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The topic for today

How are parts of C++ realized on x86 and AMD64?
• Object layout
• Function calls
• Virtual function calls
• Exceptions
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Why?

If you know the implementation...
• ...you can reason about the efficiency of your solution
• ...you can see why some things are undefined
behaviour

• (...you can abuse undefined behaviour and do really
strange things)

Note: Everything discussed here is highly system specific,
and most likely undefined behavior according to the
standard!
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How?

• Read the assembler output from the compiler!
• g++ -S -masm=intel <file> or cl /FAs <file>
• objdump -d -M intel <program>
• In a debugger
• Compiler Explorer

• Figure out why it does certain things:
• OSDev Wiki (https://wiki.osdev.org/)
• System V ABI (https:

//www.uclibc.org/docs/psABI-x86_64.pdf)
• x86 instruction reference

(http://ref.x86asm.net/)
• Lots of tinkering and thinking!

https://wiki.osdev.org/
https://www.uclibc.org/docs/psABI-x86_64.pdf
https://www.uclibc.org/docs/psABI-x86_64.pdf
http://ref.x86asm.net/
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What is an ABI (Application Binary Interface)?

Specifies how certain aspects of a language are realized on
a particular CPU
Language specification + ABI ⇒ compiler
Specifies:
• Size of built-in types
• Object layout
• Function calls (calling conventions)
• Exception handling
• Name mangling
• ...
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Different systems use different ABIs

There are two major ABIs:
• System V ABI (Linux, MacOS on AMD64)
• Microsoft ABI (Windows)

Variants for many systems:
• x86
• AMD64
• ARM
• ...
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Integer types and endianness

char a{0x08};
short b{0x1234}; // = 4660
int c{0x00010203}; // = 66051
long d{0x1101020304}; // = 73031353092
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Integer types and endianness
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The type system

The type system is not present in the binary! It just helps
us to keep track of how to interpret bytes in memory!

struct foo {
int a, b, c;

};

foo x{1, 2, 3};
int y[3] = {1, 2, 3};
short z[6] = {1, 0, 2, 0, 3, 0};

All look the same in memory!
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Other types

• Each type has a size and an alignment
• Members are placed sequentially, respecting the
alignment

Example:

struct simple {
int a{1};
int b{2};
int c{3};
long d{100};
int e{4};

};

a b
c padding

d
e padding
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Starting simple – x86

eax
ecx

edx
ebx
esp

ebp
esi
edi

Registers Stack
Low

High

Stack frame
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The default on x86 – cdecl

int fn(int a, int b, int c);

int main() {
int r = fn(1, 2, 3);

}

push 3
push 2
push 1
call fn
add esp, 12
mov "r", eax

fn – locals
return address

1
2
3

main – locals
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The default on x86 – cdecl

struct large { int a, b; };
int fn(large a, int b);
int main() {

large z{ 1, 2 };
int r = fn(z, 3);

}

push 3
sub esp, 8
;; initialize z at esp
call fn
add esp, 12
mov "r", eax

fn – locals
return address

z

3
main – locals
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The default on x86 – cdecl

struct large { int a, b; };
int fn(large &a, int b);
int main() {

large z{ 1, 2 };
int r = fn(z, 3);

}

push 10
lea eax, "z"
push eax
call fn
add esp, 8
mov "r", eax

fn – locals
return address

&z
3

main – locals
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The default on x86 – cdecl

struct large { int a, b; };
large fn(int a);

int main() {
large z = fn(10);

}

push 10
lea eax, "z"
push eax
call fn
add esp, 8

fn – locals
return address

10
result address
main – locals
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The default on x86 – cdecl

struct large { int a, b; };
large *fn(large *result, int a);

int main() {
large z = fn(10);

}

push 10
lea eax, "z"
push eax
call fn
add esp, 8

fn – locals
return address

10
result address
main – locals
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More advanced – AMD64 (SystemV)

This is where the fun begins!
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More advanced – AMD64 (SystemV)
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More advanced – AMD64 (SystemV)
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Rules (simplified)

1. If a parameter has a copy constructor or a destructor:
• Pass by hidden reference

2. If a parameter is larger than 4*8 bytes
• Pass in memory

3. If a parameter uses more than 2 integer registers
• Pass in memory

4. Otherwise
• Pass in appropriate registers (integer/floating-point)
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AMD64 (SystemV)

int fn(int a, int b, int c);

int main() {
int r = fn(1, 2, 3);

}

mov edi, 1
mov esi, 2
mov edx, 3
call fn
mov "r", rax

rdi rsi rdx rcx r8 r9 rax

1 2 3 r
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AMD64 (SystemV)

struct large { int a, b; };
int fn(large a, int b);
int main() {

large z{ 1, 2 };
int r = fn(z, 3);

}

mov rdi, "z"
mov rsi, 3
call fn
mov "r", rax

rdi rsi rdx rcx r8 r9 rax

z 3 r
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AMD64 (SystemV)

struct large { long a, b; };
int fn(large a, long b);
int main() {

large z{ 1, 2 };
int r = fn(z, 3);

}

mov rdi, "z"
mov rsi, 3
call fn
mov "r", rax

rdi rsi rdx rcx r8 r9 rax

z.a z.b 3 r
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AMD64 (SystemV)

struct large { long a, b, c; };
int fn(large a, long b);
int main() {

large z{ 1, 2, 3 };
int r = fn(z, 4);

}

push "z.c"
push "z.b"
push "z.a"
mov rdi, 3
call fn
mov "r", rax

rdi rsi rdx rcx r8 r9 rax

stackz
3 r
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AMD64

struct large { /*...*/ };
int fn(large a, long b);
int main() {

large z{ 1, 2 };
int r = fn(z, 3);

}

;; Copy z into z'
lea rdi, "z'"
mov rsi, 3
call fn
mov "r", rax

large is not trivially copiable, has a destructor or a vtable

rdi rsi rdx rcx r8 r9 rax

&z' 3 r
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AMD64 (SystemV)

struct large { int a, b; };
int fn(large &a, int b);
int main() {

large z{ 1, 2 };
int r = fn(z, 3);

}

lea rdi, "z"
mov rsi, 3
call fn
mov "r", rax

rdi rsi rdx rcx r8 r9 rax

&z 3 r
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AMD64 (SystemV)

struct large { int a, b; };
large fn(int a);

int main() {
large z = fn(10);

}

mov rdi, 10
call fn
mov "z", rax

rdi rsi rdx rcx r8 r9 rax

10 z
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AMD64 (SystemV)

struct large { long a, b; };
large fn(int a);

int main() {
large z = fn(10);

}

mov rdi, 10
call fn
mov "z", rax
mov "z"+8, rdx

rdi rsi rdx rcx r8 r9 rax

10 z.az.b
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AMD64 (SystemV)

struct large { long a, b, c; };
large fn(int a);

int main() {
large z = fn(10);

}

mov rdi, 10
call fn
mov "z", rax
mov "z"+8, rdx

rdi rsi rdx rcx r8 r9 rax

&z 10 &z
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Conclusions

• Passing primitives by value is cheap
• Passing simple types by value is cheap (sometimes
cheaper than passing multiple parameters)
• As long as they are trivially copiable and destructible
• As long as they are below about 4 machine words or

about 64 bytes
• Returning small simple types by value is cheap on
AMD64, even without RVO

• Types that are not trivially copiable are more
cumbersome: pass them by reference
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Scenario

struct base {
virtual ~base() = default;

int data{0x1020};

virtual void fun(int x) = 0;
};

void much_fun(base &x) {
x.fun(100);

}

How do we know what to call here?
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Virtual function tables – vtables (SystemV)

Idea: Put some type info in the objects!
This is called a virtual function table or vtable:

Offset Symbol
0 derived::~derived()
8 derived::~derived()
16 derived::fun(int)

Note: More complex for multiple and virtual inheritance!
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Virtual function tables – vtables (SystemV)

Idea: Put some type info in the objects!
This is called a virtual function table or vtable:

Offset Symbol
0 derived::~derived() doesn’t call delete
8 derived::~derived() calls delete

16 derived::fun(int)

Note: More complex for multiple and virtual inheritance!
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Virtual dispatch

void much_fun(base &x) {
x.fun(100);

}

mov rdi, "x" ; Put x in a register
mov rax, [rdi] ; Read vtable
mov rax, [rax+16] ; Read slot #2
mov rsi, 100 ; Add parameter
call [rax] ; Call the function
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Pointers to members (SystemV)

Function pointers are fairly straight forward... What about
pointers to members?

plain_ptr x = &MyClass::static_member;
member_ptr y = &MyClass::normal_member;
member_ptr z = &MyClass::virtual_member;

Let’s look at their sizes:
sizeof(x) == ?;
sizeof(y) == ?;
sizeof(z) == ?;
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Pointers to members (SystemV)

Function pointers are fairly straight forward... What about
pointers to members?

plain_ptr x = &MyClass::static_member;
member_ptr y = &MyClass::normal_member;
member_ptr z = &MyClass::virtual_member;

Let’s look at their sizes:
sizeof(x) == sizeof(void *);
sizeof(y) == sizeof(void *)*2;
sizeof(z) == sizeof(void *)*2;

What?
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Let’s look at the code!

call_member:
mov rax, "ptr.ptr"
and rax, 1
test rax, rax
jne .L12
mov rax, "ptr.ptr"
jmp .L13

.L12:
mov rax, "ptr.offset"
add rax, "&c"
mov rdx, [rax]
mov rax, "ptr"
mov rax, [rax+rdx-1]

.L13:
mov rdi, "ptr.offset"
add rdi, "&c"
call [rax]
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Let’s look at the code!

struct member_ptr {
// Pointer or vtable offset
size_t ptr;

// Object offset
size_t offset;

};
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Let’s look at the code!

void member_call(MyClass &c, member_ptr ptr) {
void *obj = (void *)&c + ptr.offset;
void *target = ptr.ptr;
// Is it a vtable offset?
if (ptr.ptr & 0x1) {

void *vtable = *(void **)obj;
target = *(size_t *)(vtable + ptr - 1);

}
// Call the function!
(obj->*target)();

}
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Pointers to members

• This is realized differently on x86 on Windows
• There, thunks are used instead.

• This is one of the reasons why you can’t just cast
member function pointers to void ∗!

• Pointers to member variables are simpler, they’re just
the offset of the variable.
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What about typeid?

const type_info &find_typeinfo(base &var) {
return typeid(var);

}

How does the compiler know the actual type of var?
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Let’s look at the code!

_Z13find_typeinfoR4base:
push rbp ; Function prolog
mov rbp, rsp
mov rax, rdi ; First parameter
mov rax, QWORD PTR [rax]
mov rax, QWORD PTR [rax-8]
pop rbp ; Function epilog
ret
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Let’s look at the code!

_Z13find_typeinfoR4base:
push rbp ; Function prolog
mov rbp, rsp
mov rax, rdi ; First parameter
mov rax, QWORD PTR [rax]
mov rax, QWORD PTR [rax-8]
pop rbp ; Function epilog
ret

There is something at offset -8 of the vtable!
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A closer look at the vtable

_ZTV7derived:
.quad 0
.quad _ZTI7derived
.quad _ZN7derivedD1Ev
.quad _ZN7derivedD0Ev
.quad _ZN7derived3funEi
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A closer look at the vtable

Offset Symbol
-16 (offset)
-8 typeinfo for derived
0 derived::~derived() doesn’t call delete
8 derived::~derived() calls delete

16 derived::fun(int)
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SEH – x86, Win32

Idea: Functions in need of handling exceptions store an
entry in a per-thread list of handlers. Essentially:
void function() {

eh_entry entry;
entry.next = eh_stack;
entry.handler = &handle_exception;
eh_stack = &entry;

// Code as normal

eh_stack = entry.next;
}
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SEH – x86, Win32

f()

handler

Top:
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SEH – x86, Win32
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SEH – x86, Win32

f()

handler

g()

handler

Top:

exception
RtlUnwind
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SEH – x86, Win32

f()

handler

g()

handler

Top:

exception
RtlUnwind

Any handlers?
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SEH – x86, Win32

f()

handler

g()

handler

Top:

exception
RtlUnwind

Any handlers?
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SEH – x86, Win32

f()

handler

g()

handler

Top:

exception
RtlUnwind

Prepare resume
Cleanup!
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SEH – x86, Win32

f()

handler

g()

handler

Top:

exception
RtlUnwind

Execute handler
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SEH – x86, Win32

f()

handler

Top:
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What was thrown?
Table of typeinfo-objects in metadata:

class A {};

class B :
public A {};

class C :
public B {};

void f() {
try {

throw C();
} catch (const A &) {}

}
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What was thrown?
Table of typeinfo-objects in metadata:

class A {};

class B :
public A {};

class C :
public B {};

void f() {
try {

throw C();
} catch (const A &) {}

}

typeinfo *options[] = {
&typeid(C),
&typeid(B),
&typeid(A),

}
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SEH – x86, Win32

Benefits:
• Language agnostic – almost no pre-defined data
structures

• Straightforward unwinding

Drawbacks:
• Overhead in all cases – not only when throwing
exceptions

• Storing function pointers on the stack...

For AMD64, a solution similar to DWARF is used
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DWARF – System V

Idea: Store unwinding information in big tables
somewhere!
Each function has an entry containing:
• Unwinding information – How to undo any changes
to the stack and/or registers done by the function at
any point in the function.

• Personality function – Like in SEH, function that
determines if a particular exception is handled and
hanles cleanup.

• Additonal data – Any additional information required
by the personality function.
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DWARF – SystemV

f()

saved regs
DWARF table
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DWARF – SystemV

f()

saved regs
DWARF table

g()

saved regs
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DWARF – SystemV

f()

saved regs
DWARF table

g()

saved regs

__cxa_allocate
_exception
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DWARF – SystemV

f()

saved regs
DWARF table

g()

saved regs

__cxa_throw

Current: exception
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DWARF – SystemV

f()

saved regs
DWARF table

g()

saved regs

__cxa_throw

Current: exception

rip
Any handlers?
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DWARF – SystemV

f()

saved regs
DWARF table

g()

saved regs

__cxa_throw

Current: exception

Any handlers?

Previous
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DWARF – SystemV

f()

saved regs
DWARF table

g()

saved regs

__cxa_throw

Current: exception

Any handlers?

Previous
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DWARF – SystemV

f()

saved regs
DWARF table

g()

saved regs

__cxa_throw

Current: exception

Cleanup!
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DWARF – SystemV

f()

saved regs
DWARF table

g()

saved regs

__cxa_throw

Current: exception

Cleanup!
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DWARF – SystemV

f()

saved regs
DWARF table

g()

saved regs

__cxa_throw

Current: exception

Resume!
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DWARF – SystemV

f()

saved regs
DWARF table

Current: exception
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DWARF – SystemV

f()

saved regs
DWARF table

Current: exception

__cxa_begin
_catch
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DWARF – SystemV

f()

saved regs
DWARF table

__cxa_end
_catch
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DWARF – SystemV

f()

saved regs
DWARF table
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What was thrown?

Well, std::typeinfo is a polymorphic class...
https://itanium-cxx-abi.github.io/cxx-abi/abi.html

bool matches(_Unwind_Exception *data) {
std::type_info *type = /* data->type */;
// perhaps
return __dynamic_cast(..., type, &typeid(A), -1);

// not in the ABI:
return typeid(A).__do_catch(type, ...);

}

https://itanium-cxx-abi.github.io/cxx-abi/abi.html
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DWARF - System V

Benefits:
• Low cost (almost zero) unless exceptions are actually
thrown

• Difficult to utilize during buffer overflows
Drawbacks:
• Most functions need to provide unwind information
(difficult when doing JIT compilation)

• High cost of actually throwing exceptions
Some interesting functions here:
https://libcxxabi.llvm.org/spec.html

https://libcxxabi.llvm.org/spec.html
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Conclusions

• There are many ways of implementing exceptions
• Most are expensive, hopefully only when used!
• Don’t use exceptions for normal control-flow!
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