
What does the compiler
actually do with my code?
An introduction to the C++ ABI

Filip Strömbäck

1 Introduction
2 What is an ABI?
3 Object layout
4 Function calls
5 Virtual functions
6 Exceptions

What does the compiler actually do with my code? Filip Strömbäck 2

The topic for today

How are parts of C++ realized on x86 and AMD64?
• Object layout
• Function calls
• Virtual function calls
• Exceptions

What does the compiler actually do with my code? Filip Strömbäck 3

Why?

If you know the implementation...
• ...you can reason about the efficiency of your solution
• ...you can see why some things are undefined
behaviour

• (...you can abuse undefined behaviour and do really
strange things)

Note: Everything discussed here is highly system specific,
and most likely undefined behavior according to the
standard!

What does the compiler actually do with my code? Filip Strömbäck 4

How?

• Read the assembler output from the compiler!
• g++ -S -masm=intel <file> or cl /FAs <file>
• objdump -d -M intel <program>
• In a debugger
• Compiler Explorer

• Figure out why it does certain things:
• OSDev Wiki (https://wiki.osdev.org/)
• System V ABI (https:

//www.uclibc.org/docs/psABI-x86_64.pdf)
• x86 instruction reference

(http://ref.x86asm.net/)
• Lots of tinkering and thinking!

https://wiki.osdev.org/
https://www.uclibc.org/docs/psABI-x86_64.pdf
https://www.uclibc.org/docs/psABI-x86_64.pdf
http://ref.x86asm.net/

1 Introduction
2 What is an ABI?
3 Object layout
4 Function calls
5 Virtual functions
6 Exceptions

What does the compiler actually do with my code? Filip Strömbäck 6

What is an ABI (Application Binary Interface)?

Specifies how certain aspects of a language are realized on
a particular CPU
Language specification + ABI ⇒ compiler
Specifies:
• Size of built-in types
• Object layout
• Function calls (calling conventions)
• Exception handling
• Name mangling
• ...

What does the compiler actually do with my code? Filip Strömbäck 7

Different systems use different ABIs

There are two major ABIs:
• System V ABI (Linux, MacOS on AMD64)
• Microsoft ABI (Windows)

Variants for many systems:
• x86
• AMD64
• ARM
• ...

1 Introduction
2 What is an ABI?
3 Object layout
4 Function calls
5 Virtual functions
6 Exceptions

What does the compiler actually do with my code? Filip Strömbäck 9

Integer types and endianness

char a{0x08};
short b{0x1234}; // = 4660
int c{0x00010203}; // = 66051
long d{0x1101020304}; // = 73031353092

What does the compiler actually do with my code? Filip Strömbäck 9

Integer types and endianness

char a{0x08};
short b{0x1234}; // = 4660
int c{0x00010203}; // = 66051
long d{0x1101020304}; // = 73031353092

08a:

12 34b:

00 01 02 03c:

00 00 00 11 01 02 03 04d:Bi
g
en
di
an

(A
RM

)

What does the compiler actually do with my code? Filip Strömbäck 9

Integer types and endianness

char a{0x08};
short b{0x1234}; // = 4660
int c{0x00010203}; // = 66051
long d{0x1101020304}; // = 73031353092

08a:

34 12b:

03 02 01 00c:

04 03 02 01 11 00 00 00d:Li
ttl
e
en
di
an

(x
86

)

What does the compiler actually do with my code? Filip Strömbäck 10

The type system

The type system is not present in the binary! It just helps
us to keep track of how to interpret bytes in memory!

struct foo {
int a, b, c;

};

foo x{1, 2, 3};
int y[3] = {1, 2, 3};
short z[6] = {1, 0, 2, 0, 3, 0};

All look the same in memory!

What does the compiler actually do with my code? Filip Strömbäck 11

Other types

• Each type has a size and an alignment
• Members are placed sequentially, respecting the
alignment

Example:

struct simple {
int a{1};
int b{2};
int c{3};
long d{100};
int e{4};

};

a b
c padding

d
e padding

1 Introduction
2 What is an ABI?
3 Object layout
4 Function calls
5 Virtual functions
6 Exceptions

What does the compiler actually do with my code? Filip Strömbäck 13

Starting simple – x86

eax
ecx

edx
ebx
esp

ebp
esi
edi

Registers Stack
Low

High

Stack frame

What does the compiler actually do with my code? Filip Strömbäck 14

The default on x86 – cdecl

int fn(int a, int b, int c);

int main() {
int r = fn(1, 2, 3);

}

push 3
push 2
push 1
call fn
add esp, 12
mov "r", eax

fn – locals
return address

1
2
3

main – locals

What does the compiler actually do with my code? Filip Strömbäck 15

The default on x86 – cdecl

struct large { int a, b; };
int fn(large a, int b);
int main() {

large z{ 1, 2 };
int r = fn(z, 3);

}

push 3
sub esp, 8
;; initialize z at esp
call fn
add esp, 12
mov "r", eax

fn – locals
return address

z

3
main – locals

What does the compiler actually do with my code? Filip Strömbäck 16

The default on x86 – cdecl

struct large { int a, b; };
int fn(large &a, int b);
int main() {

large z{ 1, 2 };
int r = fn(z, 3);

}

push 10
lea eax, "z"
push eax
call fn
add esp, 8
mov "r", eax

fn – locals
return address

&z
3

main – locals

What does the compiler actually do with my code? Filip Strömbäck 17

The default on x86 – cdecl

struct large { int a, b; };
large fn(int a);

int main() {
large z = fn(10);

}

push 10
lea eax, "z"
push eax
call fn
add esp, 8

fn – locals
return address

10
result address
main – locals

What does the compiler actually do with my code? Filip Strömbäck 17

The default on x86 – cdecl

struct large { int a, b; };
large *fn(large *result, int a);

int main() {
large z = fn(10);

}

push 10
lea eax, "z"
push eax
call fn
add esp, 8

fn – locals
return address

10
result address
main – locals

What does the compiler actually do with my code? Filip Strömbäck 18

More advanced – AMD64 (SystemV)

This is where the fun begins!

What does the compiler actually do with my code? Filip Strömbäck 18

More advanced – AMD64 (SystemV)

rax
rcx

rdx
rbx
rsp

rbp
rsi
rdi

r8
r9
r10
r11
r12
r13
r14
r15

RegistersStack
Low

High

Stack frame

What does the compiler actually do with my code? Filip Strömbäck 18

More advanced – AMD64 (SystemV)

rax
rcx

rdx
rbx
rsp

rbp
rsi
rdi

r8
r9
r10
r11
r12
r13
r14
r151

2

3
4

5
6

RegistersStack
Low

High

Stack frame

What does the compiler actually do with my code? Filip Strömbäck 19

Rules (simplified)

1. If a parameter has a copy constructor or a destructor:
• Pass by hidden reference

2. If a parameter is larger than 4*8 bytes
• Pass in memory

3. If a parameter uses more than 2 integer registers
• Pass in memory

4. Otherwise
• Pass in appropriate registers (integer/floating-point)

What does the compiler actually do with my code? Filip Strömbäck 20

AMD64 (SystemV)

int fn(int a, int b, int c);

int main() {
int r = fn(1, 2, 3);

}

mov edi, 1
mov esi, 2
mov edx, 3
call fn
mov "r", rax

rdi rsi rdx rcx r8 r9 rax

1 2 3 r

What does the compiler actually do with my code? Filip Strömbäck 21

AMD64 (SystemV)

struct large { int a, b; };
int fn(large a, int b);
int main() {

large z{ 1, 2 };
int r = fn(z, 3);

}

mov rdi, "z"
mov rsi, 3
call fn
mov "r", rax

rdi rsi rdx rcx r8 r9 rax

z 3 r

What does the compiler actually do with my code? Filip Strömbäck 22

AMD64 (SystemV)

struct large { long a, b; };
int fn(large a, long b);
int main() {

large z{ 1, 2 };
int r = fn(z, 3);

}

mov rdi, "z"
mov rsi, 3
call fn
mov "r", rax

rdi rsi rdx rcx r8 r9 rax

z.a z.b 3 r

What does the compiler actually do with my code? Filip Strömbäck 23

AMD64 (SystemV)

struct large { long a, b, c; };
int fn(large a, long b);
int main() {

large z{ 1, 2, 3 };
int r = fn(z, 4);

}

push "z.c"
push "z.b"
push "z.a"
mov rdi, 3
call fn
mov "r", rax

rdi rsi rdx rcx r8 r9 rax

stackz
3 r

What does the compiler actually do with my code? Filip Strömbäck 24

AMD64

struct large { /*...*/ };
int fn(large a, long b);
int main() {

large z{ 1, 2 };
int r = fn(z, 3);

}

;; Copy z into z'
lea rdi, "z'"
mov rsi, 3
call fn
mov "r", rax

large is not trivially copiable, has a destructor or a vtable

rdi rsi rdx rcx r8 r9 rax

&z' 3 r

What does the compiler actually do with my code? Filip Strömbäck 25

AMD64 (SystemV)

struct large { int a, b; };
int fn(large &a, int b);
int main() {

large z{ 1, 2 };
int r = fn(z, 3);

}

lea rdi, "z"
mov rsi, 3
call fn
mov "r", rax

rdi rsi rdx rcx r8 r9 rax

&z 3 r

What does the compiler actually do with my code? Filip Strömbäck 26

AMD64 (SystemV)

struct large { int a, b; };
large fn(int a);

int main() {
large z = fn(10);

}

mov rdi, 10
call fn
mov "z", rax

rdi rsi rdx rcx r8 r9 rax

10 z

What does the compiler actually do with my code? Filip Strömbäck 27

AMD64 (SystemV)

struct large { long a, b; };
large fn(int a);

int main() {
large z = fn(10);

}

mov rdi, 10
call fn
mov "z", rax
mov "z"+8, rdx

rdi rsi rdx rcx r8 r9 rax

10 z.az.b

What does the compiler actually do with my code? Filip Strömbäck 28

AMD64 (SystemV)

struct large { long a, b, c; };
large fn(int a);

int main() {
large z = fn(10);

}

mov rdi, 10
call fn
mov "z", rax
mov "z"+8, rdx

rdi rsi rdx rcx r8 r9 rax

&z 10 &z

What does the compiler actually do with my code? Filip Strömbäck 29

Conclusions

• Passing primitives by value is cheap
• Passing simple types by value is cheap (sometimes
cheaper than passing multiple parameters)
• As long as they are trivially copiable and destructible
• As long as they are below about 4 machine words or

about 64 bytes
• Returning small simple types by value is cheap on
AMD64, even without RVO

• Types that are not trivially copiable are more
cumbersome: pass them by reference

1 Introduction
2 What is an ABI?
3 Object layout
4 Function calls
5 Virtual functions
6 Exceptions

What does the compiler actually do with my code? Filip Strömbäck 31

Scenario

struct base {
virtual ~base() = default;

int data{0x1020};

virtual void fun(int x) = 0;
};

void much_fun(base &x) {
x.fun(100);

}

How do we know what to call here?

What does the compiler actually do with my code? Filip Strömbäck 32

Virtual function tables – vtables (SystemV)

Idea: Put some type info in the objects!
This is called a virtual function table or vtable:

Offset Symbol
0 derived::~derived()
8 derived::~derived()
16 derived::fun(int)

Note: More complex for multiple and virtual inheritance!

What does the compiler actually do with my code? Filip Strömbäck 32

Virtual function tables – vtables (SystemV)

Idea: Put some type info in the objects!
This is called a virtual function table or vtable:

Offset Symbol
0 derived::~derived() doesn’t call delete
8 derived::~derived() calls delete

16 derived::fun(int)

Note: More complex for multiple and virtual inheritance!

What does the compiler actually do with my code? Filip Strömbäck 33

Virtual dispatch

void much_fun(base &x) {
x.fun(100);

}

mov rdi, "x" ; Put x in a register
mov rax, [rdi] ; Read vtable
mov rax, [rax+16] ; Read slot #2
mov rsi, 100 ; Add parameter
call [rax] ; Call the function

What does the compiler actually do with my code? Filip Strömbäck 34

Pointers to members (SystemV)

Function pointers are fairly straight forward... What about
pointers to members?

plain_ptr x = &MyClass::static_member;
member_ptr y = &MyClass::normal_member;
member_ptr z = &MyClass::virtual_member;

Let’s look at their sizes:
sizeof(x) == ?;
sizeof(y) == ?;
sizeof(z) == ?;

What does the compiler actually do with my code? Filip Strömbäck 34

Pointers to members (SystemV)

Function pointers are fairly straight forward... What about
pointers to members?

plain_ptr x = &MyClass::static_member;
member_ptr y = &MyClass::normal_member;
member_ptr z = &MyClass::virtual_member;

Let’s look at their sizes:
sizeof(x) == sizeof(void *);
sizeof(y) == sizeof(void *)*2;
sizeof(z) == sizeof(void *)*2;

What?

What does the compiler actually do with my code? Filip Strömbäck 35

Let’s look at the code!

call_member:
mov rax, "ptr.ptr"
and rax, 1
test rax, rax
jne .L12
mov rax, "ptr.ptr"
jmp .L13

.L12:
mov rax, "ptr.offset"
add rax, "&c"
mov rdx, [rax]
mov rax, "ptr"
mov rax, [rax+rdx-1]

.L13:
mov rdi, "ptr.offset"
add rdi, "&c"
call [rax]

What does the compiler actually do with my code? Filip Strömbäck 36

Let’s look at the code!

struct member_ptr {
// Pointer or vtable offset
size_t ptr;

// Object offset
size_t offset;

};

What does the compiler actually do with my code? Filip Strömbäck 36

Let’s look at the code!

void member_call(MyClass &c, member_ptr ptr) {
void *obj = (void *)&c + ptr.offset;
void *target = ptr.ptr;
// Is it a vtable offset?
if (ptr.ptr & 0x1) {

void *vtable = *(void **)obj;
target = *(size_t *)(vtable + ptr - 1);

}
// Call the function!
(obj->*target)();

}

What does the compiler actually do with my code? Filip Strömbäck 37

Pointers to members

• This is realized differently on x86 on Windows
• There, thunks are used instead.

• This is one of the reasons why you can’t just cast
member function pointers to void ∗!

• Pointers to member variables are simpler, they’re just
the offset of the variable.

What does the compiler actually do with my code? Filip Strömbäck 38

What about typeid?

const type_info &find_typeinfo(base &var) {
return typeid(var);

}

How does the compiler know the actual type of var?

What does the compiler actually do with my code? Filip Strömbäck 39

Let’s look at the code!

_Z13find_typeinfoR4base:
push rbp ; Function prolog
mov rbp, rsp
mov rax, rdi ; First parameter
mov rax, QWORD PTR [rax]
mov rax, QWORD PTR [rax-8]
pop rbp ; Function epilog
ret

What does the compiler actually do with my code? Filip Strömbäck 39

Let’s look at the code!

_Z13find_typeinfoR4base:
push rbp ; Function prolog
mov rbp, rsp
mov rax, rdi ; First parameter
mov rax, QWORD PTR [rax]
mov rax, QWORD PTR [rax-8]
pop rbp ; Function epilog
ret

There is something at offset -8 of the vtable!

What does the compiler actually do with my code? Filip Strömbäck 40

A closer look at the vtable

_ZTV7derived:
.quad 0
.quad _ZTI7derived
.quad _ZN7derivedD1Ev
.quad _ZN7derivedD0Ev
.quad _ZN7derived3funEi

What does the compiler actually do with my code? Filip Strömbäck 40

A closer look at the vtable

Offset Symbol
-16 (offset)
-8 typeinfo for derived
0 derived::~derived() doesn’t call delete
8 derived::~derived() calls delete

16 derived::fun(int)

1 Introduction
2 What is an ABI?
3 Object layout
4 Function calls
5 Virtual functions
6 Exceptions

What does the compiler actually do with my code? Filip Strömbäck 42

SEH – x86, Win32

Idea: Functions in need of handling exceptions store an
entry in a per-thread list of handlers. Essentially:
void function() {

eh_entry entry;
entry.next = eh_stack;
entry.handler = &handle_exception;
eh_stack = &entry;

// Code as normal

eh_stack = entry.next;
}

What does the compiler actually do with my code? Filip Strömbäck 43

SEH – x86, Win32

f()

handler

Top:

What does the compiler actually do with my code? Filip Strömbäck 43

SEH – x86, Win32

f()

handler

g()

handler

Top:

What does the compiler actually do with my code? Filip Strömbäck 43

SEH – x86, Win32

f()

handler

g()

handler

Top:

What does the compiler actually do with my code? Filip Strömbäck 43

SEH – x86, Win32

f()

handler

g()

handler

Top:

What does the compiler actually do with my code? Filip Strömbäck 43

SEH – x86, Win32

f()

handler

g()

handler

Top:

exception
RtlUnwind

What does the compiler actually do with my code? Filip Strömbäck 43

SEH – x86, Win32

f()

handler

g()

handler

Top:

exception
RtlUnwind

Any handlers?

What does the compiler actually do with my code? Filip Strömbäck 43

SEH – x86, Win32

f()

handler

g()

handler

Top:

exception
RtlUnwind

Any handlers?

What does the compiler actually do with my code? Filip Strömbäck 43

SEH – x86, Win32

f()

handler

g()

handler

Top:

exception
RtlUnwind

Prepare resume
Cleanup!

What does the compiler actually do with my code? Filip Strömbäck 43

SEH – x86, Win32

f()

handler

g()

handler

Top:

exception
RtlUnwind

Execute handler

What does the compiler actually do with my code? Filip Strömbäck 43

SEH – x86, Win32

f()

handler

Top:

What does the compiler actually do with my code? Filip Strömbäck 44

What was thrown?
Table of typeinfo-objects in metadata:

class A {};

class B :
public A {};

class C :
public B {};

void f() {
try {

throw C();
} catch (const A &) {}

}

What does the compiler actually do with my code? Filip Strömbäck 44

What was thrown?
Table of typeinfo-objects in metadata:

class A {};

class B :
public A {};

class C :
public B {};

void f() {
try {

throw C();
} catch (const A &) {}

}

typeinfo *options[] = {
&typeid(C),
&typeid(B),
&typeid(A),

}

What does the compiler actually do with my code? Filip Strömbäck 45

SEH – x86, Win32

Benefits:
• Language agnostic – almost no pre-defined data
structures

• Straightforward unwinding

Drawbacks:
• Overhead in all cases – not only when throwing
exceptions

• Storing function pointers on the stack...

For AMD64, a solution similar to DWARF is used

What does the compiler actually do with my code? Filip Strömbäck 46

DWARF – System V

Idea: Store unwinding information in big tables
somewhere!
Each function has an entry containing:
• Unwinding information – How to undo any changes
to the stack and/or registers done by the function at
any point in the function.

• Personality function – Like in SEH, function that
determines if a particular exception is handled and
hanles cleanup.

• Additonal data – Any additional information required
by the personality function.

What does the compiler actually do with my code? Filip Strömbäck 47

DWARF – SystemV

f()

saved regs
DWARF table

What does the compiler actually do with my code? Filip Strömbäck 47

DWARF – SystemV

f()

saved regs
DWARF table

g()

saved regs

What does the compiler actually do with my code? Filip Strömbäck 47

DWARF – SystemV

f()

saved regs
DWARF table

g()

saved regs

__cxa_allocate
_exception

What does the compiler actually do with my code? Filip Strömbäck 47

DWARF – SystemV

f()

saved regs
DWARF table

g()

saved regs

__cxa_throw

Current: exception

What does the compiler actually do with my code? Filip Strömbäck 47

DWARF – SystemV

f()

saved regs
DWARF table

g()

saved regs

__cxa_throw

Current: exception

rip
Any handlers?

What does the compiler actually do with my code? Filip Strömbäck 47

DWARF – SystemV

f()

saved regs
DWARF table

g()

saved regs

__cxa_throw

Current: exception

Any handlers?

Previous

What does the compiler actually do with my code? Filip Strömbäck 47

DWARF – SystemV

f()

saved regs
DWARF table

g()

saved regs

__cxa_throw

Current: exception

Any handlers?

Previous

What does the compiler actually do with my code? Filip Strömbäck 47

DWARF – SystemV

f()

saved regs
DWARF table

g()

saved regs

__cxa_throw

Current: exception

Cleanup!

What does the compiler actually do with my code? Filip Strömbäck 47

DWARF – SystemV

f()

saved regs
DWARF table

g()

saved regs

__cxa_throw

Current: exception

Cleanup!

What does the compiler actually do with my code? Filip Strömbäck 47

DWARF – SystemV

f()

saved regs
DWARF table

g()

saved regs

__cxa_throw

Current: exception

Resume!

What does the compiler actually do with my code? Filip Strömbäck 47

DWARF – SystemV

f()

saved regs
DWARF table

Current: exception

What does the compiler actually do with my code? Filip Strömbäck 47

DWARF – SystemV

f()

saved regs
DWARF table

Current: exception

__cxa_begin
_catch

What does the compiler actually do with my code? Filip Strömbäck 47

DWARF – SystemV

f()

saved regs
DWARF table

__cxa_end
_catch

What does the compiler actually do with my code? Filip Strömbäck 47

DWARF – SystemV

f()

saved regs
DWARF table

What does the compiler actually do with my code? Filip Strömbäck 48

What was thrown?

Well, std::typeinfo is a polymorphic class...
https://itanium-cxx-abi.github.io/cxx-abi/abi.html

bool matches(_Unwind_Exception *data) {
std::type_info *type = /* data->type */;
// perhaps
return __dynamic_cast(..., type, &typeid(A), -1);

// not in the ABI:
return typeid(A).__do_catch(type, ...);

}

https://itanium-cxx-abi.github.io/cxx-abi/abi.html

What does the compiler actually do with my code? Filip Strömbäck 49

DWARF - System V

Benefits:
• Low cost (almost zero) unless exceptions are actually
thrown

• Difficult to utilize during buffer overflows
Drawbacks:
• Most functions need to provide unwind information
(difficult when doing JIT compilation)

• High cost of actually throwing exceptions
Some interesting functions here:
https://libcxxabi.llvm.org/spec.html

https://libcxxabi.llvm.org/spec.html

What does the compiler actually do with my code? Filip Strömbäck 50

Conclusions

• There are many ways of implementing exceptions
• Most are expensive, hopefully only when used!
• Don’t use exceptions for normal control-flow!

Filip Strömbäck

www.liu.se

www.liu.se

	Introduction
	What is an ABI?
	Object layout
	Function calls
	Virtual functions
	Exceptions

