
5 keywords to save your
life
Or at least your programming experience

Eric Elfving

Department of Computer and Information Science
Linköping University

1 const
2 default and delete
3 virtual and override
4 auto
5 Smart pointers

2 / 38

You might think that you are perfect, but as a human
you will make mistakes! When programming C++,
const exists to catch many of your mistakes.

3 / 38

Create a function with the following contract:

Input: a vector<int>
Output: the smallest number

4 / 38

int smallest(vector<int> v)
{

sort(begin(v), end(v));
return v.front();

}

+ Simple, easy to read implementation

+ Uses standard algorithms

- ?

5 / 38

int smallest(vector<int> const & numbers)
{

sort(begin(numbers), end(numbers));
return numbers.front();

}

• const gives compile-time error
g++:
error: assignment of read-only location

• const works as documentation

• const helps us fulfill our contract

5 / 38

int smallest(vector<int> const & numbers)
{

sort(begin(numbers), end(numbers));
return numbers.front();

}

• const gives compile-time error

• const works as documentation

• const helps us fulfill our contract

5 / 38

int smallest(vector<int> const & numbers)
{

sort(begin(numbers), end(numbers));
return numbers.front();

}

• const gives compile-time error

• const works as documentation

• const helps us fulfill our contract

6 / 38

int smallest(vector<int> const & numbers)
{

assert(numbers.size() > 0);
return *min_element(begin(numbers), end(numbers));

}

• assert to check preconditions

• Dereferencing okay since we "know" that there are
elements in numbers

7 / 38

class Bad_Vector
{
public:

size_t size()
{

return arr.size();
}
int operator[](size_t idx) const
{

#if defined DEBUG
assert(idx < size());

#endif
return arr[idx];

}
void push(int i)
{

arr.push_back(i);
}

private:
vector<int> arr;

};
int main()
{

Bad_Vector v;
v.push(12);
cout << v[0] << endl;

}

8 / 38

• Works fine when compiling as usual

• Gives
error: passing ‘const Bad_Vector’ as
‘this’ argument discards qualifiers
when compiling with -DDEBUG

• Calling a non-const function from a const function
(or any const environment) is forbidden.

8 / 38

• Works fine when compiling as usual

• Gives
error: passing ‘const Bad_Vector’ as
‘this’ argument discards qualifiers
when compiling with -DDEBUG

• Calling a non-const function from a const function
(or any const environment) is forbidden.

8 / 38

• Works fine when compiling as usual

• Gives
error: passing ‘const Bad_Vector’ as
‘this’ argument discards qualifiers
when compiling with -DDEBUG

• Calling a non-const function from a const function
(or any const environment) is forbidden.

1 const
2 default and delete
3 virtual and override
4 auto
5 Smart pointers

10 / 38

Whenever you create a class type (class, struct or
union), you will get a set of special member functions;

• Default constructor

• Destructor

• Copy and move constructor

• Copy and move assignment operator

11 / 38

Default constructor

If there is no user-declared constructor for class X, a
constructor having no parameters is implicitly declared
as defaulted. […] The default constructor will be
deleted if:

• it has a non-static data member that is const or
reference that is missing an default member
initializer

• it has a subobject (member or base) without
default constructor

• it has a subobject with a missing destructor

(adapted from §12.1/4)

12 / 38

Each non-static data member of type T (without
initializer) will be default-initialized:

• If T is a class type, the default constructor is called.

• If T is an array type, each element is
default-initialized.

• Otherwise, no initialization is performed.

§8.5/7

13 / 38

Destructor

If a class has no user-declared destructor, a destructor
is implicitly declared as defaulted. A defaulted
destructor for a class X is defined as deleted if:

• X has a subobject with missing destructor

§12.4/4-5

14 / 38

Destructor

After executing the body of the destructor […] , a
destructor for class X calls the destructors for X’s […]
data members [and] the destructors for X’s direct base
classes […]. Bases and members are destroyed in the
reverse order of the completion of their constructor
§12.4/8

15 / 38

Copy and move constructor

A constructor for class X taking a first argument of
(possibly cv-qualified) type X & and either there are no
other parameters or else all other parameters have
default arguments is a copy constructor.
Type X && gives move constructor.
§12.8/2-3

16 / 38

If the class definition does not explicitly declare a copy
constructor, one is declared implicitly. If the class
definition declares a move constructor or move
assignment operator, the implicitly declared copy
constructor is defined as deleted; otherwise, it is
defined as defaulted
§12.8/7

17 / 38

If the definition of a class X does not explicitly declare a
move constructor, one will be implicitly declared as
defaulted iff

• X does not have a user-declared copy constructor,

• X does not have a user-declared copy assignment
operator,

• X does not have a user-declared move assignment
operator, and

• X does not have a user-declared destructor.

§12.8/9

18 / 38

A defaulted copy/ move constructor for a class X is
defined as deleted if X has:

• a potentially constructed subobject type M that
cannot be copied/moved because of a missing
constructor or an ambiguity,

• any potentially constructed subobject of a type
with a destructor that is deleted or inaccessible
from the defaulted constructor, or,

• for the copy constructor, a non-static data member
of rvalue reference type.

§12.8/11

19 / 38

The implicitly-defined copy/move constructor for a
non-union class X performs a memberwise copy/move
of its bases and members.
§12.8/15

20 / 38

Copy and move assignment operators

The rules for generating these members mimic the
rules for the corresponding constructor quite well. The
exact rules can be found in §12.8/19-30

21 / 38

Back to topic...

To remove a generated special member function, use
delete. To get a special member function that would
be removed according to these rules, use default:
class Y
{
public:

Y(int); // removes default constructor
Y() = default;
Y(Y const &) = delete; // removes move constructor
Y(Y&&) = default;

};

22 / 38

default can only be used with special member
functions. delete is usually used with special member
functions, but can be used in other situations as well:
struct Z
{

static void * operator new(size_t) = delete;
};

• Removes possibility of allocating objects on heap

23 / 38

struct Foo
{

Foo(int);

template <typename T>
Foo(T const &) = delete;

};

• Gives access to a constructor taking int but not
types convertible to int

• Works because of overload resolution

24 / 38

Overload resolution of template functions

1. if there is a normal function that exactly matches
the call, that function is selected, else

2. if a function template can be instantiated to exactly
match the call, that specialization is selected, else

3. if type conversion can be applied to the arguments,
allowing a normal function to be used as a unique
best match, that function is selected, else

4. overload resolution fails – either no function
matches the call, or the call is ambiguous

1 const
2 default and delete
3 virtual and override
4 auto
5 Smart pointers

26 / 38

Polymorphic behavior does infer a runtime cost⇒ it is
not available by default!
There are two requirements to get polymorphic
behavior; a pointer or reference to a base class and
virtual functions.

27 / 38

struct Base
{

virtual void foo() const { cout << "Base::foo" << endl; }
void bar() const { cout << "Base::bar" << endl; }

};

struct Derived : public Base
{

void foo() const override { cout << "Derived::foo" << endl; }
void bar() { cout << "Derived::bar" << endl; }

};

void fun(Base const & b) // remember the &, otherwise you get slicing
{

b.foo();
b.bar();

}

int main()
{

Base b;
Derived d;
fun(b);
fun(d);

}

28 / 38

Printout:

Base::foo
Base::bar
Derived::foo
Base::bar

bar is not virtual - Base::bar is called.

29 / 38

override is not needed, but will help you if there are
errors in your code:
struct B
{

virtual void fun() const {}
int size() const {}

};
struct D: B
{

void fun() override {}
int size() const override {}

};

g++:
error: void D::fun() marked override, but does not
override
error: void D::size() marked override, but does not
override

30 / 38

Abstract class

To get an abstract class, at least one function has to be
pure virtual.
struct Foo
{

virtual bar() = 0;
};

Forbids definition of a Foo object. A derived class has
to implement (override) bar to be a concrete class

31 / 38

One VERY important rule: If you are working with
dynamic memory allocation of a polymorphic class
hierarchy, ALWAYS define a virtual destructor at base
level (can be defaulted).
Otherwise your program is undefined (if you delete a
base-class pointer).

32 / 38

OOP is a great tool, but don't overuse it! Use the tool
that fits your problem.

1 const
2 default and delete
3 virtual and override
4 auto
5 Smart pointers

34 / 38

auto is great, use it!

• Guarantees that your variable is initialized

• Removes unnecessary conversions

• You get the correct type; now and if stuff changes

• Easier than hard-to-write types

35 / 38

// C++98 C++14 C++17
int x = 5; auto x {5};
double d = 3.3; auto d {3.3};
// narrowing conversion
int y = d; auto y = int(d);

// int{d} to get error

int fun(); auto fun() -> int;
int foo() { ... } auto foo() { ... }

map<const char, int>::
const_iterator cit = m.begin();

auto cit { cbegin(m) };

pair<int, int> p(2, 4); auto p {make_pair(2, 4)}; auto p {pair{2, 4}};

1 const
2 default and delete
3 virtual and override
4 auto
5 Smart pointers

37 / 38

Not really a keyword, but if you do need pointer
behavior and want to represent ownership - prefer
usage of smart pointers shared_ptr or unique_ptr
instead of regular pointers!
Regular pointers is still okay to use - just don't use them
to represent ownership (see CppCoreGuidelines R.30).

https://github.com/isocpp/CppCoreGuidelines/blob/master/CppCoreGuidelines.md#Rr-smartptrparam

38 / 38

shared_ptr<Base> factory(std::string const & name)
{

auto args = /* some initializer */;
if (name == "d1")

return make_shared<d1>(args);
auto d = make_shared<d2>(args);
if (/* some check */)

throw exception{};
return d;

}

void handle_resource(Base * b)
{

if (!b)
cout << "No resource";

else
b->do_stuff();

}

void get_resource(unique_ptr<Base> p); // take ownership of p

www.liu.se

www.liu.se

	|const|
	|default| and |delete|
	|virtual| and |override|
	|auto|
	Smart pointers

