
12/11/2014

1

IDA / ADIT

Lecture 10: Database recoveryLecture 10: Database recovery

Jose M. Peña

jose.m.pena@liu.se

IDA / ADIT 2

How can several users access and How can several users access and

update the database at the same time ? update the database at the same time ?

Real world

Model

Database
system

Physical
database

Database
management
system

Processing of
Queries/updates

Access to stored data

12/11/2014

2

IDA / ADIT 3

Concurrent processingConcurrent processing

• Single user system: At most one user can use the system at

each point in time.

• Multiple user system: Several users can use the system at the

same time.

o Multiple CPU: Parallel processing.

o One CPU: Concurrent processing, interleaving.

• Hereinafter, we focus on multiple user systems with just one

CPU.

IDA / ADIT 4

Transactions: DefinitionTransactions: Definition

• A transaction is a logical unit of database processing and

consists of one or several operations.

• Simplified database operations in a transaction:

o Read-item(X)

o Write-item(X)

12/11/2014

3

IDA / ADIT 5

Properties for transactionsProperties for transactions

ACID: Atomicity, Consistency preservation, Isolation, Durability

• A: A transaction is an atomic unit: It is either executed
completely or not at all.

• C: A database that is in a consistent state before the execution
of a transaction (i.e. it fulfills the conditions in the relational
model and any other condition declared for the database), is
also in a consistent state after the execution of the transaction.

• I: A transaction should act as if it is executed isolated from the
other transactions.

• D: Changes in the database made by a committed transaction
are permanent.

IDA / ADIT 6

Properties for transactionsProperties for transactions

• Who ensures that the ACID property are satisfied ?

o Atomicity: Recovery system.

o Consistency preservation: Programmer + DBMS.

o Isolation: Concurrency contol.

o Durability: Recovery system.

12/11/2014

4

IDA / ADIT 7

System log

start-transaction T1
write-item T1, D, 10, 20
commit T1
start-transaction T4
write-item T4, B, 10, 20
write-item T4, A, 5, 10
commit T4
start-transaction T2
write-item T2, B, 20, 15
start-transaction T3
write-item T3, A, 10, 30
write-item T2, D, 20, 25
CRASH

T1

T4

T2

T3

crashTIME

Recovery: ExampleRecovery: Example

IDA / ADIT 8

Reasons for Reasons for a crasha crash

1. System crash.

2. Transaction or system error.

3. Local error or exception.

4. Concurrency control.

5. Disk failure.

6. Catastrophy.

• Reasons 1-4: Focus of the rest of the lecture.

• Reasons 5 and 6:
o Use the backup of the database and system log, and

o redo all the operations for the committed transactions.

12/11/2014

5

IDA / ADIT 9

System logSystem log

• File with log records.

• Saved on disk + periodically on tape.

• Types of log records:
o start-transaction T

o write-item T, X, oldvalue, newvalue

o read-item T, X

o commit T

o abort T

o checkpoint

IDA / ADIT

CommitCommit

• It indicates that the transaction has been executed
successfully in all respects (including serializability) and,
thus, the changes made by the transaction can be stored
permanently on disk.

10

12/11/2014

6

IDA / ADIT 11

Database
(physical blocks)

Cache directory

Cache
(collection of buffers)

Primary memory

Storage hierarchyStorage hierarchy

IDA / ADIT 12

How to execute ReadHow to execute Read-- and Writeand Write--item(Xitem(X))

• Read-item(X)
1. Locate the block on disk that contains X.

2. Copy the block to primary memory (a buffer).

3. Copy X from the buffer to the program variable X.

• Write-item(X)
1. Locate the block on disk that contains X.

2. Copy the block to primary memory (a buffer).

3. Copy the value of the program variable X to the right place in the
buffer.

4. Store the modified block on disk.

• Mind that
o the block cointaining X may already be in primary memory, or

o there may not be any empty buffer: Flush the cache.

12/11/2014

7

IDA / ADIT

Flush the cacheFlush the cache

• There is no empty buffer for the incoming block. So,
some buffer must be freed. The block in this buffer may
need to be written to disk.

• How do we know that if the buffer has been modified
since it was read from disk ? Dirty bit.

• How do we know that the buffer can be written to disk ?
Pin-unpin bit.

13

IDA / ADIT 14

CheckpointCheckpoint

• The system writes on disk
o all the buffers that have been modified (dirty bit) and can be

written to the disk (pin-unpin bit),

o writes``checkpoint'' in the system log, and

o writes the system log to disk.

• Advantage: Operations belonging to transactions that
have committed before a checkpoint do not need to be
redone in case of a crash.

• How often does the system runs a checkpoint ?
According to time, number of committed transactions,
etc.

12/11/2014

8

IDA / ADIT 15

Update methodsUpdate methods

• Updating the database in disk after each change is inefficient.

• Deferred update:

o The database is updated in disk after (but not neccessarily immediately after)
the transaction has committed. Pin-unpin bit !

o Before the commit, the transaction has a local environment.

o At some point after the commit, the system log and buffers are written to
the disk.

• Deferred update may run out of buffers.

• Immediate update

o The database can be updated in disk before the transaction commits.

o The system log is written first and, then, the buffers.

• When does the database get updated in disk ? At checkpoint and
when flushing the cache.

IDA / ADIT 16

System log

start-transaction T1
write-item T1, D, 10, 20
commit T1
checkpoint
start-transaction T4
write-item T4, B, 10, 20
write-item T4, A, 5, 10
commit T4
start-transaction T2
write-item T2, B, 20, 15
start-transaction T3
write-item T3, A, 10, 30
write-item T2, D, 20, 25
CRASH

T1

T4

T2

T3

crashTIME

Recovery: ExampleRecovery: Example

T4

checkpoint

12/11/2014

9

IDA / ADIT 17

Recovery with deferred updateRecovery with deferred update

• The database is updated in disk after (but not neccessarily
immediately after) the transaction has committed. Then:
o No need to undo the changes of non-committed transactions.

o Need to redo the changes of committed transactions.

• NO-UNDO/REDO

• Algorithm:
- Create a list with active (i.e. non-committed) transactions and a

list with committed transactions since the last checkpoint.

- REDO all the write-item operations of all the transactions in the
second list in the order in which they appear in the system log.

IDA / ADIT 18

start-transaction T1
write-item T1, D, 10, 20
commit T1
checkpoint
start-transaction T4
write-item T4, B, 10, 20
write-item T4, A, 5, 10
commit T4
start-transaction T2
write-item T2, B, 20, 15
start-transaction T3
write-item T3, A, 10, 30
write-item T2, D, 20, 25
CRASH

T1

T4

T2

T3

crashcheckpoint

NO-UNDO

REDO: T4

12/11/2014

10

IDA / ADIT 19

start-transaction T1
write-item T1, D, 10, 20
commit T1
checkpoint
start-transaction T4
write-item T4, B, 10, 20
write-item T4, A, 5, 10
commit T4
start-transaction T2
commit T5
write-item T2, B, 20, 15
start-transaction T3
write-item T3, A, 10, 30
write-item T2, D, 20, 25
CRASH

T1

T4

T2

T3

crashcheckpoint

Start-transaction T5
write-item T5, E, 10, 15

T5

IDA / ADIT 20

Recovery with immediate update Recovery with immediate update -- 11
• The database can be updated in disk before the transaction

commits.

• Additional requirement: The database must be updated in
disk before the transaction commits. Then:
o No need to redo the changes of committed transactions.

o Need to undo the changes of non-committed transactions.

• UNDO/NO-REDO

• Algorithm:
- Create a list with active (i.e. non-committed) transactions and a list

with committed transactions since the last checkpoint.

- UNDO all the write-item operations of all the transactions in the
first list in the reverse order in which they appear in the system log.

12/11/2014

11

IDA / ADIT 21

start-transaction T1
write-item T1, D, 10, 20
commit T1
checkpoint
start-transaction T4
write-item T4, B, 10, 20
write-item T4, A, 5, 10
commit T4
start-transaction T2
write-item T2, B, 20, 15
start-transaction T3
write-item T3, A, 10, 30
write-item T2, D, 20, 25
CRASH

T1

T4

T2

T3

crashcheckpoint

NO-REDO

UNDO: T2, T3

IDA / ADIT 22

• The database can be updated in disk before the transaction
commits.

• No additional requirement. Then:
o Need to redo the changes of committed transactions.

o Need to undo the changes of non-committed transactions.

• UNDO/REDO

• Algorithm:
- Create a list with active (i.e. non-committed) transactions and a list

with committed transactions since the last checkpoint.

- UNDO all the write-item operations of all the transactions in the
first list in the reverse order in which they appear in the system log.

- REDO all the write-item operations of all the transactions in the
second list in the order in which they appear in the system log.

Recovery with immediate update Recovery with immediate update -- 22

12/11/2014

12

IDA / ADIT 23

start-transaction T1
write-item T1, D, 10, 20
commit T1
checkpoint
start-transaction T4
write-item T4, B, 10, 20
write-item T4, A, 5, 10
commit T4
start-transaction T2
write-item T2, B, 20, 15
start-transaction T3
write-item T3, A, 10, 30
write-item T2, D, 20, 25
CRASH

T1

T4

T2

T3

crashcheckpoint

UNDO: T2, T3

REDO: T4

IDA / ADIT

Strict schedulesStrict schedules

• Problem ?
o Dirty read.

o Immediate update 1.

• Recoverable schedule: A transaction T commits only if the last
transaction that modified each item read by T has committed.

• Cascadeless schedule: A transaction T can read an item only if the
last transaction that modified it has committed.

• Strict schedule: A transaction T can read or write an item only if the
last transaction that modified it has committed.

• How to obtain strict schedules ?
o Strict 2PL: Do not release write locks until after commit.

o Rigorous 2PL: Do not release any lock until after commit.

• With strict schedules, no need to store read-item T, X in the
system log.

24

start-transaction T1
write-item T1, D, 10, 20
read-item T2, D
write-item T2, D, 20, 15
commit T2
CRASH

