
1

 Exercise – List iterators 

Advanced Programming in C++

Exercise – Ordered_List iterators

In this exercise you shall add iterators to a given list class Ordered_List, implemented as a simple, single-
linked list.

The iterators 

Define two structs named Ordered_List_iterator and Ordered_List_const_iterator, respectively. These 
structs shall be templates, parametrized on the element type for Ordered_List, i.e. T. The iterator classes 
shall have the following nested types 

value_type
reference
pointer 
difference_type 
iterator_category

and the following functionality

• default constructor; which shall initialize an iterator to a past-last value 

• a constructor taking a list node pointer and initialize the iterator with that pointer 

• copy constructor, move constructor, copy assignment operator, and move assignment operator

• destructor 

• operator* to dereference an iterator – shall return a reference to the pointed-to object 

• operator-> shall return a pointer to the pointed-to object 

• operator++ (prefix and postfix) shall move the iterator forward one element 

• operator== shall return true if the compared iterators points to the same list element 

• operator!= shall return true if the compared iterators does not point to the same list element

Ordered_List modifications 

Ordered_List shall have the following member types, beside those given,

iterator 
const_iterator 

and the following member functions to acquire iterators: 

• begin() – shall return an iterator for a non-const Ordered_List, a const_iterator for a const Ordered_List

• cbegin() – shall always return a const_iterator 

• end() – shall return a past-end iterator for a non-const List, a past-end const_iterator for a const 
Ordered_List

• cend() – shall always return a past-end const_iterator

See also instructions in the given files.


	Advanced Programming in C++
	Exercise - Ordered_List iterators
	The iterators
	Ordered_List modifications



