
File: Lecture-1-Intro-OH-en © 2015 Tommy Olsson, IDA, Linköpings universitet (2015-01-19)

TDDD38 APiC++ Course introduction 1

TDDD38 Advanced Programming in C++

Aim – or, what does “advanced” stand for?

• good knowledge about constructs and mechanisms in the programming language C++ and their use

• good knowledge about the C++ standard library, both content and design principles, and how to use its components effectively

• ability to design and implement usable, correct, error-safe, non-trivial classes, including polymorphic class lattices (hierarchies)

• ability to design and implement advanced program components – template based, policy design, function objects, …

• it’s not a systems design course, or a problem solving course, or alike, but there will be problems to solve!

Prerequisite

• good knowledge and skills in programming in at least one procedural and/or object-oriented language

• knowledge about fundamentals of object-oriented programming (class, derivation/inheritance, polymorphism)

No previous experience of C++, C or Java?

• get acquainted a.s.a.p. with C++ basics

• attend lecture 2 and 3



File: Lecture-1-Intro-OH-en © 2015 Tommy Olsson, IDA, Linköpings universitet (2015-01-19)

TDDD38 APiC++ Course introduction 2

Organization

• basically a self-study course – good self-discipline is necessary

– study theory!

– do exercises!

– do it in time!

• lectures – the core language is covered in the first study period, standard library in the second study period

– single class design

– operator overloading

– derived classes, inheritance, polymorphism, RTTI,…

– exception handling, exception classes

– templates

– standard library – strings, streams, standard exceptions, containers, iterators, algorithms, function objects, related utilities,…

– design patterns, policy design, template meta programming, style, …

• no lessons – no compulsory labs

– optional exercises – strongly recommended!

– it is absolutely necessary to practice a lot – and enough on a Unix system (IDA’s Linux Mint system) – and using g++

• limited computer resources scheduled

– assistance by email to TDDD38@ida.liu.se (or tommy.olsson@liu.se), or by appointment

– you are also welcome to look me up in my office



File: Lecture-1-Intro-OH-en © 2015 Tommy Olsson, IDA, Linköpings universitet (2015-01-19)

TDDD38 APiC++ Course introduction 3

Examination

Computer exam – the only compulsory item

• four times a year – December, March/April, May/June, and August – five hours

• five theory questions – 1 points each

• four programming problems – 5 points each

– basic stuff is of course required

– class design, derivation, operator overloading, templates, exception handling

– standard library – strings, stream I/O, containers, iterator, algorithms, function objects, related utilities, etc.

– techniques and style

• marking – 25 points maximum

– 19-25 – 5/A

– 15-18 – 4/B

– 11-14 – 3/C (corresponds to correctly solving two programming problems and getting one theory question right).

– 0-10 – U/FX

• means of assistance

– cplusplus.com Reference (available in a Chromium web browser)

• important to be familiar with the exam system (Unix), some available text editor (Emacs), and the GCC compiler (g++)

– only simple file handling required

– sufficient experience in how to read, interpret and act upon compiler and linker error and warning messages



File: Lecture-1-Intro-OH-en © 2015 Tommy Olsson, IDA, Linköpings universitet (2015-01-19)

TDDD38 APiC++ Course introduction 4

Information, literature, etc.

• course home page: http://www.ida.liu.se/~TDDD38/

– information about examination – the three last given exams are always available

– timetable (link to LiTH timetable server)

– lecture plan and content

– lecture slides, code examples

– exercises

– C++ links

– contact information

• course literature – basically your choice – some recommendations:

C++ Primer, Fifth edition (2012). Lippman, Lajoie, Moo. (downloadable)

The C++ Programming Language, Fourth edition (2013), Stroustrup.

The C++ Standard Library, A Tutorial and Reference, 2/E (2012), Josuttis, N. M. (downloadable)

cplusplus.com (tutorial, reference, articles, etc.) – Reference part is means of assistance at exam

• Friday fun!



File: Lecture-1-Intro-OH-en © 2015 Tommy Olsson, IDA, Linköpings universitet (2015-01-19)

TDDD38 APiC++ Course introduction 5

Lecture plan for the forthcoming lectures

Lecture 2-3

• basic stuff – data types, variables and constants, declarations, expressions and operators, statements, functions,…

• strings, initializer lists, tuples, streams, string streams

Lecture 4–5

• single class design and operator overloading

Lecture 6–7

• derived classes, inheritance, polymorphism, RTTI

• exception handling

Lecture 8-9

• templates

• namespaces

• preprocessor

Lecture 10-12 (13)

• standard library

– containers – iterators – algorithms – function objects, lambda expression

– related utilities and such (e.g. std::pair)

– maybe some more…

And now some comments to the course content…



File: Lecture-1-Intro-OH-en © 2015 Tommy Olsson, IDA, Linköpings universitet (2015-01-19)

TDDD38 APiC++ Course introduction 6

C++ history and future

• one of the most popular programming languages

• development started in 1979 – originally named C with Classes

• renamed C++ in 1983

• C++98 – the first ISO standard

• C++03 – C++98 was amended by the 2003 technical corrigendum (TC)

• C++11 – current standard (formerly known as C++0x, since it was expected to be released before 2010)

– a “new” C++

– a new C++ programming style is developing

• C++14 – minor revision targeted for late 2014, but delayed

– mainly bug fixes and small improvements

– one new major feature can be expected – maybe static if (compile time if statement)

• C++1y – major revision targeted for 2017

– will not be the last…

• Each revision

– adds more power

– makes constructs more general

– increases efficiency even more

– makes C++ easier to use



File: Lecture-1-Intro-OH-en © 2015 Tommy Olsson, IDA, Linköpings universitet (2015-01-19)

TDDD38 APiC++ Course introduction 7

Object-oriented programming

Three main components – objects, inheritance, polymorphism

• objects

– classes are used to model objects

– in C++ we have two syntactic choices, class or struct

– only difference is related to default member and base member access – private for class – public for struct

– rule of thumb: use struct for behaviourless aggregates with public members only, class otherwise

• inheritance

– code can be reused by derivation, base class – subclass

– creates related classes/objects – a subclass object is also a base class object regarding type, an “is a” relationship

– derivation is typically a question of specialization – a subclass can have more state and more functionality

– C++ supports four ways to derive from a base class – public base, protected base, private base, and virtual base

• polymorphic behaviour

– an object reference (pointer or reference) may at different times refer to objects of different type

– the same member function call may at different times give different result, depending on the type of the related object

• polymorphic behaviour is optional in C++

– a member functions must be declared virtual to be able to behave polymorphic

– objects must be referred to by pointers or references

• dynamic type checking and dynamic type conversion, RTTI

– sometimes it’s required



File: Lecture-1-Intro-OH-en © 2015 Tommy Olsson, IDA, Linköpings universitet (2015-01-19)

TDDD38 APiC++ Course introduction 8

Important characteristics for class types in C++

{
string s1; // an object declaration, in some block, string is a class type

}

• classes in C++ are not reference types

– s1 stores an object of type string – it’s not a reference to such an object

– a string object is automatically created and initialized when the declaration of s1 is elaborated

– when the execution exits the declaration block, s1 goes out of scope – the object is destroyed – memory is reclaimed

• class types have the same basic semantics as fundamental types, e.g.

– require copy semantics not found in most other object-oriented languages – in C++11 move semantics is also available

string s2{s1}; // initialization string s2(s1); string s2 = s1;
s2 = s1; // assignment

• great care must be taken when designing classes in C++

– initialization – default constructor, argument passing constructors

– copying – copy constructor, copy assignment operator, move constructor, move assignment operator

– destruction – destructor

• to mimic e.g. Java we use pointers an dynamic memory allocation (memory has to be deallocated explicitly when no longer needed)

string* message{ new string{ "Hello world!"} };
…
delete message;



File: Lecture-1-Intro-OH-en © 2015 Tommy Olsson, IDA, Linköpings universitet (2015-01-19)

TDDD38 APiC++ Course introduction 9

Inheritance and classes derivation

• class derivation is an essential features of object-oriented design

– new classes can be defined from exciting classes

– code is reused – members are inherited

• C++ supports “all” variants

– single inheritance (single base class)

– multiple inheritance (multiple base classes), which can lead to

– repeated inheritance (DDD – the Deadly Diamond of Derivation, ♦ ), which is supported by

– virtual inheritance (virtual base class) – how many Base subobjects are there to be in Most_Derived?

Base

Derived_1

Most_Derived

Derived Derived_2

member

Base

member

Base_1

member

Base_2

member

Derived_1 Derived_2 ♦



File: Lecture-1-Intro-OH-en © 2015 Tommy Olsson, IDA, Linköpings universitet (2015-01-19)

TDDD38 APiC++ Course introduction 10

Operator overloading

ostream& operator<<(ostream& os, const T& x)
{

// write x to os
return os;

}

• important for construction of fully featured data types

– assignment

– indexing

– any other operator for which there is a natural interpretation of its use

• function objects rely on the possibility to overload the function call operator – operator()

– function objects are important components in the standard library – lambda expressions are implemented as function objects

– can act as function

– can carry state

– possible to overload for class types and for compound types (enum types, pointer types, etc.)

struct fun
{

void operator()() const { cout << "This is fun!\n"; }
};

fun()(); // not the same parentheses… fun{}()



File: Lecture-1-Intro-OH-en © 2015 Tommy Olsson, IDA, Linköpings universitet (2015-01-19)

TDDD38 APiC++ Course introduction 11

Templates

Extremely powerful construct in C++.

• for creating reusable program components – function templates and class templates

template <typename T> T fun(const T& a);

template <typename T, size_t N> class array;

• supports e.g. policy design

– a policy used by a type (class) can be separated into one or more policy classes, which can be supplied as a template parameter

template <typename T, class Allocator = allocator<T>> class vector;

• supports template metaprogramming

– function templates can be used to let the compiler generate source code

– recursive, purely static template functions can perform compile-time evaluation

• is an object-oriented construct – static (compile-time) polymorphism

– a function template represents a whole family of functions

– a class template represents a whole family of classes, data types are pure static (compile-time) constructs

• the standard library depend heavily on templates, in many cases in combination with derivation

– the new feature variadic templates is widely used in the implementation of the standard library

template <typename... Types> class tuple;



File: Lecture-1-Intro-OH-en © 2015 Tommy Olsson, IDA, Linköpings universitet (2015-01-19)

TDDD38 APiC++ Course introduction 12

Exception handling

• conceptually fairly simple, but should be used with care.

– prefer traditional, local error handling if possible

– good for reporting errors from within software components

– place error handlers with care – avoid “exception handling spaghetti”

– practice exception-safe (error-safe) programming

• C++ implements the termination model – the alternative to the resumption model

– at least one block is terminated

– exceptions are propagated backwards along the dynamic call chain

– stack objects will be destroyed implicitly and properly when blocks are exited

– heap objects must be taken responsibility for by the programmer (smart pointers is one possibility)

try
{

...
if (disaster) throw some_exception{"help!"}; // supposed subclass to std::exception
...

}
catch (const exception& e) // “polymorphic catch”
{

cout << e.what() << endl;
}



File: Lecture-1-Intro-OH-en © 2015 Tommy Olsson, IDA, Linköpings universitet (2015-01-19)

TDDD38 APiC++ Course introduction 13

Namespaces

A simple module construct.

• the class has module properties, but it’s not enough

– was one of the last things introduced before the first standard C++98 was published

• important in several aspects

– for handling potential name collisions

– modularisation – a type and it’s operations, e.g., should be encapsulated in the same namespace

– function name look up – ADL look up (argument-dependent look up) – is related to namespaces

namespace std
{

// namespace member declarations…
}

using namespace std; // using directive

using std::member; // using declaration

... std::member ... // qualified name



File: Lecture-1-Intro-OH-en © 2015 Tommy Olsson, IDA, Linköpings universitet (2015-01-19)

TDDD38 APiC++ Course introduction 14

Standard Library

Data structure and algorithm part

• String

• Streams

• String streams

• Related utilities

• Interesting implementation, e.g.

– templates

– derivation

– policy design

Containers Algorithms

Function
objects

Iterators

Streams



File: Lecture-1-Intro-OH-en © 2015 Tommy Olsson, IDA, Linköpings universitet (2015-01-19)

TDDD38 APiC++ Course introduction 15

And, of course, a lot of basic stuff to be mastered

The “C part”.

• Lexical conventions

• Translation model – compilation and linking

• Data types and type conversion

• Declarations and definitions

• Expression and operators

• Statements

• Functions and parameter passing

• Basic standard library components

• I/O and file handling

Topics for lecture 2 and 3.


