
jonas.kvarnstrom@liu.se – 2017

Path/Motion Planning:
An overview

Jonas Kvarnström

Automated Planning and Diagnosis Group

Department of Computer and Information Science

Linköping University

2

jo
nk

v@
id

a
jo

nk
v@

id
a

2Path/Motion Planning (1)
 Perhaps the easiest form of path planning / motion planning:

 (1) A robot should move in two dimensions between start and goal

▪ Avoiding known obstacles – or it would be too easy…

Start position

Goal position

3

jo
nk

v@
id

a
jo

nk
v@

id
a

3Path/Motion Planning (2)
 Perhaps the easiest form of path planning / motion planning:

 (2) The robot is holonomic

▪ Informally: Can move in any direction

(possibly by first rotating, then moving)

4

jo
nk

v@
id

a
jo

nk
v@

id
a

4Path/Motion Planning (3)
 Problem: Generating an optimal continuous path is hard!

 Common solution: Divide and conquer

▪ Discretize: Choose a finite number of potential waypoints in the map

▪ Assume there exists a robot-specific local planner

to determine whether one can move between two such waypoints (and how)

▪ Use search algorithms to decide which waypoints to use

Start position

Goal position

Remaining task: choosing potential waypoints + finding a path using them

6

jo
nk

v@
id

a
jo

nk
v@

id
a

6Regular 2D Grid
 The simplest type of discretization: A regular grid

 A robot moves only north, east, south or west

▪ Details are left to the local planner

Start position

Goal position

7

jo
nk

v@
id

a
jo

nk
v@

id
a

7Regular 2D Grid: Real Obstacles
 Real obstacles do not correspond

to square / rectangular cells…

 But we can cover them with cells

Partially covered – can’t be used

Obstacle

Start position

Goal position

8

jo
nk

v@
id

a
jo

nk
v@

id
a

8Regular 2D Grid: Discrete Graph
 View the grid implicitly as a discrete graph

 Assume the local path planner can take us between any neighboring cells

▪ Between blue nodes

▪ No obstacles in the way

▪ Sufficient free space to deal with non-holonomic constraints

9

jo
nk

v@
id

a
jo

nk
v@

id
a

9Regular 2D Grid: Discrete Graph (2)
 Connect start/goal configurations to the nodes in their cells

 Within a cell no obstacles can plan a path using local planner

 Here, the goal is unreachable…

10

jo
nk

v@
id

a
jo

nk
v@

id
a

10Regular 2D Grid: Grid Density
 Grid density matters!

 Here: 4 times as many grid cells

 Better approximation of the true obstacles,

but many more nodes to search

11

jo
nk

v@
id

a
jo

nk
v@

id
a

11Non-Regular Grids
 Alternative: Use non-regular grids

 For example, denser around obstacles

 (Or even non-rectangular cells)

12

jo
nk

v@
id

a
jo

nk
v@

id
a

12Grid Representations
 Space-efficient data structure: quadtree

 Each node keeps track of:

▪ Whether it is completely covered, partially covered or non-covered

 Each non-leaf node has exactly four children

13

jo
nk

v@
id

a
jo

nk
v@

id
a

13Grid Representations
 Can be generalized to 3D (octree), …

15

jo
nk

v@
id

a
jo

nk
v@

id
a

15Regular 2D Grid: Grid Density
 Grid-based methods can result in many nodes

 Even with efficient representation, searching the graph takes time

 Alternative idea: Place nodes depending on obstacles

 Simple case: Known road map

 Model all non-road areas as obstacles,

then add a dense grid?

 Or place a node in each intersection?

16

jo
nk

v@
id

a
jo

nk
v@

id
a

16Visibility Graphs
 Visibility graphs

 Applicable to simple polygons

▪ Nodes at all polygon corners

▪ Edges wherever a pair of nodes can be connected using the local planner

 Mainly interesting in 2D

▪ Optimal in 2D, not in 3D

qinit

qqoal

17

jo
nk

v@
id

a
jo

nk
v@

id
a

17Voronoi Diagrams
 Voronoi diagrams

 Find all points that have the same distance to two or more obstacles

▪ Maximizes clearance (free distance to the nearest obstacle)

 Creates unnecessary detours

 Mainly interesting in 2D –

does not scale well

19

jo
nk

v@
id

a
jo

nk
v@

id
a

19Introduction
 So far, we implicitly assumed:

 If we can draw a line between two waypoints,

the robot can move between the waypoints

 But: How does an airplane fly this path?

We need to introduce

some new concepts…

20

jo
nk

v@
id

a
jo

nk
v@

id
a

20Work Space
 A car moves in a 2-dimensional plane

 The workspace of the car

 Many robots have

a 3-dimensional workspace

21

jo
nk

v@
id

a
jo

nk
v@

id
a

21Configuration Space
 Even a car has 3 physical degrees of freedom (DOF)!

 The configuration space of the car

▪ Location in the plane (𝑥/𝑦),

▪ Angle (𝜃)

 Each DOF is essential!

▪ As part of the goal – park at the correct angle

▪ As part of the solution – must turn the car to get through narrow passages

Motion planning takes place in configuration space:

How do I get from (200, 200, 12°) to (800, 400, 90°)?

22

jo
nk

v@
id

a
jo

nk
v@

id
a

22The Ladder Problem
 The ladder problem is similar

 Move a ladder in a 2D workspace , with 3 physical DOF

 Configuration:

▪ Location in the plane (𝑥/𝑦),

▪ Angle (𝜃)

 Again, each DOF

is essential:

 As part of the goal

▪ We want the ladder to end up

at a specific angle

 As part of the solution

▪ We need to turn the ladder

to get it past the obstacles

23

jo
nk

v@
id

a
jo

nk
v@

id
a

23The Ladder Problem: Controllable DOF
 For ladders, each physical DOF is directly controllable!

 You can:

▪ Change x (translate sideways)

▪ Change y (translate up/down)

▪ Change angle (rotate in place)

 Therefore:

▪ If you want to get from (200, 200, 12°) to (800, 400, 90°),
any path connecting these 3D points

and going through free configuration space

is sufficient

 The ladder is holonomic!

▪ Controllable DOF >= physical DOF

24

jo
nk

v@
id

a
jo

nk
v@

id
a

24Controllable Degrees of Freedom
 For cars, we can control two DOF:

 Acceleration/breaking

 Turning (limited)

 In this parallel parking example:

 There is free space between current and desired configurations

▪ But we can't slide in sideways!

 Fewer controllable DOF than physical DOF non-holonomic

▪ Limits possible curves in 3D configuration space!

25

jo
nk

v@
id

a
jo

nk
v@

id
a

25Work Space, Configuration Space
 Summary of important concepts:

 Work space: The physical space in which you move

▪ 3-dimensional for this robot arm

 Configuration space:

The set of possible configurations of the robot

▪ Usually continuous

▪ Often many-dimensional

(one dimension per physical DOF)

▪ Will often be visualized in 2D for clarity

 We have to search

in the configuration space!

▪ Connect configurations, not waypoints

26

jo
nk

v@
id

a
jo

nk
v@

id
a

26Searching the Configuration Space
 Divide and Conquer!
 Local path planner

▪ Determines whether two configurations
can be connected with a path, and how

▪ Considers vehicle-specific constraints

 High-level path planner

▪ Generates configurations

▪ Uses plug-in local planner to determine
if the configurations can be connected

▪ For each specific problem, uses search
to determine which intermediate
configurations to use

27

jo
nk

v@
id

a
jo

nk
v@

id
a

27Low-Dimensional Problems
 In low-dimensional problems:

 The high-level planner could use a grid

▪ Car: 3-dim configuration space

▪ Example: 4 angles considered per spatial location

(0, 0, 0º)

(0, 0, 90º)

(0, 0, 180º)

(0, 0, 270º)

(1, 0, 0º)

(1, 0, 90º)

(1, 0, 180º)

(1, 0, 270º)

(0, 1, 0º)

(0, 1, 90º)

(0, 1, 180º)

(0, 1, 270º)

(1, 1, 0º)

(1, 1, 90º)

(1, 1, 180º)

(1, 1, 270º)

(2, 0, 0º)

(2, 0, 90º)

(2, 0, 180º)

(2, 0, 270º)

(2, 1, 0º)

(2, 1, 90º)

(2, 1, 180º)

(2, 1, 270º)

28

jo
nk

v@
id

a
jo

nk
v@

id
a

28Local Planner (1)
 Ask local planner: "Can I connect these configurations"?

Try to connect red arrows:

The local planner might say

"Sorry, too complex"

 have to go through

intermediate configs…

Divide and conquer:

Local planner should be fast,

the rest is handled through

the high-level planner

Why not make the local

planner smarter?

29

jo
nk

v@
id

a
jo

nk
v@

id
a

29Local Planner (2)
 Local planner also considers obstacles

Obstacle here

Local planner says "no"

(Go through other points

instead of directly)

30

jo
nk

v@
id

a
jo

nk
v@

id
a

30High-Dimensional Problems
 For an aircraft, a configuration could consist of:

 location in 3D space (𝑥/𝑦/𝑧)

 pitch angle

 yaw angle

 roll angle

 A path is:

 a continuous curve in 6-dimensional configuration space

avoiding obstacles

and obeying constraints on how the aircraft can turn

▪ Can make tighter turns at low speed

▪ Can’t fly at arbitrary pitch angles

▪ …

31

jo
nk

v@
id

a
jo

nk
v@

id
a

31High-Dimensional Problems (2)
 For a robot arm, a configuration could consist of:

▪ The position / angle of each joint

 A path is a continuous curve in n-dimensional configuration space

(all joints move continuously to new positions, without “jumping”),

avoiding obstacles and obeying constraints on joint endpoints etc.

 Typical goal: Reach inside the car you are painting / welding,

without colliding with the car itself

32

jo
nk

v@
id

a
jo

nk
v@

id
a

32High-Dimensional Problems (3)
 Moving in tight spaces, again…

33

jo
nk

v@
id

a
jo

nk
v@

id
a

33High-Dimensional Problems (4)
 For a humanoid robot, a configuration could consist of:

▪ Position in x/y space

▪ The position of each joint

 The Nao robot:

▪ 14, 21 or 25 degrees of freedom

depending on model

▪ Up to 25-dimensional motion planning!

 Grid methods generally do not scale

▪ 25-dimensional configuration space,

with 1000 cells in each direction:

1075 cells…

34

jo
nk

v@
id

a
jo

nk
v@

id
a

34High-Dimensional Problems (5)
 Honda Asimo: 57 DOF

We can often omit some DOF

from planning…

But then we don't use

the robot's full capabilities!

35

jo
nk

v@
id

a
jo

nk
v@

id
a

35Alpha Puzzle: Narrow Passages

37

jo
nk

v@
id

a
jo

nk
v@

id
a

37Preliminaries: Coverage Domain
 Given a configuration q in the free config space:

 A particular local planner can connect it to a set of other configs

 Called the coverage domain 𝐷 𝑞 – generally an infinite set

Obstacle

Obstacle

D(q)

q

Example: Simple 2D planning,

local planner uses straight lines…

Can connect q to

any config in the green area

Can’t connect q to

any other points

38

jo
nk

v@
id

a
jo

nk
v@

id
a

38Preliminaries: Preprocessing
 Preprocessing: Suppose we can select configurations so that:

 Their domains cover the entire config space

 The configs can be connected

Obstacle

Obstacle
Incomplete

so far…

(Imagine many obstacles, hundreds or thousands of configurations,

many dimensions…)

39

jo
nk

v@
id

a
jo

nk
v@

id
a

39Preliminaries: Solving
 Solving: We get…

 Start configuration 𝑞start
▪ Connect to another configuration

▪ Must be possible:

The domains of the existing configurations covered the entire space

 Goal configuration 𝑞goal

▪ Connect…

 Find a path

through the graph!
Obstacle

Obstacle

S

G

40

jo
nk

v@
id

a
jo

nk
v@

id
a

40Preliminaries: Coverage Domains are Implicit
 Problem: We can’t calculate the coverage domain D(q)

 Local planner answers ”can you connect 𝑞1 with the specific config 𝑞2?

 Computing ”all the configurations you can connect 𝑞1 to”:

▪ High-dimensional spaces (57D???)

▪ Complex motion constraints,

not just physical obstacles

▪ Too computationally complex,

even if finite

▪ Usually infinitely many possibilities

41

jo
nk

v@
id

a
jo

nk
v@

id
a

41Preliminaries: Probabilistic Methods
 Solution: Probabilistic methods

 Given a set of configurations 𝑄 = {𝑞1, … , 𝑞𝑛}:

▪ Don’t compute

ራ

𝑞∈𝑄

𝐷(𝑞)

▪ Directly compute

𝑃 ራ

𝑞∈𝑄

𝐷 𝑞 covers entire free configuration space

▪ Or:

𝑃 if you pick a random config, it belongs toራ

𝑞∈𝑄

𝐷 𝑞

▪ Add configurations until probability is sufficiently high

42

jo
nk

v@
id

a
jo

nk
v@

id
a

42Probabilistic Roadmaps
 Probabilistic Roadmaps (PRM): Construction Phase

▪

Obstacle

Obstacle

A new config here

would not be added!

43

jo
nk

v@
id

a
jo

nk
v@

id
a

43PRM: Sufficient Coverage
 When do you have sufficient coverage?

 Suppose you have tested 𝑛 configurations in a row

without being able to add one to the road map

 Then the roadmap covers the free config space

with probability 1 −
1

n

▪ Example: 𝑛 = 1000 coverage with 99.9% probability

 Why generate randomly? Why don't we create a non-covered config?

 Many dimensions, complex connectivity

 This way: No need to explicitly calculate

coverage domains!

 Construction phase done in advance

 Road map reused for many queries

Obstacle

Obstacle

44

jo
nk

v@
id

a
jo

nk
v@

id
a

44PRM: Node Placement
 Node placement is random but not always uniform

 Can be biased towards difficult areas

The "obstacles" above are "obstacles" in configuration space!

45

jo
nk

v@
id

a
jo

nk
v@

id
a

45PRM: Protein Folding
 (Second example was from a protein folding application…)

46

jo
nk

v@
id

a
jo

nk
v@

id
a

46PRM: Query Phase
 Query Phase:

start

goal

start

goal

Add and connect start and

goal configs to the roadmap

(should be possible, as we

have good coverage)

start

goal

A* search

47

jo
nk

v@
id

a
jo

nk
v@

id
a

47PRM: Result

Visualized i 2D

Could be 25D

Limit permitted

edge length

denser map

48

jo
nk

v@
id

a
jo

nk
v@

id
a

48PRM: Properties
 Properties:

 Scales better to higher dimensions

 Deterministically incomplete, probabilistically complete

▪ The more configurations you create,

the greater the probability that a path can be found if possible

(approaching 1.0)

50

jo
nk

v@
id

a
jo

nk
v@

id
a

50Graph Search (1)
 Given a discretization, how do we find a path?

 One option: Heuristic search using A*

▪ Heuristics in simple geometric paths: Manhattan distance (4 directions),

Chebyshev distance (moving in 8 directions),

Euclidian distance (in general), …

▪ Other heuristics in complex configuration spaces

51

jo
nk

v@
id

a
jo

nk
v@

id
a

51Graph Search (2)
 Suppose new obstacles are detected during execution

 A*: Update map and replan from scratch

▪ Inefficient

 D* (Dynamic A*): Informed incremental search

▪ First, find a path using information about known obstacles

▪ When new obstacles are detected:

▪ Affected nodes are returned to the OPEN list, marked as RAISE:

More expensive than before

▪ Incrementally updates only those nodes whose cost change

due to the new obstacles

 Focused D*:

▪ Focuses propagation towards the robot – additional speedup

 …

52

jo
nk

v@
id

a
jo

nk
v@

id
a

52Graph Search (3)
 Anytime algorithms:

 Return some path quickly, then incrementally improve it

 ”Repeated weighted A*” (standard technique)

▪ Run A* with 𝑓 𝑛 = 𝑔 𝑛 +𝑊 ⋅ ℎ(𝑛), where 𝑊 > 1: Faster but suboptimal

▪ Decrease 𝑊 and repeat

▪ Has to redo search from scratch in each run!

 Anytime Repairing A*

▪ Like ”repeated weighted A*”, but reuses search results from earlier iterations

 Anytime Dynamic A* (AD*)

▪ Both replanning when problems change

and anytime planning

 …

54

jo
nk

v@
id

a
jo

nk
v@

id
a

54Suboptimal Paths
 Paths are often suboptimal in the continuous space

 Only the chosen points in the cells are used

 In this example: The midpoints

55

jo
nk

v@
id

a
jo

nk
v@

id
a

55Smoothing
 Paths can be improved through smoothing after generation

 Still generally does not lead to optimal paths

 This is just a simple example, where smoothing is easy

56

jo
nk

v@
id

a
jo

nk
v@

id
a

56Open Motion Planning Library
 Want to experiment?

 Open Motion Planning Library

 http://ompl.kavrakilab.org/index.html

http://ompl.kavrakilab.org/index.html

