
Advanced Programming in C++
2014

Mixed Exercises

These exercises cover different aspects of C++. Their purpose is to support you in your studies to prepare
for the computer examination. Some exercises cover basic aspects of C++, while some are more difficult
and advanced, and in some case obscure.

There are also some larger exercises given separately, which are to be preferred. Most of the program-
ming exercises given here are supposed to lead to rather small solutions, while most of the exercises
given separately, in most cases, lead to more comprehensive coding.

The exercises given here are divided into different topics, with respect to their main feature. Some
exercises may therefore actually cover several topics. The first clauses, i.e. Basic constructs and
Statements are prerequisites, but should be looked into if you don’t have pre-knowledge of C++.

• Basic language constructs

• Statements

• Class

• Operator verloading

• Derived classes

• Exceptions
1

Basic language constructs

This clause covers such things as declarations, definitions, simple data types, compound data types,
built-in operators, expressions, and statements.

1. Which of the following declarations are definitions and which are not? Give a corresponding
definition for those that are not a definition and a corresponding declaration for those that are.

char c;
string s;
auto count{ 1 };
const int MAX{ 4711 };
extern double d;
const char* msg{ ”Hello!” };
const char* Direction[]{ ”up”, ”down”, ”left”, ”right” };
struct Time { int h, m, s; };
int sec(Time* p) { return p->s; }
double sqrt(double);
template<typename T> T abs(T a) { return (a < 0) ? -a : a; }
typedef std::vector<double> data;
using char_ptr = char*;
struct Node;
enum Season { Spring, Summer, Autumn, Winter };
namespace N { int i; }

2. Which entities in exercise 1 have a size, i.e. to which may the operator sizeof be applied?

3. Write declarations for the following entities and initialize each of them:

a pointer to char
an array with 10 int
a reference to an array with 10 int
a pointer to an array with 10 elements of type string
a pointer to a pointer to char
a constant int
a pointer to a constant int
a constant pointer to an int

4. Use alias declarations (using) to define the following types, in the given order:

unsigned char
const unsigned char
pointer to int
pointer to pointer to char
pointer to array with element of type char
array with 10 pointer to int
pointer to an array with 10 pointer to int
array 20 of array 10 with pointer to int

5. For each of the following declarations: Is it legal? If it is, what does it declare?

int a(int i);
int a(int);
int a(int (i));
int a(int (*b)());
int a(int b());
int a(int ());

6. What does the following mean? How can it be used?

using x = int(&)(int, int);
2

7. Which size does the character array msg have? Which length does the string "Hello world!" have?

char msg[]{ "Hello world!" };

8. Which value, in principle, does the operator sizeof give for the following variables?

char str1[100]{ "String" };
char str2[]{ "String" };
const char* str3{ "String" };
string str4{ "String" };

Why must the third declaration be const?

9. Fully parenthesize each of the following expressions:

a = b+c*d<<2&8
a&&077!=3
a==b || a==c && c<5
c = x!=0
0<=i<7
f(1,2)+3
a = -1+ +b-- -5
a= b==c++
a = b = c = 0
a[4][2] *= *b? c: *d*2
a-b, c = d
*p++
*--p
++a--
(int*)p->m
*p.m
*a[i]

How will the seventh expression above be parsed, if one removes all spaces? Will it be a legal
expression? Will it be semantically the same as the expression with spaces?
Note: This illustrates the maximum munch principle used by the parser.

10. Write declarations for the following types, in the order given. Show both alias declarations
(using) and typedefs.

a function which takes two arguments, one of type pointer to char and one of type reference
to int, not returning anything
a pointer to such a function
a function which takes such a function pointer as argument
a function which returns such a pointer

11. Given the declarations:

unsigned u = 0;
bool b = false;
double d = 0.0;

What results will the following expressions give, and what value will the three variables have
afterwards if, of course, the expression in question is legal?

u-- and thereafter ++u
b++ and thereafter, again b++
++b
b--
--b
d++

The operand to an increment operator must be a modifiable lvalue, but what is the result of
postfix ++/-- and prefix ++/--, respectively? Is it a lvalue or a rvalue?
3

Statements

1. Given the following for statement where line is a character array with length length.

for (int i = 0; i < length; ++i)
if (line[i] == ’ ’)

++space_count;

Rewrite it as a corresponding while statement.

2. Rewrite the for statement in exercise 1 above, so it steps through line using a pointer instead of
indexing.
Note 1: These dual constructs for accessing array elements shows two well-known idioms in C and C++;
the ”array indexing idiom” and the ”pointer idiom”.

Note 2: Using pointer arithmetic to step through an array is a source optimization technique frequently
used in C programs, by tradition. A modern C or C++ compiler may produce better code if you refrain
from this!

3. Rewrite the for statement in exercise 1 above, using range access functions.

4. Rewrite the for statement in exercise 1 above, using a range based for statement.

Class

1. One can define a class, say Integer, with almost the exact behaviour as int, without overloading
every operator which is defined for int, by defining operator int() for Integer. Why do we get into
trouble in the following example?

struct Ten {
operator Integer() const { return Integer(10); }

};

Integer i(10); // Constructor Integer(int) is supposed to be defined
const char* hex = "0123456789ABCDEF";
char d = hex[i];

Ten ten;
d = hex[ten];

2. Define a class Integer which acts as int but for which only the following operations are
allowed: + (both unary and binary), - (both unary and binary), *, /, %, ++ and -- (both in prefix
and postfix versions, with the same semantics as for int). How can you make these operations
also legal for mixed expressions with int and Integer?

Overload operator << and operator >> for Integer. Could be a good idea to implement
operator<< first of all operators.

Operator overloading

1. Define a type for storing a persons name (first and last name as two separate strings) and address
(street, post code and city as three separate strings). Overload the operator>> and operator<< to
read and write, respectively, such data, given a certain format (e.g first and last name in that order
on the first line and the three parts of the address on three successive lines). Write a test program
which copies a stream of names and addresses.

2. Construct a class named ifcharstream with operator[] overloaded for reading characters from a
text file randomly. A file name is to be given when an ifcharstream object is created, and a file
stream for both reading and writing is to be opened and bound to the given file.

3. Use istream::seekg for positioning in the file.
4

Derived classes

1. The following class is given:

struct Base
{

void id() const { cout << "base\n"; }
};

1) Derive a direct subclasses to Base called Derived and declare a member function id() also in
Derived, to print out "Derived". Write a program which declares ordinary object of Bae and
Derived and also declare Base and Derived pointers and let then point to dynamically allo-
cates objects of type Base and Derived. Call id() for the different cases and especially note
the printout for the case when a derived object is referred to by a base* pointer.

2) Copy the program from step 1. Declare id() to be virtual in both Base and Derived and add a
virtual destructor to Base, since this is now a polymorphic class hierarchy. Run the same
test suite as in step 1. There should be at least some difference.

3) Copy the program from step 2. Remove id() from Derived, leaving Derived empty. Modify
Base::id() to print the “name” of the class by applying typeid to the object in question and
calling member function name() for the type_info object the typeid expression creates. Run
same test as prevously.

4) Copy the program from step 3. Replace the typid expression and call to name() with a call
to demangle_name(), which can be found from the course exercises home page.

2. The following abstract class for implementing callbacks is given:

struct callback {
virtual void operator()() = 0;

};

Define, by deriving from the class callback, and overriding av operator() a class template which
can be used for binding callback functions of type void(*)(). A simple program which uses these
classes may look as:

#include <iostream>
using namespace std;

struct callback { /* As above */ };

template<…> … ; // The template class to be defined

void hello() { cout << "hello world!\n"; }

void greet(… msg) { // Function making callback via parameter
msg();

}

int main() {
greet(…hello…);

}

Define also a class template for callbacks to a member function in an object. The member
function is supposed to have the type void(*)().
5

Exceptions

1. Write a program with a recursive function, which calls itself to a certain call depth, e.g 10, and
then throws an exception. The function shall as argument have the call depth when the exception
is to be thrown. Let main() catch the exception and print at which call depth the exception was
thrown. The call depth when the exception is to be thrown shall be given on the command line
when the program is started. A run can look as follows, if the name of the program is throwup:

%unix throwup 10
exception thrown at call depth 10.
6

	Advanced Programming in C++
	Mixed Exercises
	Basic language constructs
	Statements
	Class
	Operator overloading
	Derived classes
	Exceptions

