
1

Advanced Programming in C++
Aggregates and list initialization

An aggregate is an array or a class with no user-provided constructors, no brace-or-equal-initializers for
non-static data members (this may be allowed in C++14), no private or protected non-static data mem-
bers, no base classes, and no virtual functions. Examples of brace-or-equal- initializer are:

int i{1}; // brace initializer
int i = 1; // equal initializer

An aggregate can be initialized by an initializer list, so called list initialization, that is, can be initialized
from a braced-init-list. Below are two examples of braced-init-lists:

{ 1, 2, 3 }
{ "Foo", 17, 3,14, true }

The comma-separated initializer-clauses of an initializer list are called the elements of the list. An
initializer list may be empty, {}. List-initialization can occur in both direct-initialization or copy-
initialization contexts:

T x{a}; // direct-initialization syntax
T x(a); // direct-initialization syntax
T x = a; // copy-initialization syntax

List-initialization is important to know about and can be used in many contexts:

1) as the initializer in a variable definition

2) as the initializer in a new expression

3) as a function argument

4) in a return statement

5) as an initializer for a non-static data member

6) in a member initializer

7) on the right-hand side of an assignment

8) as an argument to a constructor invocation

9) as a subscript

Do the following for 1–8 above:

a) write test cases when relevant for array

b) write test cases when relevant for struct aggregate

c) write test cases for context where array or struct aggregate gave problems

Hint: std::initializer_list may be of interest in some cases where array is not possible.


