TDDD38 AP C++ Courseintroduction 1

TDDD38 Advanced Programming in C++

Aim —or, what does “advanced” stand for?

good knowledge about constructs and mechanisms in the programming language C++ and their use

good knowledge about the C++ standard library, both content and design principles, and how to use its components effectively
ability to design and implement usable, correct, error-safe, non-trivial classes, including polymorphic class lattices (hierarchies)
ability to design and implement advanced program components — template based, policy design, function objects, ...

it’s not a systems design course, or a problem solving course, or aike, but there will be problems to solve!

Prerequisite

good knowledge and skillsin programming in at least one procedural and/or object-oriented language

knowledge about fundamentals of object-oriented programming (class, derivation/inheritance, polymorphism)

No previous experience of C++, C or Java?

get acquainted a.s.a.p. with C++ basics
attend lecture 2 and 3

File: Lecture-1-Intro-OH-en © 2015 Tommy Olsson, IDA, Linkdpings universitet (2015-01-19)

TDDD38 AP C++ Courseintroduction 2

Organization

» basically aself-study course — good self-discipline is hecessary

study theory!
do exercises!
doitintime!

* lectures—the core language is covered in the first study period, standard library in the second study period

single class design

operator overloading

derived classes, inheritance, polymorphism, RTTI,...

exception handling, exception classes

templates

standard library — strings, streams, standard exceptions, containers, iterators, algorithms, function objects, related utilities, ...
design patterns, policy design, template meta programming, style, ...

* no lessons—no compulsory labs

optional exercises — strongly recommended!
it is absolutely necessary to practice alot —and enough on a Unix system (IDA’s Linux Mint system) —and using g++

 limited computer resources scheduled

assistance by email to TDDD38@ida.liu.se (or tommy.olsson@liu.se), or by appointment
you are also welcome to look me up in my office

File: Lecture-1-Intro-OH-en © 2015 Tommy Olsson, IDA, Linkdpings universitet (2015-01-19)

TDDD38 AP C++ Courseintroduction 3

Examination

Computer exam —the only compulsory item

four times ayear — December, March/April, May/June, and August —five hours

five theory questions— 1 points each

four programming problems — 5 points each

— basic stuff is of course required

— classdesign, derivation, operator overloading, templates, exception handling

— standard library — strings, stream 1/O, containers, iterator, algorithms, function objects, related utilities, etc.

— techniques and style

* marking — 25 points maximum

— 19-25-5/A

— 15-18-4/B

— 11-14 - 3/C (corresponds to correctly solving two programming problems and getting one theory question right).
— 0-10-U/FX

means of assistance

— cplusplus.com Reference (available in a Chromium web browser)

important to be familiar with the exam system (Unix), some available text editor (Emacs), and the GCC compiler (g++)
— only smplefile handling required
— sufficient experience in how to read, interpret and act upon compiler and linker error and warning messages

File: Lecture-1-Intro-OH-en © 2015 Tommy Olsson, IDA, Linkdpings universitet (2015-01-19)

TDDD38 AP C++ Courseintroduction

Information, literature, etc.

» course home page: http://www.idaliu.se/~TDDD38/

information about examination — the three last given exams are aways available
timetable (link to LiTH timetable server)

lecture plan and content

lecture slides, code examples

EXercises

C++ links

contact information

» course literature — basically your choice — some recommendations.

C++ Primer, Fifth edition (2012). Lippman, Lgoie, Moo. (downloadable)
The C++ Programming L anguage, Fourth edition (2013), Stroustrup.

The C++ Standard Library, A Tutorial and Reference, 2/E (2012), Josuttis, N. M. (downloadable)
cplusplus.com (tutorial, reference, articles, etc.) — Reference part is means of assistance at exam
* Friday fun!

File: Lecture-1-Intro-OH-en

© 2015 Tommy Olsson, IDA, Linkdpings universitet (2015-01-19)

TDDD38 AP C++ Courseintroduction 5

Lecture plan for the forthcoming lectures

Lecture 2-3
» basic stuff —datatypes, variables and constants, declarations, expressions and operators, statements, functions,...

o dtrings, initializer lists, tuples, streams, string streams

Lecture4-5

» single class design and operator overloading

L ecture 67
 derived classes, inheritance, polymorphism, RTTI

» exception handling

L ecture 8-9

o templates

* namespaces

* preprocessor

L ecture 10-12 (13)
» standard library

— containers — iterators — algorithms — function objects, lambda expression
— related utilities and such (e.g. std::pair)
— maybe some more...

And now some comments to the cour se content...

File: Lecture-1-Intro-OH-en © 2015 Tommy Olsson, IDA, Linkdpings universitet (2015-01-19)

TDDD38 APIC++ Courseintroduction 6
C++ history and future

» one of the most popular programming languages

» development started in 1979 — originally named C with Classes

* renamed C++ in 1983

e C++98 — thefirst ISO standard

e C++03 — C++98 was amended by the 2003 technical corrigendum (TC)

e C++11 — current standard (formerly known as C++0x, since it was expected to be released before 2010)
— a“new” C++

— anew C++ programming style is developing

C++14 — minor revision targeted for late 2014, but delayed

— mainly bug fixes and small improvements
— one new major feature can be expected — maybe static if (compile timeif statement)

C++1y — major revision targeted for 2017
— will not be the last...

Each revision
— adds more power
— makes constructs more general
— increases efficiency even more
— makes C++ easier to use

File: Lecture-1-Intro-OH-en © 2015 Tommy Olsson, IDA, Linkdpings universitet (2015-01-19)

TDDD38 ARPIC++ Courseintroduction 7
Object-oriented programming

Three main components — objects, inheritance, polymorphism
* Objects
— classes are used to model objects
— in C++ we have two syntactic choices, class or struct
— only difference is related to default member and base member access — private for class— public for struct
— rule of thumb: use struct for behaviourless aggregates with public members only, class otherwise
* inheritance
— code can be reused by derivation, base class — subclass
— creates related classes/objects — a subclass object is al'so abase class object regarding type, an “isa’ relationship
— derivation istypically aquestion of specialization — a subclass can have more state and more functionality
— C++ supports four ways to derive from a base class — public base, protected base, private base, and virtual base

polymorphic behaviour

— an object reference (pointer or reference) may at different times refer to objects of different type
— the same member function call may at different times give different result, depending on the type of the related object

polymorphic behaviour is optional in C++

— amember functions must be declared virtual to be able to behave polymorphic
— objects must be referred to by pointers or references

dynamic type checking and dynamic type conversion, RTTI

— sometimesit’srequired

File: Lecture-1-Intro-OH-en © 2015 Tommy Olsson, IDA, Linkdpings universitet (2015-01-19)

TDDD38 ARPIC++ Courseintroduction 8
Important characteristics for class types in C++

{
}

string si, /| an object declaration, in someblock, stri ng isaclasstype

classesin C++ are not reference types

— sl storesan object of type st ri ng —it’snot areference to such an object

— astring object isautomatically created and initialized when the declaration of s1 is elaborated

— when the execution exits the declaration block, s1 goes out of scope — the object is destroyed — memory is reclaimed

class types have the same basic semantics as fundamental types, e.g.

— require copy semantics not found in most other object-oriented languages —in C++11 move semanticsis also available

string s2{sl}; /'] initialization string s2(sl); string s2 = sl;
s2 = sl; /| assignment

great care must be taken when designing classesin C++

— initialization — default constructor, argument passing constructors

— copying — copy constructor, copy assignment operator, move constructor, move assignment operator
— destruction — destructor

to mimic e.g. Javawe use pointers an dynamic memory allocation (memory has to be deallocated explicitly when no longer needed)
string* nessage{ new string{ "Hello world!"} };

del et e nessage;

File: Lecture-1-Intro-OH-en © 2015 Tommy Olsson, IDA, Linkdpings universitet (2015-01-19)

TDDD38 AP C++ Courseintroduction 9

Inheritance and classes derivation

» classderivation is an essential features of object-oriented design
— new classes can be defined from exciting classes
— codeisreused — members are inherited
o C++ supports“al” variants
— single inheritance (single base class)
— multiple inheritance (multiple base classes), which can lead to
— repeated inheritance (DDD — the Deadly Diamond of Derivation, 4), which is supported by
— virtual inheritance (virtual base class) — how many Base subobjects are there to be in Most_Derived?

File: Lecture-1-Intro-OH-en

Base Base 1 Base 2 Base
member member member member
| |
| |
Derived 1 Derived_2 Derived Derived_1 ‘ Derived_2
|
Most_Derived

© 2015 Tommy Olsson, IDA, Linkdpings universitet (2015-01-19)

TDDD38 APIC++

Operator overloading

Courseintroduction

ostrean®& oper at or<<(ostream& os, const T& x)

{

/] write x to os

return os;

}

* important for construction of fully featured data types

— assignment
— indexing

— any other operator for which there is a natural interpretation of its use

10

« function objects rely on the possibility to overload the function call operator — operator ()

— function objects are important components in the standard library — lambda expressions are implemented as function objects

— can act asfunction
— can carry state

— possible to overload for class types and for compound types (enum types, pointer types, etc.)

struct fun

{

voi d operator()() const { cout << "This is fun!\n";

}i
fun()();

File: Lecture-1-Intro-OH-en

/| not the same parentheses...

fun{}()

}

© 2015 Tommy Olsson, IDA, Linkdpings universitet (2015-01-19)

TDDD38 AP C++ Courseintroduction 11

Templates

Extremely powerful construct in C++.

 for creating reusable program components — function templates and class templates
tenpl ate <typenanme T> T fun(const T& a);

tenpl ate <typenane T, size t N> class array;

supports e.g. policy design

— apolicy used by atype (class) can be separated into one or more policy classes, which can be supplied as a template parameter

tenpl ate <typenanme T, class Allocator = allocator<T>> class vector;

supports template metaprogramming

— function templates can be used to | et the compiler generate source code
— recursive, purely static template functions can perform compile-time evaluation

IS an object-oriented construct — static (compile-time) polymorphism
— afunction template represents awhole family of functions
— aclasstemplate represents awhole family of classes, data types are pure static (compile-time) constructs

the standard library depend heavily on templates, in many cases in combination with derivation

— the new feature variadic templates is widely used in the implementation of the standard library

tenpl ate <typenane... Types> class tuple;

File: Lecture-1-Intro-OH-en © 2015 Tommy Olsson, IDA, Linkdpings universitet (2015-01-19)

TDDD38 AP C++ Courseintroduction

Exception handling

» conceptualy fairly ssmple, but should be used with care.
— prefer traditional, local error handling if possible
— good for reporting errors from within software components
— place error handlers with care — avoid “ exception handling spaghetti”
— practice exception-safe (error-safe) programming
o C++ implements the termination model — the alternative to the resumption model
— at least one block is terminated
— exceptions are propagated backwards along the dynamic call chain
— stack objects will be destroyed implicitly and properly when blocks are exited

12

— heap objects must be taken responsibility for by the programmer (smart pointers is one possibility)

try
{

I f (disaster) throw sone_exception{"hel p!"};
}
catch (const exception& e)
{

cout << e.what() << endl;

}

File: Lecture-1-Intro-OH-en

/]

/1

supposed subclassto st d: : exception

“ polymor phic catch”

© 2015 Tommy Olsson, IDA, Linkdpings universitet (2015-01-19)

TDDD38 AP C++ Courseintroduction 13

Namespaces

A simple module construct.
* the class has module properties, but it’s not enough
— was one of the last things introduced before the first standard C++98 was published
» important in several aspects

— for handling potential name collisions
— modularisation — atype and it’ s operations, e.g., should be encapsulated in the same namespace
— function name look up — ADL look up (argument-dependent look up) —is related to namespaces

nanmespace std

{
/ | namespace member declarations...
}
usi ng nanespace std; /| using directive
usi ng std:: nenber; /'l using declaration

std:: nenber ... /'l qualified name

File: Lecture-1-Intro-OH-en © 2015 Tommy Olsson, IDA, Linkdpings universitet (2015-01-19)

TDDD38 AP C++ Courseintroduction 14

Standard Library

Data structure and algorithm part

Streams

:

Containers «—» Iterators [«—- Algorithms

T Function T

objects

e String
e Streams
e String streams
» Related utilities
 Interesting implementation, e.g.
— templates
— derivation
— policy design

File: Lecture-1-Intro-OH-en © 2015 Tommy Olsson, IDA, Linkdpings universitet (2015-01-19)

TDDD38 AP C++ Courseintroduction

And, of course, a lot of basic stuff to be mastered

The*C part”.

» Lexical conventions

» Trandation model —compilation and linking
» Datatypes and type conversion

» Declarations and definitions

» Expression and operators

e Statements

» Functions and parameter passing

» Basic standard library components

* 1/O and file handling

Topicsfor lecture 2 and 3.

File: Lecture-1-Intro-OH-en

15

© 2015 Tommy Olsson, IDA, Linkdpings universitet (2015-01-19)

