
Introduction to the STL
Eric Elfving

1 Containers
2 Iterators
3 Algorithms

November 1, 2017 2 / 14

There are three groups of containers in the STL:

Sequence containers Stores values in sequence. Can
usually access an element by index (but
not always)

Sequence adaptors Built upon a specific sequence
container but changes the interface.

Associative Stores a value that is associated with a
specific key.

November 1, 2017 3 / 14

Sequence containers

vector Stores values in a contiguous block of
memory (array-based). Can change size as
needed.

array Works like vector, but has a fixed
(compile-time) size.

deque Double-ended queue, usually
implemented with linked arrays. Useful to
store elements in the beginning or end of
the range.

list A double-linked list
forward_list A single-linked list made to be as

efficient as possibly

November 1, 2017 4 / 14

Sequence adaptors

stack Usually based on deque, can only access
the element that was added last.

queue FIFO queue

priority_queue A queue that stores values
according to some given priority function.

November 1, 2017 5 / 14

Associative containers

map Associates a value to a key of a given type.
map<string, int> uses a string as a
key to fetch a value of type int

set Works like map, but will only use the key.

Also exists as multi- and unordered- variants

November 1, 2017 6 / 14

#include <map>
#include <iostream>
using namespace std;

int main()
{

map<string, int> table { {"Key 1", 2},
{"Key 2", 5} };

table["Hello"] = 6;
for (pair<string const, int> p : table)
{

cout << p.first << ": " << p.second << endl;
}
// With auto:
for (auto && p: table)
{

cout << p.first << ": " << p.second << endl;
}
//
// C++17 below (using structured bindings):
for (auto && [key, value] : table)

cout << key << ": " << value << endl;
}

1 Containers
2 Iterators
3 Algorithms

November 1, 2017 8 / 14

An iterator is a common interface for referring to an
element in a given container. The container supplies a
specialized iterator that knows how to traverse the
underlying data structure.

Has the same interface as built-in pointers.

November 1, 2017 9 / 14

There are five different categories that specifies what
we can use the iterator for.

Iterator Category
Operations Input Output Forward Bidirectional Random Access
==, != ✓ ✓ ✓ ✓ ✓
*, -> Read Write Read/Write Read/Write Read/Write
++ ✓ ✓ ✓ ✓ ✓
-- - - - ✓ ✓
+, +=, -, -= - - - - ✓
<, <=, >, >= - - - - ✓
i[n] - - - - ✓
The type of iterator given by a specific container is
decided by the underlying data structure.

November 1, 2017 10 / 14

If the category given by a container is bidirectional or
random access, we'll also have access to reverse
iterators to traverse the data structure in reverse order.

Figure : Relationship between an iterator type and
corresponding reverse iterator cppreference

http://en.cppreference.com/w/cpp/iterator/reverse_iterator

November 1, 2017 11 / 14

vector<int> values {1, 2, 3, 5, 8};
// explicitly declaring an iterator
vector<int>::iterator it { values.begin() };
*it = 5; // change first element (1) to 5
// iterate over range using iterators
for (auto it { begin(values) }; it != end(values); ++it)
{

cout << *it << endl;
}

1 Containers
2 Iterators
3 Algorithms

November 1, 2017 13 / 14

• Iterators are often used to do general calculations
on ranges of data with help of generalized
algorithms.

• Simple example:
vector<int> vals {1, 2, 5, 2, 7};
sort(begin(vals), end(vals));
// vals is in order 1 2 2 5 7

• The algorithm specifies the minimum requirement
on iterators passed.

• Some containers have member functions that work
for that specific container:

list<int> lst {1, 45, 2, 5};
lst.sort();

November 1, 2017 14 / 14

• You can change the default behavior of most
algorithms with a callable object
bool comp(int a, int b) { return b < a; }
vector<int> v {1, 2, 4, 2, 7};

• Function pointer
sort(begin(v), end(v), comp);

• Function object (class type with function call
operator)
sort(begin(v), end(v), std::greater<int>{});

• Lambda expression - temporary anonymous
function object
sort(begin(v), end(v), [](int l, int r) { return r < l; });

November 1, 2017 14 / 14

• You can change the default behavior of most
algorithms with a callable object
bool comp(int a, int b) { return b < a; }
vector<int> v {1, 2, 4, 2, 7};

• Function pointer
sort(begin(v), end(v), comp);

• Function object (class type with function call
operator)
sort(begin(v), end(v), std::greater<int>{});

• Lambda expression - temporary anonymous
function object
sort(begin(v), end(v), [](int l, int r) { return r < l; });

November 1, 2017 14 / 14

• You can change the default behavior of most
algorithms with a callable object
bool comp(int a, int b) { return b < a; }
vector<int> v {1, 2, 4, 2, 7};

• Function pointer
sort(begin(v), end(v), comp);

• Function object (class type with function call
operator)
sort(begin(v), end(v), std::greater<int>{});

• Lambda expression - temporary anonymous
function object
sort(begin(v), end(v), [](int l, int r) { return r < l; });

Eric Elfving

www.liu.se

www.liu.se

	Containers
	Iterators
	Algorithms

