
Documentation for JSHOP2

Okhtay Ilghami
Department of Computer Science

University of Maryland
College Park, MD 20742

USA
okhtay@cs.umd.edu

Technical Report CS-TR-4694

May 9, 2006

Contents

1 Introduction 2

2 Notations Used in This Document 2

3 The JSHOP2 Formalism 3
3.1 Symbols . 3
3.2 Terms . 4

3.2.1 List Terms . 4
3.2.2 Call Terms . 4

3.3 Logical Atoms . 5
3.4 Logical Expressions . 5

3.4.1 Conjunctions . 5
3.4.2 Disjunctions . 5
3.4.3 Negations . 5
3.4.4 Implications . 6
3.4.5 Universal Quantifications 6
3.4.6 Assignments . 6
3.4.7 Call Expressions . 7

3.5 Logical Precondition . 7
3.5.1 First Satisfier Precondition 7
3.5.2 Sorted Precondition . 7

3.6 Axioms . 8
3.7 Task Atoms . 8
3.8 Task Lists . 8
3.9 Operators . 9
3.10 Methods . 11
3.11 Planning Domain . 12
3.12 Planning Problem . 12
3.13 Plans . 12
3.14 Miscellaneous Points . 13

4 Plan Generation Process 14

5 Internal Technical Information 17
5.1 Internal Knowledge Structures 17

5.1.1 Substitutions . 17
5.1.2 States and Satisfiers . 18

5.2 Formal Semantics . 20
5.2.1 Semantics of Operators 20
5.2.2 Semantics of Methods . 21
5.2.3 Semantics of Plans . 25

A Implementing and Calling External Functions 27

1

B Implementing Comparator Functions to Be Used with Sorted
Preconditions 27

C Syntax Differences with SHOP2 28

1 Introduction

This document presents the design and implementation details of JSHOP2.
JSHOP2 is the Java implementation of SHOP2 (Simple Hierarchical Ordered
Planner). The algorithms of SHOP2 and its predecessor SHOP have originally
been designed by Professor Dana S. Nau, and implemented, maintained and
updated by the entire SHOP research group. For more information on SHOP
and SHOP2 algorithms see [2, 3].

Significant portions of this document are copied from the previous SHOP and
SHOP2 documentations with minor modifications and adjustments to reflect the
Java implementation. Previous documentations are included in the SHOP and
SHOP2 distributions, and are authored and maintained by the entire SHOP
team.

JSHOP2 is a domain-independent planning system based on ordered task
decomposition, a modified version of HTN planning that involves planning for
tasks in the same order that they will later be executed. JSHOP2 has the
following characteristics:

• JSHOP2 knows the current state of the world at each step of the planning
process.

• It has large expressive power. For example, in the preconditions of oper-
ators and methods it can do mixed symbolic/numeric computations and
execute calls to external programs.

• JSHOP2 can be used to create very efficient domain-specific planning al-
gorithms. The JSHOP2 software distribution includes several examples of
such domain algorithms.

• JSHOP2 incorporates many features from PDDL, e.g., support for quan-
tifiers and conditional effects in methods and operators.

• JSHOP2 allows the combination of partially ordered tasks through the use
of the :unordered keyword.

2 Notations Used in This Document

In order to differentiate some words or expressions in the text, the following
conventions are used:

• Boldface is used to indicate that a term is being defined. For example:

2

An axiom list is a list of axioms intended to represent what we
can infer from a state.

• Typewriter characters are used to write computer code, or refer to the
variables in the code. For example:

(call <= 7 (call + 5 3))

• Italic characters refer to special words or symbols. For example:

Let a be a logical atom.

• Square brackets indicate that a parameter or keyword is optional. For
example, in the following form, the namei’s are optional parameters and
thus the form is still valid if any of the namei’s are missing:

(:- a [name1] L1 [name2] L2 . . . [namen] Ln)

3 The JSHOP2 Formalism

The inputs to JSHOP2 are a planning domain and a planning problem. Planning
domains are composed of operators, methods, and axioms. Planning problems
are composed of logical atoms (an initial state) and task lists (high-level actions
to perform).

The components of a planning domain (operators, methods, and axioms)
all involve logical expressions. These logical expressions combine logical atoms
through a variety of forms (e.g., conjunction, disjunction). Logical atoms involve
a predicate symbol plus a list of terms. Task lists in planning problems are
composed of task atoms. The components of domains and problems are all
ultimately defined by various symbols.

This section describes each of the aforementioned structures. It is organized
in a bottom-up manner because the specification of higher-level structures is
dependent on the specification of lower-level structures. For example, methods
are defined after logical expressions because methods contain logical expressions.

3.1 Symbols

In the structures defined below, there are five kinds of symbols: variable symbols,
constant symbols, primitive task symbols, compound task symbols, and function
symbols. Each symbol can consist of only letters, digits, question marks, excla-
mation points, hyphens and underlines. To distinguish among these symbols,
JSHOP2 uses the following conventions:

• A variable symbol can be any symbol whose name begins with a question
mark (such as ?x or ?hello-there).

3

• A primitive task symbol can be any symbol whose name begins with
an exclamation point (such as !unstack or !putdown).

• A constant symbol, a predicate symbol, or a compound task sym-
bol can be any symbol whose name begins with a letter or an underline.

• A function symbol can be any valid Java identifier.

Note that JSHOP2 keywords can not be used as symbols.
Any of the structures defined in the remaining sections are said to be ground

if they contain no variable symbols.

3.2 Terms

A term is any one of the following:

• A variable symbol.

• A constant symbol.

• A number.

• A list term.

• A call term.

3.2.1 List Terms

A list term is a term having the form

(t1 t2 . . . tn [. L])

where each ti is a term. This specifies that t1, t2 . . . , and tn are the items of a
list. The last optional element is added for backward compatibility with SHOP
and SHOP2 (which are written in LISP), and represents the cdr part of a cons
cell. If you do not know LISP, suffice to remember that the last parameter
should usually evaluate to a list, and in such case it will represent the rest of
the list after tn.

3.2.2 Call Terms

A call term is an expression of the form

(call f t1 t2 . . . tn)

where f is either a function symbol or a built-in JSHOP2 function (such as +)
and each ti is a term. A call-term has a special meaning to JSHOP2, because it
tells JSHOP2 that f is an attached procedure, i.e., that whenever JSHOP2 needs
to evaluate any structure where a call term appears, JSHOP2 should replace
the call term with the result of applying the function f on the arguments t1, t2,
. . . , and tn. For example, the following call term would have the value 6:

4

(call + (call + 1 2) 3)

JSHOP2 replaces a call term with its equivalent as soon as it is possible to
evaluate the call term during the planning process (i.e., as soon as the call term
becomes ground as a result of binding its variables).

Some of the most common functions are built into the JSHOP2 code, but
this does not restrict the users to define whatever function they need and then
call those functions within the input of JSHOP2. For more information on how
to write external functions for JSHOP2 and call them in a JSHOP2 domain, see
Appendix A.

3.3 Logical Atoms

A logical atom has the form:

(p t1 t2 . . . tn)

where p is a predicate symbol and each ti is a term.

3.4 Logical Expressions

A logical expression is a logical atom or any of the following complex expres-
sions: conjunctions, disjunctions, negations, implications, universal quantifica-
tions, assignments, or call expressions.

3.4.1 Conjunctions

A conjunction has the form

([and] [L1 L2 . . . Ln])

where each Li is a logical expression. Note that if there are 0 conjuncts (e.g.,
the expression is (), or equivalently, nil) then the form always evaluates to true.

3.4.2 Disjunctions

A disjunction has the form

(or L1 L2 . . . Ln)

where each Li is a logical expression.

3.4.3 Negations

A negation is an expression of the form

(not L)

where L is a logical expression.

5

(:operator (!drive ?t ?c1 ?c2)
(forall (?p) (package ?p) (in ?p ?t))
((at ?t ?c1))
((at ?t ?c2))

)

Figure 1: Example of usage of the forall keyword in a logical expression.

3.4.4 Implications

An implication is an expression of the form

(imply Y Z)

where Y and Z are logical expressions. The intent of an implication is to evaluate
its logical counterpart; that is, ¬Y ∨ Z. Note that here, Y should be ground when
this logical expression is being evaluated, or the semantics of the implication
will be ambiguous.

3.4.5 Universal Quantifications

A universal quantification expression is an expression of the form

(forall V Y Z)

where Y and Z are logical expressions, and V is the list of variables in Y. The
intent of a universal quantification expression is to satisfy that, for each possible
substitution u for variables in V, if Yu is satisfied then Zu must also be satisfied
in the current state of the world. Note that this use of the keyword forall is
distinct from its use in add and delete lists in operators (see Subsection 3.9);
the latter is used to express a set of effects rather than a logical expression and
consequently has a different syntax. Figure 1 shows an example of usage of
the forall keyword in a logical expression. The operator !drive which is used to
represent driving a truck from one city to another, first checks if all the packages
are loaded into the truck as its precondition.

3.4.6 Assignments

An assignment expression has the form

(assign v t)

where v is a variable symbol and t is a term. The intent of an assignment
expression is to bind the value of t to the variable symbol v.

6

3.4.7 Call Expressions

A call expression has the same form as a call term, but semantically, its value
is interpreted as true (anything but an empty list) or false (an empty list, or
equivalently nil).

3.5 Logical Precondition

A logical precondition is either a logical expression or either one of the fol-
lowing two special precondition forms: first satisfier precondition, or sorted pre-
condition.

3.5.1 First Satisfier Precondition

A first satisfier precondition has the form

(:first L)

where L is a logical expression. Such a precondition causes JSHOP2 to consider
only the first set of bindings that satisfies L. Alternative bindings will not be
considered even if the first bindings found do not lead to a valid plan.

3.5.2 Sorted Precondition

A sorted precondition has the form

(:sort-by v [f] L)

where v is a variable symbol, f is the name of a class that implements Java’s Com-
parator interface, or a built-in comparison function (there are two such functions,
< and >), and L is a logical expression. Such a precondition causes JSHOP2 to
consider bindings for the precondition in a specific order. Specifically, bindings
are sorted such that if the specified comparison function holds between values
x and y then bindings that bind v to x may not occur after bindings that bind
v to y. For example consider the precondition:

(:sort-by ?d > (and (at ?here) (distance ?here ?there ?d)))

This precondition will cause JSHOP2 to consider bindings in decreasing
(high to low) order of the value of ?d. If the comparison function f is omitted,
it defaults to <, indicating increasing (low to high) order.

For more information on how to write user-defined comparator functions for
JSHOP2 and call them in a JSHOP2 domain, see Appendix B.

7

(:- (walking-distance ?x)
good
((weather-is good) (distance home ?x ?d) (call <= ?d 2))
bad
((distance home ?x ?d) (call <= ?d 1))

)

Figure 2: A sample axiom.

3.6 Axioms

An axiom is an expression of the form

(:- a [name1] L1 [name2] L2 . . . [namen] Ln)

where the axiom’s head is the logical atom a, and its tail is the list [name1] L1

[name2] L2 . . . [namen] Ln, and each Li is a logical precondition and each namei is a
symbol called the name of Li. The names of the expressions are optional. When
a domain definition is loaded into JSHOP2, a unique name will be generated
for each branch if no name was given. These names have no semantic meaning
to JSHOP2, but are provided to help the user debug domain descriptions. The
intended meaning of an axiom is that a is true if L1 is true, or if L1 is false but
L2 is true, . . . , or if all of L1, L2, . . . Ln−1 are false but Ln is true. For example,
the axiom in Figure 2 says that a location is in walking distance if the weather
is good and the location is within two miles of home, or if the weather is not
good and the location is within one mile of home.

3.7 Task Atoms

A task atom is an expression of the form

([:immediate] s t1 t2 . . . tn)

where s is a task symbol and the arguments t1, t2, . . . , and tn are terms. The
task atom is primitive if s is a primitive task symbol, and it is compound if
s is a compound task symbol. A task atom without an :immediate keyword is
called an ordinary task atom while a task atom with that keyword is called
an immediate task atom. The purpose of the :immediate keyword is to give a
higher priority to the task, as described in the following subsection.

3.8 Task Lists

A task list is either a task atom or an expression of the form:

([:unordered] [tasklist1 tasklist2 . . . tasklistn])

8

where tasklist1, tasklist2, . . . , and tasklistn are task lists themselves. Note that
here, n can be zero, resulting in an empty task list.

If there is no :unordered keyword in a task list, it means that JSHOP2 must
perform the task lists in the order that they are given. The :unordered keyword
specifies that there is no particular ordering specified between tasklist1, tasklist2,
. . . , and tasklistn. With the use of the :unordered keyword, JSHOP2 may inter-
leave tasks between different task lists. Suppose we have two task lists as the
following:

T = (t1 t2 . . . tm)
U = (u1 u2 . . . un)

and that we have the main task list

M = (:unordered T U)

If none of the tasks have the :immediate keyword, then the tasks in T should
be performed in the order given, and the tasks in U should also be performed
in the order given, but it is permissible for JSHOP2 to interleave the tasks of
T and the tasks of U. However, if some of the tasks are immediate, then each
time JSHOP2 chooses the next task to accomplish, it needs to give a higher
priority to the immediate tasks. For example, if t1 is immediate and u1 is not
immediate, then JSHOP2 should perform t1 before both t2 and u1.

Note that a task with the :immediate keyword specifies that this task must
be performed immediately when it has no predecessors. Therefore, we can
allow only one task with the :immediate keyword in the list of tasks that have
no predecessors at any given point during the planning process. Otherwise,
JSHOP2’s behavior on those tasks is undefined. For instance, in the above
example, t1 and u1 cannot both have the :immediate keyword.

3.9 Operators

An operator has the following form:

(:operator h P D A [c])

where:

• h (the operator’s head) is a primitive ordinary task atom (i.e., a non-
immediate task atom with a task symbol that begins with an exclamation
point).

• P (the operator’s precondition) is a logical precondition. P can contain
any variable symbols that can be either in h or not, provided that there
can be at most one satisfier for P in the current state at any given point
in the planning process.

• D (the operator’s delete list) is a list each of the elements of which may
be any of the following:

9

(:operator (!drive-to ?truck ?old-loc ?location)
()
((at ?truck ?old-loc))
((at ?truck ?location) (:protection (at ?truck ?location)))

)

(:operator (!pick-up ?truck ?package ?location)
()
((at ?package ?location) (:protection (at ?truck ?location)))
((in ?package ?truck))

)

Figure 3: Sample operators that use protection conditions.

– a logical atom that can contain only variable symbols that appear
either in h or in P.

– a protection condition that can contain only variable symbols that
appear either in h or in P.

– an expression of the form (forall V Y Z), where V is a list of variables
in Y, Y is a logical expression, and Z is a list of logical atoms that
contain no variable symbols other than those in h, P, or V.

• A (the operator’s add list) is a list of elements that have the same form
as the elements of D.

• c (the operator’s cost) is a term. If c is omitted, its default value is 1.

In the above definition, a protection condition is an expression of the
form

(:protection a)

where a is a logical atom. The purpose of a protection condition in the add
list is to tell JSHOP2 that it should not execute any operator that deletes a.
The purpose of a protection condition in the delete list is to cancel a previously
added protection condition. For example, if we drive a delivery truck to a
certain location in order to pick up a package, then we might not want to allow
the truck to be moved away from that location until after we have picked up
the package. To represent this, we might use the operators in Figure 3. The
:immediate keyword is particularly useful to enforce ordering constraints when
using unordered task lists.

Since several operators might want to protect the same atom, the way pro-
tection conditions are implemented is that each protected atom has a counter

10

associated with it, and every time an operator has that particular protection
condition in its add list, that counter is increased by one, and whenever an op-
erator has that protection condition in its delete list, the counter is decreased by
one. An atom can not be deleted by an operator unless its associated protection
counter is zero.

As noted above, the head of the operator is a primitive task atom, so it
must begin with a primitive task symbol, i.e., a symbol that begins with an
exclamation point. Note that operator names which begin with two exclamation
points have a special meaning in JSHOP2; operators of this sort are known as
internal operators. Internal operators are ones which are used for purposes
internal to the planning process and are not intended to correspond to actions
performed in the plan (e.g., to do some computation which will later be useful in
deciding what actions to perform). Other than requiring two exclamation points
at the start of the name, the syntax and the semantics for internal operators
are identical to those of other operators. JSHOP2 handles internal operators
exactly the same way as ordinary operators during planning. JSHOP2 includes
these operators in any plans that it returns at the end of execution. The primary
reason that the internal operator syntax exists in JSHOP2 is so that automated
systems which use JSHOP2 plans as an input can easily distinguish between
those operators which involve action and those which were merely internal to
the planning process.

3.10 Methods

A method is a list of the form

(:method h [name1] L1 T1 [name2] L2 T2 . . . [namen] Ln Tn)

where:

• h (the method’s head) is a compound ordinary task atom (i.e., a non-
immediate task atom that starts with a compound task symbol).

• Each Li (a precondition for the method) is a logical precondition.

• Each Ti (a tail of the method) is a task list.

• Each namei is the name for the succeeding (Li Ti) pair. These names
are optional and if omitted a unique name will be assigned for each pair.
These names have no semantic meaning to JSHOP2, but are provided in
order to help the user debug domain descriptions.

A method indicates that the task specified in the method’s head can be
performed by performing all of the tasks in one of the method’s tails when that
tail’s precondition is satisfied. Note that the preconditions are considered in
the given order, and a later precondition is considered only if all of the earlier
preconditions can not be satisfied. If there are multiple methods for a given

11

(:method (eat ?food)
branch1
(have-fork ?fork)
((!eat-with-fork ?food ?fork))
branch2
(have-spoon ?spoon)
((!eat-with-spoon ?food ?spoon))

)

(:method (eat ?food)
(have-fork ?fork)
((!eat-with-fork ?food ?fork))

)

(:method (eat ?food)
(and (not (have-fork ?fork))

(have-spoon ?spoon)
)
((!eat-with-spoon ?food ?spoon))

)

Figure 4: The code on the left hand side is semantically equivalent to the code
on the right hand side.

task available at some point in time, all of these methods may be considered
regardless of order.

Figure 4 shows an example of two semantically equivalent ways to write
methods. In both the code on the left hand side and the code on the right hand
side, the !eat-with-spoon operator may be performed only if the (have-spoon
?spoon) is satisfied and (have-fork ?fork) is not satisfied.

3.11 Planning Domain

A planning domain has the form

(defdomain domain-name (d1 d2 . . . dn))

where domain-name is a symbol and each item dj is one of the following: an
operator, a method, or an axiom.

3.12 Planning Problem

A planning problem has the form

(defproblem problem-name domain-name ([a1,1 a1,2 . . . a1,n]) T1 . . . ([am,1

am,2 . . . am,n]) Tm)

where problem-name and domain-name are symbols, each ai,j is a ground logical
atom, and each Ti is a task list. This form defines m planning problems in
domain domain-name each of which may be solved by addressing the tasks in Ti

with the initial state defined by the atoms ai,1 through ai,n.

3.13 Plans

A plan is a list of heads of ground instances of the operators in a given domain.
If p = (h1 h2 . . . hn) is a plan and S is a state, then p(S) is the state produced

12

(:operator (!!assert ?a)
nil
nil
?a

)

(:operator (!!del-protection ?p)
nil
((:protection ?p))
nil

)

Figure 5: Examples of on-the-fly creation of JSHOP2 structures.

by starting with S and executing o1, o2, . . . , and on in the order given. The
cost of the plan p is the total cost of each of oi’s.

3.14 Miscellaneous Points

• JSHOP2 input (i.e., planning domains and planning problems) is generally
not case-sensitive. The only exception to this rule is discussed in Appendix
A.

• The reserved word nil can replace an empty list anywhere in the JSHOP2
input that an empty list is allowed.

• Spaces, tabs, and enters are ignored by JSHOP2. Also, anything in a line
that follows a “;” is considered to be comment and is ignored.

• On-the-fly creation of two JSHOP2 structures is allowed, meaning that
these structures can be simply defined as variable symbols in the input, but
as planning process proceeds, these variables are supposed to be mapped
to values that represent those structures. These two structures are logical
atoms and operator delete or add lists. Figure 5 shows an example. There,
variable symbol ?a is supposed to be later (before the application of the
operator, of course) mapped to a list of logical atoms that represents the
items in the !!assert operator’s add list. The variable symbol ?p is supposed
to be mapped to a logical atom, the one that the !!del-protection operator
is going to unprotect.

13

Domain Description

Methods
Operators

Axioms
Logical Expressions

Domain-Independent Templates

Method Templates
Operator Templates

Axiom Templates
Loigcal Expression Templates

SHOP2 Algorithm Template

Domain-Specific Planner

Method Implementation
Operator Implementation

Axiom Implementation
Logical Expression Impl.

Domain Specific Algorithm

Problem

Initial State
Task List

Solution Plan

Sequence of Actions

Compile

Run

Figure 6: Compilation Process

4 Plan Generation Process

So far, most of the existing hand-tailorable planners (general-purpose planners
that allow the users to feed them with domain-specific information on how to
look for a plan) have been interpreters of their input (i.e., a general purpose
program that can interpret different inputs and act accordingly). JSHOP2,
however, is a compiler of its domain description, meaning that it compiles a given
domain description to a domain-specific planner, and then runs that planner to
solve the planning problems in that domain. Figure 6 shows this process. There
are two reasons why we have chosen to implement JSHOP2 this way:

• There are certain optimizations that can be done only by taking advantage
of the information in the domain description and producing code tailored
for that particular domain description, rather than using a general purpose
approach. For example, to handle a list that can have different sizes in
different domain descriptions in a general purpose piece of code, we will
need a list data structure. However, if we compile a domain specific piece
of code for a domain where we know this list has size 2, then we can use
an array of size 2 in the code instead, making the code more efficient. For
more technical details about this approach, see [1].

• It is easier this way to implement external code calls and comparator func-
tions in a Java implementation of SHOP2, given how rigorously-typed Java
is (As opposed to LISP, the language SHOP2 was originally implemented
in, where data and code are essentially the same thing, and therefore it is
easier to have code calls in SHOP2’s data structures).

Therefore, each class in the JSHOP2 source can be a compile-time class (i.e.,
a class that JSHOP2 uses at compile time to keep track of its data structures),
a run-time class (i.e., a class that is used at run time to find plans), or both.
Figure 7 shows the relationship between these two groups of classes. For more
information on the internals of JSHOP2 classes see the HTML documentation
in the JSHOP2 distribution (doc/index.html).

14

CompileTimeObject

InternalElement (1)

InternalDomain

InternalMethod (3)

InternalAxiom (2)

InternalOperator (4)

LogicalExpression (5)

LogicalExpressionAssignment (6)

LogicalExpressionAtomic (7)

LogicalExpressionCall (8)

LogicalExpressionConjunction

LogicalExpressionDisjunction

LogicalExpressionNegation (9)

LogicalExpressionNil (10)
LogicalPrecondition

DomainElement (1) Method (3)

 Operator (4)

Axiom (2)

DelAddElement

DelAddAtomic

DelAddForAll

DelAddProtectionList

Term

TermConstant

TermList

TermVariable

TermNumber

TermCallPredicate

TaskAtom

TaskList

Standard Library:

StdLib
CalculateDiv

CalculateEqual
CalculateLess

CalculateLessEq
CalculateMember
CalculateMinus
CalculateMore

CalculateMoreEq
CalculateMult

CaclulateNotEq
CalculatePlus

CalculatePower

Domain

InternalVars

JSHOP2

MyIterator

NumberedPredicate

State

Precondition (5)

PreconditionAssign (6)

PreconditionAtomic (7)

PreconditionCall (8)

PreconditionNegation (9)

PreconditionNil (10)

Figure 7: The class hierarchy in JSHOP2. Rectangles represent run time classes,
rectangular ovals represent compile time classes, and ovals represent classes that
are used both at compile and run time. Compile and run time classes that have
the same number are corresponding to eachother.

15

To compile domain descriptions into executable Java code, JSHOP2 uses
ANTLR software1. The JSHOP2 grammar is fed to ANTLR, which in turn
compiles the domain and problem descriptions written in that grammar into
Java code (The grammar can be found in src/JSHOP2/JSHOP2.g).

Solving a planning problem in JSHOP2 is done in three steps:

• First, the domain description should be compiled into Java code. This is
done by this command-line command:

java JSHOP2.InternalDomain InputFileName

The result of this command will be a Java file (named after the domain
name in the input domain description) that contains a class (with the same
name) that implements the functionality of the input JSHOP2 domain.

• Second, the problem descriptions should be compiled into Java code. This
is done by one of these three command-line commands:

java JSHOP2.InternalDomain -r InputFileName
Or
java JSHOP2.InternalDomain -rSomeInteger InputFileName
Or
java JSHOP2.InternalDomain -ra InputFileName

The result of these commands will be a Java file (named after the prob-
lem name in the input problem description) that contains a class (with the
same name) that implements the functionality of the input JSHOP2 plan-
ning problems. The first of the above three commands creates a class that
returns only the first plan found for each of the input planning problems,
the second one returns at most SomeInteger plans for each problem, and
the last one returns all of the valid plans for the input planning problems.
Note that in the last case, it is the user’s responsibility to make sure that
there are only a tractable number of solution plans for each of the input
planning problems.

• Third, the Java file produced in the previous step should be compiled and
run. When this file is run, it will find the plan(s) for the input planning
problem(s) and print it/them.

For more information on how to install, compile, and run JSHOP2, see the
README file in the JSHOP2 distribution.

1See www.antlr.org for more information.

16

5 Internal Technical Information

This section presents information about the internal workings of the JSHOP2
planning process. Note that this section is primarily of interest to planning
researchers and planning system developers. Most JSHOP2 users (especially
beginning users) are advised to skip this section.

5.1 Internal Knowledge Structures

The following JSHOP2 internal knowledge structures must be defined in order
to fully specify the semantics of plan generation in JSHOP2.

5.1.1 Substitutions

A substitution is an array with one element for each variable symbol in the
current scope.2 Each element corresponding to any given such variable is NULL
if the variable is not bound to anything by this substitution, or is the term to
which that variable is mapped.

If e is an expression and u is a substitution, then the substitution instance
eu is the expression produced by starting with e and replacing each occurrence
of each variable symbol with its corresponding term in u.

If d and e are two expressions, then:

• d is a generalization of e if e is a substitution instance of d.

• d is a strict generalization of e if d is a generalization of e but e is not
a generalization of d.

• d and e are equivalent if each is a generalization of the other.

If u and v are two substitutions, then:

• u is a generalization of v if for every expression e, eu is a generalization
of ev.

• u is a strict generalization of v if for every expression e, eu is a strict
generalization of ev.

• u and v are equivalent if for every expression e, eu and ev are equivalent.

If d and e are expressions and there is a substitution u such that du = eu,
then d and e are unifiable and u is a unifier for them. A unifier of d and e is
a most general unifier (or mgu) of d and e if it is a generalization of every
unifier of d and e. Note that all mgu’s for d and e are equivalent.

2The scope of the variables in JSHOP2 is limited to the method, axiom or operator they
appear in, meaning that ?x in a method is different from ?x in another method or in an axiom
or in an operator or in another instance of the same method.

17

5.1.2 States and Satisfiers

A state is a list of ground atoms intended to represent some state of the world.
A logical expression L is a consequent of a state S and an axiom list X if one
of the following is true:

• L is an atom in S.

• There exists a substitution v and an axiom

(:- a [name1] L1 [name2] L2 . . . [namen] Ln)

in X such that L = av; and one of the following holds:

– Lv
1 is a consequent of S and X.

– Lv
1 is not a consequent of S and X, but Lv

2 is a consequent of S and X.

– . . .

– None of Lv
1, Lv

2, . . . , or Lv
n−1 is a consequent of S and X, but Lv

n is a
consequent of S and X.

• L is a ground expression of the form

(call p t1 t2 . . . tn)

and the evaluation of p with arguments t1, t2, . . . , and tn returns a non-nil
(i.e., anything other than an empty list) value.

• L is an expression of the form

(not L’)

and the logical expression L’ is not a consequent of S and X.

• L is an expression of the form

(assign v t)

where v is a variable symbol and t is a term. The value of t is a substitution
of v. This term is always a consequent of S and X.

• L is an expression of the form

([and] [L1 L2 . . . Ln])

where L1, L2, . . . , and Ln are logical expressions such that each Li is a con-
sequents of S and X. Note that by definition, an empty logical expression
is a consequent of any state and any axiom list.

• L is an expression of the form

18

(or L1 L2 . . . Ln)

where L1, L2, . . . , and Ln are logical expressions, and at least one expression
in this list is a consequent of S and X.

• L is an expression of the form

(forall V Y Z)

where Y and Z are logical expressions and V is the list of variables in Y
such that for every satisfier u that satisfies Y in S and X, u also satisfies Z
in S and X.

• L is an expression of the form

(imply Y Z)

where Y and Z are logical expressions such that if Y is a consequent of S
and X then Z is also a consequent of S and X.

If L is a consequent of S and X, then it is a most general consequent of S
and X if there is no strict generalization of L that is also a consequent of S and
X.

Let S be a state, X be an axiom list, and L be a logical expression. If there
is a substitution u such that Lu is a consequent of S and X, then we say that S
and X satisfy L and that u is the satisfier. The satisfier u is a most general
satisfier (or mgs) if there is no other satisfier that is a strict generalization of
u. Note that L can have multiple nonequivalent mgs’s. For example, suppose X
contains the walking distance axiom given earlier, and S is the state

((weather-is good)
(distance home convenience-store 1)
(distance home supermarket 2)

)

then for the atom (walking-distance ?y), there are two mgs’s from S and X: One
that maps ?y to convenience-store, and one that maps ?y to supermarket.

Let S be a state, X be an axiom list, and L = (:first L’) be a first satisfier
precondition. If S and X satisfy L’, then the most general satisfier (or mgs) for
L from S and X is the first mgs for L’ that would be found by a left-to-right
depth-first search. For example, if S and X are as in the previous example, then
for the first satisfier precondition (:first (walking-distance ?y)), the mgs from S
and X is the one that maps ?y to convenience-store.

19

5.2 Formal Semantics

Recall that a plan is a list of operator invocations and that an operator has an
add list and a delete list. Informally, the meaning of the plan is that the specified
operators are performed in sequence. Similarly, the meaning of the operator is
that the assertions in the add list are added to the state and the assertions in
the delete list are removed from the state. The meaning of a method is that
when the method’s precondition is satisfied, the task specified in the method’s
head can be performed by performing each of the tasks specified in the method’s
tail.

This subsection elaborates these informal notions, presenting detailed formal
semantics of operators and plans. It is of particular use to anyone who has a
JSHOP2 domain and wishes to prove theorems (e.g., correctness, completeness,
etc.) regarding plans generated in that domain.

5.2.1 Semantics of Operators

The intent of an operator is to specify that the task h can be accomplished at
a cost of c, by modifying the current state of the world to remove every logical
atom in D and add every logical atom in A if P is satisfied in the current state.

Let S be a state, X be the list of axioms, L be the list of protected condi-
tions, t be a primitive task atom, and o be a planning operator whose head,
precondition, delete list, add list, and cost are h, P, D, A, and c, respectively.
Suppose that there is an mgu u for t and h, such that Pu is satisfied in S and X
with mgs v (There should be at most one such mgs, or otherwise the semantics
of the operator will be ambiguous), and none of the ground atoms in (Du)v are
in the list of protected conditions. Then we say that (ou)v is applicable to t,
and that (hu)v is a simple plan for t. If S is a state, then the state and the
protection list produced by executing (ou)v (or equivalently, (hu)v) in S and L is
the new state and protected condition list:

(S’, L’) = result(S, L, (hu)v) = result(S, L, (ou)v)

where S’ and L’ are obtained by modifying the current state of the world and
the list of protected conditions as follows:

• Remove every logical atom in (Du)v from the current state.

• Decrease the protection counter for every protection condition in (Du)v.

• For every expression

(forall V Y Z)

in (Du)v and every satisfier w such that S and X satisfy Yw, remove every
logical atom in Zw from the current state.

• For every expression

20

(forall V Y Z)

in (Du)v and every satisfier w such that S and X satisfy Yw, decrease the
protection counter for every protection condition in Zw.

• Add every logical atom in (Au)v to the current state.

• Increase the protection counter for every protection condition in (Au)v.

• For every expression

(forall V Y Z)

in (Au)v and every satisfier w such that S and X satisfy Yw, add every
logical atom in Zw to the current state.

• For every expression

(forall V Y Z)

in (Au)v and every satisfier w such that S and X satisfy Yw, increase the
protection counter for every protection condition in Zw.

Figure 8 shows an example of an operator being applied. Figure 9 shows
another example of an operator that uses the forall keyword.

5.2.2 Semantics of Methods

The purpose of a method is to specify the following:

• If the current state of the world satisfies L1, then h can be accomplished
by performing the tasks in T1 in the order given.

• Otherwise, if the current state of the world satisfies L2, then h can be
accomplished by performing the tasks in T2 in the order given.

• . . .

• Otherwise, if the current state of the world satisfies Ln, then h can be
accomplished by performing the tasks in Tn in the order given.

Let S be a state, X be an axiom list, t be a compound task atom (which may
or may not be ground), and m be the method:

(:method h [name1] L1 T1 [name2] L2 T2 . . . [namen] Ln Tn)

Suppose there is an mgu u that unifies t with h and suppose that m has a
precondition Li such that S and X satisfy Lu

i (If there is more than one such
precondition, then let Li be the first such precondition). Then we say that m is
applicable to t in S and X, with the active precondition Li and the active tail
Ti. Then the result of applying m to t is the following set of task lists:

R = {(Tu
i)

v: v is an mgs for Lu
i from S and X}

Each task list r in R is called a simple reduction of t by branch i of m in
S and X. Figure 10 shows an example.

21

S ((has-money john 40) (has-money mary 30))

T (!set-money john 40 35)

O (:operator (!set-money ?person ?old ?new)
((has-money ?person ?old))
((has-money ?person ?old))
((has-money ?person ?new))

)

u ((?person → john) (?old → 40) (?new → 35))

v ()

(ou)v (:operator (!set-money john 40 35)
((has-money john 40))
((has-money john 40))
((has-money john 35))

)

(hu)v (!set-money john 40 35)

Result(S, (hu)v) ((has-money john 35) (has-money mary 30))

Result(S, (ou)v) ((has-money john 35) (has-money mary 30))

Figure 8: An example of an operator being applied.

22

S ((location l1) (location l2) (location l3) (truck-at truck1 l1))

T (!clear-locations)

O (:operator (!clear-locations)
()
((forall (?l) ((location ?l) (not (truck-at ?t ?l)))

((location ?l))
)

)
()

)

u ()

v ()

(ou)v (:operator (!clear-locations)
()
((forall (?l) ((location ?l) (not (truck-at ?t ?l)))

((location ?l))
)

)
()

)

(hu)v (!clear-locations)

Result(S, (hu)v) ((location l1) (truck-at truck1 l1))

Result(S, (ou)v) ((location l1) (truck-at truck1 l1))

Figure 9: An example of an operator with forall keyword.

23

S ((has-money john 40) (has-money mary 30))

X ()

t (transfer-money john mary 5)

M (:method (transfer-money ?p1 ?p2 ?amount)
((has-money ?p1 ?m1)
(has-money ?p2 ?m2)
(call >= ?m1 ?amount)

)
((!set-money ?p1 ?m1 (call - ?m1 ?amount))
(!set-money ?p2 ?m2 (call + ?m2 ?amount))

)
)

u ((?p1 → john) (?p2 → mary) (?amount → 5))

hu (transfer-money john mary 5)

Lu
1 ((has-money john ?m1) (has-money mary ?m2) (call >= ?m1 5))

Tu
1 ((!set-money john ?m1 (call - ?m1 5))

(!set-money mary ?m2 (call + ?m2 5))
)

v ((?m1 → 40) (?m2 → 30))

(Lu
1)

v ((has-money john 40) (has-money mary 30) (call >= 40 30))

(Tu
1)

v ((!set-money john 40 35) (!set-money mary 30 35))

Figure 10: A sample method.

24

if t is a primitive task, then
(S’, L’) = result(S, L, t);
M’ = the task list produced by removing t from M

else t is a compound task, then
S’ = S;
L’ = L;
Suppose m is an applicable method to t in S, with unifier u, the active

precondition Li and the active tail Ti.
M’ = the task list produced by replacing t in M with a simple reduction of

t by branch i of m in S.
endif

Figure 11: Task reduction

5.2.3 Semantics of Plans

Recall that a planning domain contains axioms, operators, and methods, and
that a planning problem is a 4-tuple (S, M, L, D), where S is a state, M is a task
list, L is a protection list, and D is a domain representation. Let T be the list
of tasks in M that have no predecessor (i.e., those tasks that can be performed
at this time if they are applicable). If t is a task in T, and S is a state, then
a reduction of t in S and D with respect to M and L that results in a new
planning problem (S’, M’, L’, D) is defined in Figure 11.

If P = (p1 p2 . . . pn) is a plan, then we say that P solves (S, M, L, D), or
equivalently, that P achieves M from S in D (we will omit the phrase “in D” if
the identity of D is obvious) in any of the following cases:

• Both M and P are empty.

• T = (t1 t2 . . . tk) is a list of tasks in M that have no predecessor for which
there is a task ti that has the :immediate keyword and is applicable to the
current state S. Let (S’, M’, L’) = reduction(ti, S, M, L). We say P solves
(S, M, L, D) if either of the following is true:

– ti is primitive and p1 = ti and (p2 p3 . . . pn) solves (S’, M’, L’, D).

– ti is not primitive, and P solves (S’, M’, L’, D).

• T = (t1 t2 . . . tk) is a list of tasks in M that have no predecessor, where ti
is a task in T that is applicable to the current state S. Let (S’, M’, L’) =
reduction(ti, S, M, L). We say P solves (S, M, L, D) if either of the following
is true:

– ti is primitive and p1 = ti and (p2 p3 . . . pn) solves (S’, M’, L’, D).

25

S ()

M (do-both op1 op2)

T ((do-both op1 op2))

L ()

D ((:operator (!do ?operation) () () ((did ?operation)))
(:method (do-both ?x ?y)

()
((!do ?x) (!do ?y))

)
(:method (do-both ?x ?y)

()
((!do ?y) (!do ?x))

)
)

P1 ((do op1) (do op2))

P2 ((do op2) (do op1))

Figure 12: A sample planning problem.

– ti is not primitive, and P solves (S’, M’, L’, D).

The planning problem (S, M, L, D) is solvable if there is a plan that solves
it. For example, in Figure 12, P1 and P2 are the only plans that solve (S, M, L,
D).

Acknowledgments

This work was supported in part by the following grants and contracts: NSF
IIS0412812 and Air Force Research Laboratory F30602-00-2-0505. The opinions
expressed in this document are those of the authors and do not necessarily reflect
the opinions of the funders.

We would also like to acknowledge the use of compiler generator software
ANTLR (www.antlr.org) in JSHOP2 system.

26

A Implementing and Calling External Functions

External functions in JSHOP2 can be used in call terms. Several of these func-
tions are built in the JSHOP2 code. However, users are free to implement their
own functions and call them in their domains as long as they follow these steps:

• Create a class that implements Java interface Calculate (included in JSHOP2
code). The name of this class must be what user would like to use to in-
voke this function call from a domain. For example, a Java class named
CheckNull will be used whenever a statement of the form (call CheckNull
. . .) is evaluated in a JSHOP2 domain.

• Implement the call function in the created class. This function has one
parameter of the type List (which represents a list of terms), and returns
a Term.

• Now the user can use call terms like (call CheckNull . . .) in the domain.
When evaluating this call term, JSHOP2 will invoke the call function in
the CheckNull class. Note that it is user’s responsibility to make sure that
arguments in the call term are the ones that the Java function expects.

Note that the only places where JSHOP2 domains are case-sensitive are these
user-defined code calls, since these identifiers are compiled directly to Java code
(which is case-sensitive). For instance, in the above example, the letters of
CheckNull must be of the same case in the code call.

Here is a list of built-in code calls in JSHOP2. They can be used directly in
the domain description without any additional Java implementation: <, <=,
=, >, >=, !=, +, -, *, /, ˆ, and Member.

For more information on the way these built-in functions are implemented
and work, and also the Calculate interface, see the HTML documentation of
JSHOP2 (doc/index.html) in the JSHOP2 distribution. To see examples of use
of both built-in and user-defined code calls, see the examples in the examples
directory of JSHOP2 distribution.

One important point to remember when implementing an external code call
is that, for efficiency purposes, no matter how many call terms call a specific
external code call, there will be only one object of the corresponding class repre-
senting all those call terms. Therefore, data members in such classes should be
avoided, since they are shared by all the corresponding call terms in the domain.

B Implementing Comparator Functions to Be
Used with Sorted Preconditions

A comparator function is a function that can be used to sort a list of symbols.
There are two built-in comparator functions in JSHOP2, that can only be used
with lists of numerical symbols: < and >. However, it is possible to implement
user-defined comparator functions. In order to do so, the user needs to define a

27

class with the same name as the comparator function that implements the Java
Comparator interface. This interface requires that a compare(Object o1, Object
o2) function be implemented. In this case, the two objects o1 and o2 are of
type Term[], which represents a binding as an array of terms. Moreover, this
comparator class must have a constructor that accepts one parameter of type
int. This is the index of the variable according to the value of which the sorting
should take place (i.e., the index of the elements of o1 and o2 that should be
used to compare those two bindings).

For more information on the way comparators are implemented and work,
see the HTML documentation of JSHOP2 (doc/index.html) in the JSHOP2 dis-
tribution for classes CompLess and CompMore (the two classes that implement
the two built-in comparator functions). To see examples of use of both built-
in and user-defined comparators, see the examples in the examples directory of
JSHOP2 distribution.

C Syntax Differences with SHOP2

Here is a list of syntax differences with SHOP2:

• In SHOP2, the operator precondition can be omitted. This is not the case
with JSHOP2.

• The range of possible symbol names in JSHOP2 is not as large as in
SHOP2 (See Subsection 3.1 for more details).

• Keywords :task, :ordered, and list are not supported anymore in JSHOP2
(They are all optional in SHOP2, so this does not decrease the expressive
power of JSHOP2).

• eval terms are not allowed in JSHOP2. Also, all the structures that SHOP2
has kept for backward-compatibility only (such as make-problem and make-
domain) are dropped in JSHOP2.

• There are several restrictions on where the call terms can not appear in
SHOP2. There are no such restrictions in JSHOP2. Call terms may
appear anywhere any other term may appear.

• The first satisfier precondition syntax in JSHOP2 is a little bit different
from that of SHOP2. In JSHOP2, it is (:first L) where L is a logical
expression, while in SHOP2 it is (:first L1 L2 . . . Ln) where each Li is a
logical expression. In terms of expressive power, both forms are equal,
but the former is more intuitive.

• Arbitrary LISP expressions can appear in two places in SHOP2: Assign-
ment expressions and operator costs. These are replaced by arbitrary
terms in JSHOP2. Also, in the sorted precondition syntax, the LISP ex-
pression is replaced with a user-defined or built-in comparison function.

28

• The syntax for the defproblem command allows for defining several plan-
ning problems in one expression in JSHOP2. This is not allowed in
SHOP2.

References

[1] Okhtay Ilghami and Dana S. Nau. A general approach to synthesize problem-
specific planners. Technical Report CS-TR-4597, Department of Computer
Science, University of Maryland, October 2003.

[2] D. S. Nau, Y. Cao, A. Lotem, and H. Muñoz-Avila. SHOP: Simple hierar-
chical ordered planner. In Proceedings of the Sixteenth International Joint
Conference on Artificial Intelligence, pages 968–973. AAAI Press, 1999.

[3] Dana S. Nau, Héctor Muñoz-Avila, Y. Cao, A. Lotem, and S. Mitchell.
Total-order planning with partially ordered subtasks. In Proceedings of the
Seventeenth International Joint Conference on Artificial Intelligence, Seat-
tle, WA, August 2001.

29

