristics (etc.)

 Add explicit “suitability preconditions”  domain-configurable planning

▪ ”Only pick up a container if there is a truck on which the crane can put it”

▪ ”Only pick up a container if it needs to be moved according to the goal”

These are physical

requirements for taking a 

container!
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35Domain-Independent Planning

Domain-independent Classical Planner

Objects, Predicates

Operators

Initial state, Goal

High Level Problem Descr.

Written for generic planning problems

Difficult to create (but done once)

Improvements  all domains benefit

Solution (Plan)
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36Domain vs Instance
 Makes sense to split the information

Objects

Initial state

Goal

Instance Description:

Our current problem

Domain-independent Planner

Predicates

Operators

Domain Description:

“The world in general”
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37Domain-Independent Planning
 To solve problems in other domains:

 Keep the planning algorithm

 Write a new high-level description of the problem domain

Satellite 

Domain

Domain-

indep.

Planner

Satellite

problem instance

Plan

Mars 

Rover

Domain

Domain-

indep.

Planner

Mars Rover

problem instance

Plan
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39Terminology
 Get the terminology right, or your exam answers will be nonsense!

 ”Every letter must begin with a capital”?

▪ No, every sentence must begin with a capital.

 ”A multiplication consists of one or more digits”?

▪ No, a number consists of one or more digits.

 ”A precondition tells you which states must be true”?

▪ No, a state (of the world) can’t be ”true”; this is meaningless!

Preconditions refer to atoms (atomic facts).

 The words are vaguely associated with each other,

but that isn’t enough…





Underlying formal model

Concepts as simple as possible:

States, actions, transition function

Good for analysis, correctness proofs,

understanding what planning is

Now: Extensible

representation language

Classical Representation is simple, 

but not easily extended with 

complex preconditions, effects, 

timing, action costs, concurrency, …

Formal

representation language

Closer to how we think

Provides more structural information,

very useful for planning algorithms

States

Actions – no structure!

Transition defining the result of an action,
function 

Goals – set of end states

Misc. Separation: Domain / instance

Misc. PDDL object types

Preconditions Formulas: Disjunctions, …

Effects Conditional effects, …

Extensions Timing, action costs, …

Objects

Fact atoms

State Set of true atoms

Operators

Preconditions

Effects

This indirectly defines 

C
o
v
e
re

d
in

 t
h

e
 b

o
o

k
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42PDDL
 PDDL: Planning Domain Definition Language

 Origins: First International Planning Competition, 1998

 Most used language today

 General; many expressivity levels

 Lowest level of expressivity: Called STRIPS
 After the planner used by Shakey,

STRIPS: Stanford Research Institute Problem Solver

 One specific predicate-based ("logic-based")

syntax/semantics for classical planning domains/instances
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43PDDL: Domain and Problem Definition 

 PDDL separates domains and problem instances

Problem instance fileDomain file

Colon before many keywords,

to avoid collisions

when new keywords are added

Named Named

Associated with

a domain
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44PDDL: Domain and Problem Definition 

 Domains declare their expressivity requirements
▪

Warning:

Many planners’ parsers ignore expressivity specifications

We will see some 

other levels as well…
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46PDDL Objects 1: Types
 In PDDL and most planners:

 Constants have types, defined in the domain

▪

p1
c1
c3 p2

c2

loc1
r1

loc2

Tell the planner

which features you need…
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47PDDL Objects 2: Type Hierarchies
 Many planners support type hierarchies

 Convenient, but often not used in domain examples

▪

 Predefined ”topmost supertype”: 

p1
c1
c3 p2

c2

loc1
r1

loc2
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48PDDL Objects 3: Object Definitions
 Instance-specific constants are called objects



p1
c1
c3 p2

c2

loc1
r1

loc2
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49PDDL Objects 4: PDDL Constants
 Some constants should exist in all instances

Define once –

use in all

problem 

instances

 Can use in the

domain

definition

as well!
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51Predicates in PDDL
 In PDDL: Lisp-like syntax for predicates, atoms, …

▪
Variables are 

prefixed with “?”
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52Modeling: Different predicates per type?
 Modeling Issues: Single or multiple predicates?

▪

 Could use type hierarchies instead – in most planners

▪

3 predicates

with similar

meaning
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53Modeling: Duplicate information
 Models often provide duplicate information

 A location is occupied  there is some robot at the location

▪

 Strictly speaking, is redundant

▪ Still necessary in many planners

▪ No support for quantification: (exists ?r (at ?r ?l))

▪ Have to write (occupied ?l) instead

▪ Have to provide this information + update it in actions!
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55States 1: Initial State in PDDL
 Initial states in PDDL:

 Set (list) of true atoms 

▪

p1
c1
c3 p2

c2

loc1
r1

loc2

Lisp-like notation again:
, not
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56States 2: Goal States
 The :strips level supports positive conjunctive goals

 Example: Containers 1 and 3 should be in pile 2

▪ We don't care about their order, or any other fact

▪

p1
c1
c3 p2

c2

loc1
r1

loc2

Write as a formula (and …), not a set:

Other levels support "or", "forall", "exists", …
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57States 3: Goal States 
 Some planners: Conjunctions of positive / negative literals

 Example: 

▪ Containers 1 and 3 should be in pile 2

▪ Container 2 should not be in pile 4

▪

▪

 Buggy support in some planners

▪ Can be worked around

▪ Define outside predicate = inverse of in

▪ Make sure actions update this

▪

p1
c1
c3 p2

c2

loc1
r1

loc2
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59Operators in PDDL
 PDDL: Operators are called actions, for some reason…

▪

Again, written as logical conjunctions,

instead of sets! 

Typed params

 can only instantiate

with the intended objects
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60Transformation:  PDDL/strips  STS

Input : Planning domain

Input : Problem instance

Object Types: There are UAVs, boxes …

Predicates: Every UAV has a , …

Operators: Definition of , , …

Defines  

transitions 

between

states

in the 

formal 

model 

(STS)

Defines 

initial and 

goal 

states

Objects: Current UAVs are { }  

Defines 

the set of 

states

in the

formal 

model 

(STS)

Initial State: Box locations, …

Goal: Box at location , …
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62Properties of Objects 1
 Modeling properties in a first-order predicate representation:

Each atom is ”separate”

Good: Can easily model 0 colors

Good: Can easily model multiple

colors

Any problems?
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63Properties of Objects 2
 Let's model a "drive" operator for a truck

 ”Natural” parameters:  The truck and the destination

▪

 ”Natural” precondition:

▪ There must exist a path between the current location and the destination

▪ Assume we have a predicate 

 How do we continue?

▪

▪ Can’t talk about the location of the truck – could have 0 or many locations

▪ Can only test whether a truck is at some specific location:
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64Properties of Objects 3
 General technique: Iterate-and-test



But many planners don’t support forall, implies…
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65Properties of Objects 4
 Trick:  

 Add a parameter to the operator

▪

 Constrain that variable in the precondition

▪

▪ Can only apply those instances of the operator

where is the current location of the truck
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66Properties of Objects 5
 Example:

 Initially:

▪

 Action:

▪

 Which actions are executable?

▪ – no, precond false: not (at truck5 work)

▪ – no, precond false

▪ – no, precond false

▪ – precond true, can be applied!

With quantification, we could have changed the precondition:

No need for a new parameter – in this case…

These parameters are "extraneous"

in the sense that they do not add choice:

We can choose truck and dest (given some constraints);

from is uniquely determined by state + other params!
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67Properties of Objects 6
 What about effects?

 Same ”natural” parameters: The truck and the destination

▪

 ”Natural” effects:

▪ The truck ends up at the destination:

▪ The truck is no longer where it started:

 How do you find out where the truck was before the action?

▪ Using an additional parameter still works:

▪ The value of ?from is constrained in the precondition – before

▪ The value is used in the effect state
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69Alternative Representations

Propositional

(boolean propositions)

Language: PDDL :strips

(if you avoid objects),

…

First-order

(boolean predicates)

Language: PDDL :strips, 

ADL, …

State-variable-based

(non-boolean functions)

Three wide classes of logic-based representations

(general classes, containing many languages!)

Read chapter 2 of the book for another

perspective on representations…
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70Classical and State-Var Representation
 Classical planning with classical representation

 A state defines the values of logical atoms (boolean)

▪

▪

p1
c1
c3 p2

c2

loc1
r1

loc2

 Alternative: Classical with state-variable representation

 A state defines the values of arbitrary state variables

▪

▪

Can be convenient,

space-efficient

 often used internally!

Seems more powerful,

but is equivalent!

Flexible

(earlier color example)

May be wasteful:

A container can never be 

on many robots, which

never happens
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71Classical and State-Var Representation
 Alternative: Classical with state-variable representation

 A state defines the values of arbitrary state variables

▪

▪

No… What if a robot is 

not carrying a container?

 Must define a new type: 

▪

▪
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72Properties of Objects, Revisited
 Back to the "drive" operator…

 ”Natural” parameters: The truck and the destination

▪

 ”Natural” precondition:

▪ There must exist a path between the current location and the destination

▪ Should use the predicate 

▪ State variable representation  can express the location of the truck:

▪ No STS changes are required!
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73State Variable Input?
 Most planners don’t support state variable input

 Partly due to PDDL influence
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74

3 variables, 2^3 values 

1 variable, 3 values

State Variables Internally
 Many convert to state variables internally

 Basic idea:

▪ Make a graph where each ground atom is a node

▪ Find out (somehow!) that certain pairs of ground atoms

cannot occur in the same state (mutually exclusive) – add edges

▪ Each clique (all nodes connected in pairs) can become a new state variable

(why?)
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76Extended Example
 Let’s extend the previous robot example…

 Assume there are only roads between some locations:









 And you can take off anywhere, but only land at A
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77Domain Transition Graphs
 With state variables: domain transition graphs

 For each state variable:

▪ Add a node for each value

▪ Add an edge for each action changing the value

Useful form of domain analysis (as we will see later)


