
Advanced Programming in C++
Exercise – Character traits

Character sets differ in various respects, which raises a number of questions concerning representation
and how operations on character and character arrays are to be performed (as efficient as possible):

– What integer type to use for representing all characters, including the end-of-file character?
– How convert between characters and their integer representation?
– How assign a single character to another?
– How initialize a character array or how assign a character array to another?
– How compare one character with another?
– How compare one character array with another?
– How compute the length of a character array?
– How copy the content of one character array into another? If their memory don’t overlap? If their

memory may overlap?

Such characteristics are called character traits in the standard. The standard template char_traits<charT>,
declared in <string>, defines the interface for standard character traits. Since it is not possible to define
an implementation of char_traits<charT> that would work for all possible character types charT, the
standard only declares the template:

template<class charT> struct char_traits;

(There may be a definition, for which the member functions are not defined.) The declaration is provided
in header <string> as a basis for explicit specializations, of which there are two given in the standard:

template<> struct char_traits<char>;
template<> struct char_traits<wchar_t>;

The definition of char_traits<char> (and for char_traits<char>) provided by the standard is (also in <string>):

template<>
struct char_traits<char>
{

typedef charT char_type;
typedef int int_type;
typedef streampos pos_type;
typedef streamoff off_type;
typedef mbstate_t state_type;

static void assign(char_type& c1, const char_type& c2);
static bool eq(const char_type& c1, const char_type& c2);
static bool lt(const char_type& c1, const char_type& c2);
static int compare(const char_type* s1, const char_type* s2, size_t n);
static size_t length(const char_type* s);
static const char_type* find(const char_type* s, size_t n,
 const char_type& a);
static char_type* move(char_type* s1, const char_type* s2, size_t n);
static char_type* copy(char_type* s1, const char_type* s2, size_t n);
static char_type* assign(char_type* s, size_t n, char_type a);
static char_type to_char_type(const int_type& c);
static int_type to_int_type(const char_type& c);
static bool eq_int_type(const int_type& c1, const int_type& c2);
static int_type eof();
static int_type not_eof(const int_type& c);

};
1

The requirements for the traits operations are:

assign(c1, c2) Yields: nothing. Assigns c1=c2. Complexity: constant. Note: for char and wchar_t
specializations, assign is defined identical to the builtin operator =.

eq(c1, c2) Return type: bool. Yields: whether c1 is to be treated as equal to c2. Note: for char
and wchar_t specializations, eq is defined identical to the builtin operator ==.
Complexity: constant.

lt(c1, c2) Return type: bool. Yields: whether c1 is to be treated as less than c2. Note: for char
and wchar_t specializations, lt is defined identical to the builtin operator <.
Complexity: constant.

compare(s1, s2, n) Return type: int. Yields: 0 if for each i in [0, n[, eq(s1[i], s2[i]) is true; else, a negative
value if, for some j in [0, n[, lt(s1[j], s2[j]) is true and for each i in [0, j[, lt(s1[i] s2[i]) is
true, else a positive value. Complexity: linear.

length(s) Return type: size_t. Yields: the smallest i such that eq(s[i], charT()) is true. Complexity:
linear.

find(s, n, c) Return type: const char_type*. Yields: the smallest p in [s, s+n[such that eq(*p, c) is
true, zero otherwise. Complexity: linear.

move(s1, s2, n) Return type: char_type*. Yields s1. For each i in [0, n[, performs assign(s1[i], s2[i]).
Copies correctly even if s2 is in [s1, s1+n[. Complexity: linear.

copy(s1, s2, n) Precondition: s2 not in [s1, s1+n[. Yields s1. For each i in [0, n[, performs
assign(s1[i], s2[i]). Complexity: linear.

assign(s, n, a) Return type: char_type*. Yields: s. For each i in [0, n[, performs assign(s[i], a).
Complexity: linear.

not_eof(c) Return type: int_type. Yields: c if eq_int_type(c, eof()) is false, otherwise a value e such
that eq_int_type(e, eof()) is false. Complexity: constant. Note: for char and wchar_t
specializations, e could be zero.

to_char_type(c) Return type: char_type. Yields: if for some c2, eq_int_type(c, to_int_type(c2)) is true, c2;
else some unspecified value. Complexity: constant. Note: f for char and wchar_t
specializations, yield c converted to char_type.

to_int_type(c) Return type: int_type. Yields: some value e, constrained by definitions of to_char_type
and eq_int_type. Complexity: constant. Note: for char and wchar_t specializations,
make sure that the byte 0xff and the end-of-file symbol 0xffffffff don’t both end up as
0xffffffff (by clever type conversions).

eq_int_type(c1, c2) Return type: bool. Yields: for all c and d, eq(c, d) is equal to eq_int_type(to_int_type(c),
to_int_type(d)); otherwise, yields true if c1 and c2 are both copies of eof(); otherwise,
yields false if one of c1 and c2 is a copy of eof() and the other is not; otherwise the
value is unspecified. Complexity: constant. Note: for the char and wchar_t
specializations, eq_int_type may be defined as the builtin operator ==.

eof() Return type: int_type. Yields: a value e such that eq_int_type(e, to_int_type(c)) is false
for all values c. Complexity: constant. Note: For char specialization EOF is returned.

Note: for char and wchar_t specializations, standard string functions from <cstring> may be used to
implement compare, length, find, move, copy and assign (three parameter version). This allows for both
simple and efficient implementations, especially since the memory operations (mem*, wmem*) can be
used in most cases.
2

Quite a few standard templates, such as basic_string and basic stream classes, e.g. basic_istream, have a
template parameter for a character type and a character traits:

template
<

class charT, // The character type
class traits = char_traits<charT>, // and its characteristics
class Allocator = allocator<charT> // Memory allocator

>
class basic_string;

template<class charT, class traits = char_traits<charT> >
class basic_istream;

Normally we use type string for strings, which is defined as a specialization of basic_string for char, and
for wide strings we use wstring, which is defined as a specialization for wchar_t:

typedef basic_string<char> string;
typedef basic_string<wchar_t> wstring;

By default these specializations use char_traits<char> and char_traits<wchar_t>, respectively.

Here are two examples from the streams library, where char_traits are used, by default in the first case:

typedef basic_istream<char> istream;

typedef fpos<char_traits<char>::state_type> streampos;

In this exercise you will experiment some with character traits. Exercises are given on the next page.
3

1. Implement char_traits<char> specialization

This specialization of char_traits<charT> is given in the standard, but, as an exercise, you can define your
own implementation of the member functions. Some hints are given in the specifications given above.

2. Case-insensitive string type

Define a string type, ci_string, for char which is not case-sensitive. Do this by defining a character traits
class ci_char_traits and specialize basic_string for char and ci_char_traits.

Write a test program to test ci_string and, indirectly or explicitly, ci_char_traits. It shall also be possible to
read ci_string values from istreams using operator >>, and to write ci_string values to ostreams using
operator <<.

Hint: Most of the functions defined in std::char_traits<char> are case-insensitive …

3. Swedish string type

Define a string type, sv_string, for char which will work properly for lexicographical comparison also if
strings contain Swedish letters. Do this by defining a character traits sv_char_traits and specialize
basic_string for char and sv_char_traits.

Write a test program to test ci_string and, indirectly or explicitly, ci_char_traits. It shall also be possible to
read ci_string values from istreams using operator >>, and to write ci_string values to ostreams using
operator <<.

Of course, you may do this for some other language than Swedish, if you prefer.

Note: The Swedish alphabet comprise the letters a-z and å, ä, ö, in that order.
4

	Advanced Programming in C++
	Exercise - Character traits
	1. Implement char_traits<char> specialization
	2. Case-insensitive string type
	3. Swedish string type

