
TDDD38 - Advanced
programming in C++
Course introduction

Eric Elfving

Department of Computer and information science



1 What is TDDD38
Syllabus
Organization
Exam
Literature
Plan

2 What is C++?
History
Design rules
Design support rules
Design support rules
Design support rules
Coding style



1 What is TDDD38
Syllabus
Organization
Exam
Literature
Plan

2 What is C++?
History
Design rules
Design support rules
Design support rules
Design support rules
Coding style



3 / 22

What is APiC++?
Aim (syllabus)

• Explain non-trivial C++ language constructs and
their semantics

• Explain the overall design principle of the C++
standard library

• Design and implement usable, correct, error-safe,
non-trivial classes and polymorphic classes.

• Design and implement advanced program
components

• Use different components from the C++ standard
library in combination



3 / 22

What is APiC++?
Aim (syllabus)

• Explain non-trivial C++ language constructs and
their semantics

• Explain the overall design principle of the C++
standard library

• Design and implement usable, correct, error-safe,
non-trivial classes and polymorphic classes.

• Design and implement advanced program
components

• Use different components from the C++ standard
library in combination



3 / 22

What is APiC++?
Aim (syllabus)

• Explain non-trivial C++ language constructs and
their semantics

• Explain the overall design principle of the C++
standard library

• Design and implement usable, correct, error-safe,
non-trivial classes and polymorphic classes.

• Design and implement advanced program
components

• Use different components from the C++ standard
library in combination



4 / 22

What is APiC++?
Prerequisites (syllabus)

• Good knowledge and skills in programming in at
least one procedural and/or object-oriented
language

• knowledge about fundamentals of object-oriented
programming



5 / 22

What is APiC++?
Organization

• Basically a self-study course
• No examining labs

• Several optional (but highly recommended)
exercises

• Lab time scheduled

• Contact me for assistance - preferably via email

• "Seminars"



6 / 22

What is APiC++?
Seminars in APiC++

• Material will be added to the course webpage and
the gitlab group
https://gitlab.ida.liu.se/TDDD38
• "Lecture slides"
• Links to blogs, videos from conferences,

discussions on SO etc.
• Code examples

• This is only to support your learning, of course it's
up to you if you want to attend or not.

https://gitlab.ida.liu.se/TDDD38


7 / 22

What is APiC++?
Computer examination - five hours

• Theory questions - 5 points in total
• Four programming problems - 5 points each

• Class design, derivation, operator overloading,
exception handling

• STL - standard library
• Standard techniques and templates

• Grades - 25 points maximum
• 19-25 - 5/A
• 15-18 - 4/B
• 11-14 - 3/C
• 0-10 - U/FX

• Access to the reference part of cppreference.com
• Important to be familiar with the linux system



8 / 22

Extra information, literature, etc.

• Course web page:
http://www.ida.liu.se/~TDDD38/
• Seminar plan and material
• Exercises
• C++ links
• Contact information
• Information on the exam

http://www.ida.liu.se/~TDDD38/


9 / 22

Extra information, literature, etc.

• Course literature - basically up to you
• C++ Primer, 2012, Lippman, Lajoie, Moo
• The C++ Programming Language, 4th edition,

2013, Stroustrup
• A Tour of C++, 2013, Stroustrup
• The C++ Standard Library, 2012, Josuttis
• Effective Modern C++, 2014, Meyers
• cppreference.com

• Friday fun!



10 / 22

Topics
• Seminar 1

• Basic C++ - data types, variables, declarations,
expressions, statements, etc.

• strings, initializers, tuples, streams
• Seminar 2: Single class design and operator
overloading

• Seminar 3
• Derived classes, inheritance, polymorphism, RTTI
• Exception handling

• Seminar 4-5
• Templates (main focus)
• Namespaces

• Seminar 6-?: The Standard Template Library
(STL)



1 What is TDDD38
Syllabus
Organization
Exam
Literature
Plan

2 What is C++?
History
Design rules
Design support rules
Design support rules
Design support rules
Coding style



12 / 22

What is C++?
Use of C++

Figure : TIOBE index - http://www.tiobe.com

http://www.tiobe.com


13 / 22

What is C++?
Goal of C++

C++ was designed to
provide Simula's facilities
for program organization
together with C's efficiency
and flexibility for systems
programming. It was
intended to deliver that to
real projects within half a
year of the idea. It
succeeded.
Bjarne Stroustrup



14 / 22

What is C++?
Definition

C++ is a general purpose programming
language based on the C programming
language [...]. In addition to the facilities
provided by C, C++ provides additional data
types, classes, templates, exceptions,
namespaces, operator overloading, function
name overloading, references, free store
management operators, and additional
library facilities

ISO Draft N4687 (C++17), §1/2

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2017/n4687.pdf


15 / 22

History

1979 First implementation of "C with classes"
1983 Rename to C++
1985 The C++ Programming Language first

edition, first external release
1990 The Annotated C++ Reference Manual

(ARM)
1998 First ISO standard (C++98)!
2003 Small amendments (C++03)
2011 C++11 standard! - The "new" C++
2014 December release of C++14
2017 Latest release (C++17)

2020? Next version



17 / 22

Language Design Rules
General rules

• C++ must be useful now
• C++ must be useful to someone with average

skills, using an average computer

• Provide comprehensive support for each
supported style

• Don't try to force people



17 / 22

Language Design Rules
General rules

• C++ must be useful now
• Provide comprehensive support for each
supported style
• Features must be designed to be used in

combination

• Don't try to force people



17 / 22

Language Design Rules
General rules

• C++ must be useful now

• Provide comprehensive support for each
supported style

• Don't try to force people
• Programmers are smart people and need all the

help they can get from a programming language.
Trying to seriously constrain programmers will fail



18 / 22

Language Design Rules

• All features must be affordable
• A feature is only added to C++ when there is no

other way of achieving similar functionality at
significantly lesser cost.

• It is more important to allow a useful feature than
to prevent every misuse

• Support composition of software from separately
developed parts



18 / 22

Language Design Rules

• All features must be affordable
• It is more important to allow a useful feature than
to prevent every misuse
• You can write bad programs in any language. Try

to minimize accidental misuse but we can't
prevent a determined programmer from breaking
the system.

• Support composition of software from separately
developed parts



18 / 22

Language Design Rules

• All features must be affordable

• It is more important to allow a useful feature than
to prevent every misuse

• Support composition of software from separately
developed parts
• As applications get larger and more complex, they

must be composed of semi-independent parts to
be manageable.



19 / 22

Language Design Rules
Language-Technical Rules

• No implicit violations of the static type system
• C++ inherits stuff from C which make it

impossible to detect every type violation at
compile time, but wherever possible checking is
done at compile time.

• Provide as good support for user-defined types as
for built-in types

• Locality is good

• If in doubt, pick the variant of a feature that is
easiest to teach



19 / 22

Language Design Rules
Language-Technical Rules

• No implicit violations of the static type system
• Provide as good support for user-defined types as
for built-in types
• User-defined types are intended to be central to

C++ programs, they need as good support as
possible from the language.

• Locality is good

• If in doubt, pick the variant of a feature that is
easiest to teach



20 / 22

Language Design Rules
Low-Level Programming Support Rules

• Leave no lower-level language below C++ (except
assembler)

• What you don't use, you don't pay for
(zero-overhead principle)



20 / 22

Language Design Rules
Low-Level Programming Support Rules

• Leave no lower-level language below C++ (except
assembler)

• What you don't use, you don't pay for
(zero-overhead principle)
• Large languages have a well-earned reputation for

generating large and slow code; let's store cleanup
data in all objects or force indirect access to all
data. Having this in C++ would leave room for
languages at a lower level.
This rule is still often used to reject new features in
the language



21 / 22

What is C++?
Prgramming style?

• There are (sadly) no real proposed styles for
formatting

• I will of course use a style, but will not force you to
follow that one

• A good (non-format) style guide is the Cpp Core
Guidelines

• The course will focus on modern C++ (that is new
stuff from C++11/14/17) and penalize usage of the
"C parts" (even if they are technically part of C++)

https://github.com/isocpp/CppCoreGuidelines/blob/master/CppCoreGuidelines.md
https://github.com/isocpp/CppCoreGuidelines/blob/master/CppCoreGuidelines.md


22 / 22

What is C++?
Two very important terms

Implementation defined A program with
implementation defined behavior is valid
C++ but the results may differ between
systems or even compilers on the same
system

Undefined Behavior (UB) A program with UB is
invalid and a standards-complient
compiler can do anthing it wants.



www.liu.se

www.liu.se

	What is TDDD38
	Syllabus
	Organization
	Exam
	Literature
	Plan

	What is C++?
	History
	Design rules
	Design support rules
	Design support rules
	Design support rules
	Coding style


